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POLAR MULTIPLICITIES AND EULER OBSTRUCTION
FOR RULED SURFACES

NIVALDO G. GRULHA JR., MARCELO E. HERNANDES AND RODRIGO
MARTINS.

ABSTRACT. Given two integers n > m > 0 we exhibited (ruled) surfaces
with multiplicity n and Euler obstruction m. As a consequence we
give a finitely determined condition for ruled surfaces in terms of Euler
obstruction.

1. INTRODUCTION

The local Euler obstruction at a point p of an algebraic variety X, de-
noted by Eux(p), was defined by MacPherson. It is one of the main ingre-
dients in his proof of Deligne-Grothendieck conjecture concerning existence
and unicity of characteristic classes for complex algebraic varieties [7]. An
equivalent definition was given in (3] by J.-P. Brasselet and M.-H. Schwartz,
using stratified vector fields. The Euler obstruction was deeply investigated
by many authors as Brasselet, Schwartz, Sebastiani, Lé, Teissier, Sabbah,
Dubson, Kato and others. For an overview about the Euler obstruction see
(1, 2]. The computation of local Euler obstruction is not so easy by using the
definition. Various authors propose formulae which make the computation
easier. For instance Lé D.T. and B. Teissier provide a formula in terms of
polar multiplicities [11].

For 1-dimensional algebraic varieties, that is, algebraic curves, there only
one polar multiplicity which is the multiplicity mo(C) of curve C' and by
a Lé-Teissier formula we can clearly see that the local Euler obstruction
Eug(0) coincides with mg(C). In this context for 1-dimensional algebraic
varieties X it is easy to present examples with Euy(0) = n for all non-
negative integer n.

The purpose of this paper is to exhibit surface X with polar multiplicities
prescribed mo(X) > m1(X) and for convenient choice of mo(X) and m; (X)
we can present family of (ruled) surfaces with Euy(0) = n for all non-
negative integer n.

Our result concern the Euler obstruction of germs of ruled surfaces, a
interesting generalizations of the Euler obstruction is the Euler obstruction
of function, this invariant was defined in [4] for functions defined on singular
spaces, it would be interesting to try to compute this invariant for functions
defined on ruled surfaces. When f : (X,0) — C has isolated singularity at
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the origin (in the stratified sense) this invariant is closely releted to Milnor
number of a function, see for instance [4, 9, 6].

2. PRELIMINARIES

In this section we introduce some definitions and notations related with
polar multiplicities, Euler obstruction and ruled surfaces.

2.1. The local Euler obstruction. Let us first introduce some objects in
order to define the Euler obstruction. Let (X,0) C (CV,0) be an equidi-
mensional reduced complex analytic germ of dimension d in an open set
U c CN. We consider a complex analytic Whitney stratification {Vj} of U
adapted to X such that {0} is a stratum. We choose a small representa-
tive of (X,0) such that 0 belongs to the closure of all the strata. In this
way we will write X = Uff:OVi where Vp = {0} and V; = Xi¢g, the set of
smooth points of X. Moreover, we will assume that the strata Vp,..., V41
are connected and that the analytic sets Vo, ... ,W_—l are reduced and we
will denote d; = dimV; for i € {1,...,q} (note that d, = d).

Let G(d, N) denote the Grassmanian of complex d-planes in CV. On the
regular part Xyeg of X the Gauss map ¢ : Xyeg — U X G(d, N) is well defined

by ¢(z) = (z, To(X 1eg))

Definition 2.1. The Nash transformation (or Nash blow up) X of X is
the closure of the wmage Im(¢) in U x G(d,N). It is a (usually singular)
complez analytic space endowed with an analytic projection map v : X=X
which is a biholomorphism away from v=1(Sing(X)).

The fiber of the tautological bundle 7 over G(d,N), at the point P €
G(d, N), is the set of the vectors v in the d-plane P. We still denote by 7
the corresponding trivial extension bundle over U x G(d, N). Let T be the

restriction of 7 to X, with projection map 7. The bundle T on X is called
the Nash bundle of X.

An element of T is written (z, P,v) where = € U, P is a d-plane in CV
based at x and v is a vector in P. We have the following diagram:

T e T
7 !
X <— UxG(,N)
vl !
X = U
Let us recall the original definition of the Euler obstruction, due to Mac-
Pherson [7]. Let z = (z1,...,2n) be local coordinates in CV around {0},

such that z;(0) = 0. We denote by B. and S¢ the ball and the sphere
centered at {0} and of radius £ in CV. Let us consider the norm ||z|| =

Vz1z1 + - + zvzn. Then the differential form w = d||2 || defines a section
of the 1eal vector bundle T(CV)*, cotangent bundle on CN. Its pull back
restricted to X becomes a section denoted by @ of the dual bundle T*. For
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e small enough, the section @ is nonzero over v~1(2) for 0 < ||z|| < e. The
obstruction to extend & as a nonzero section of T* from v~ (Se) to v~1(Be),
denoted by Obs(T*,®) lies in H* (v~ (B),v~'(S¢); Z). Let us denote by
Oy-1(B.)w-1(s.) the orientation class in Hyq(v~"(Be), Y8 Z).

Definition 2.2. The local Euler obstruction of X at 0 is the evaluation of
ObS(T*,&) on OV—I(BE),U—I(SE), 1.e:

Eux (0) = (Obs(T*,&), O,-1(5,).-1(5.))-

The local Euler obstruction is independent of all choices involved.

The following interpretation of the local Euler obstruction has been given
by Brasselet-Schwartz (3].

Let us consider a stratified radial vector field v(z) in a neighborhood of
{0} in X, d.e., there is o such that for every 0 < ¢ < €o, v(z) is pointing
outwards the ball B, over the boundary S = 0B..

Definition 2.3. Let v be a radial vector field on XNSe and v the lifting of v
on v~ (X NSe) to a section of the Nash bundle. The local Euler obstruction
(or simply the Euler obstruction) Eux (0) is defined to be the obstruction to
extending U as a nowhere zero section of T over v (X NB,).

More precisely, let O(7) € H2¢(v=1(X NB,), v~} (XNS;)) be the obstruc-
tion cocycle to extending ¥ as a nowhere zero section of T inside v~ (XNB,).
The local Euler obstruction Euy (0) is defined as the evaluation of the cocy-
cle O(¥) on the fundamental class of the pair (v=}(X NB.), v~ (X NS)).
The Euler obstruction is an integer.

The Euler obstruction, Eux (z), is a constructible function on X, in fact
it is constant along the strata of a Whitney stratification.

Definition 2.4. Let v : X — X be the proper analytic Nash modification of
X, here X C X x G, where G is the Grassmannian manifold of d planes in
CN+!, Let ® = {Dy C Dyg_1 C ... C Dy C CNF1} be one flag, we associate
D with the Schubert variety cx(D) = {E € G/dim E N Dg_y, > k}.

Definition 2.5. The morphism -y : X — G induced by the second projec-
tion X x G — G allow us to define the absolute polar varieties Pp(D) =
v(y"(ck(D))). If D is generic we just denote the polar variety by Py(V,y).

With the aid of Gonzales-Sprinberg’s purely algebraic interpretation of
the local Euler obstruction [5], Lé and Teissier in [11] showed that the local
Euler obstruction is an alternate sum of the multiplicities of the local polar
varieties.

Theorem 2.6. [11] Let X C CV be an analytic space of dimension d reduced
at 0. Then

Eux(0) = 2 (-1)my (X, 0),
where Euy (0) denotes the Euler obstruction of X at 0 and m;(X,0) is the
polar multiplicity of the polar varieties Pi(X,0).
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2.2. Ruled surfaces. Let us now take two complex curves o : D — CV
and 8 : D — CV, where D C C is a disc centered at the origin, we can
consider both curves together as a map (a,8) : D — CN x CN. We say that
a(t) = (a1 (t),...,an(t)) and B(t) = (Bi(t),...,OBn(t)) is a pair of primitive
parametrization for (o, 3) if it cannot be reparametrized by a power of a
new variable. In what follows we consider only primitive parametrizations.

Notice that in a pair of primitive parametrization for (o, 5) we may have
that each parametrized curve is not primitive. For instance, the space com-
plex curves a(t) = (t2,t4,t5) and B(t) = (¢3,¢%,¢9) are not primitive, but
(o, B)(t) = ((tQ, t4,1), (¢3,¢5,¢%)) is a pair of primitive parametrization.

A ruled surface in C3 is locally the image of a map f : D x C — C3 given
by

ft,u) = aft) +ub(t),

where a and 8 are space complex curves with 4 # 0. We call o : D — c3
the base curve and §: D — C3 is the director curve. Moreover, the straight
lines u — «(t) + uB(t) are called rulings of the ruled surface.

If (to,ug) € D x C and f(to,up) = p, then we will call a germ of ruled
surface the image of the map germ f: (D x C, (to,u0)) — (C3, p).

Considering that all map germs are C*°, by Lemma 2.5 of [§], given a
germ of ruled surface we can choose affine coordinates in C3 such that it is
parametrized by a map germ f : (C2,0) — (C?,0) of the form

(1) f(ta U‘) = (07 &51 (t)v a?(t)) -+ 'LL(l, /Bl (t)’ 62(0)

Given a pair of primitive parametrization (c,3) of plane complex curve
we will denote by f(, ) the ruled surface associated to these curves as in (1)
and from now on we only consider ruled surfaces given in this way.

For example, considering o(t) = (2,0) and B(t) = (0,t), the pair («,3)
define the ruled surface f(q ) (t,u) = (u,t?,ut) that is a well know Cross
Cap parametrization.

Definition 2.7. Given a pair (Y),7?) : D — C? x C?, the (pair) mul-
tiplicity at the origin 0 € D C C is (m(y1),m(v®)) with m(yW) =
min{ordni(])(t);i =12}

3. EULER OBSTRUCTION FOR RULED SURFACES

First we remark that, as a image of a finite application, all ruled surfaces
are analytic sets, therefor we can compute its Euler obstruction at a point.

Fixing two non-negative integers ng > n; > 0 we can exhibited a family of
ruled surface germs (X, 0) in the such way that the polar multiplicities of its
is precisely mo(X,0) = ng and my(X,0) = ng —n; and as a consequence of
Lé-Teissier formula we have that Euler Obstruction of (X, 0) is Euy (0) = n.

With notations introduced in the previous section, it is clear that
Py(X, Dy) = V then mo(X,0) is exactly the multiplicity of X at the origin
and we can compute by a intersection with a generic complex line L through
the origin.
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Proposition 3.1. Let us take a pair of primitive parametrization (e, 3) of
plane complex curves and pair multiplicity (no,n1). If X is the ruled surface
given by fa,p as in (1) then mo(X,0) = ng.

Proof. Considering L given by {w(a,b,c); w € C} where (a:b:c) € P is
generic we have that L N X is described as following:
aw=u
bw = ay(t) + ubi(t)
cw = ag(t) + ufa(t).

It is easy verify that LN X = {g:gg?gg as(t) = ay(t);t € C} where ¢ —

aBi(t),b— aBi(t) € C{t} are unit because (a : b: c) is generic.
Hence, mo(X,0) = min{ordia;(t);1 = 1,2} = ny. O

In order to present germs ruled surfaces (X,0) with polar multiplicity
and Euler obstruction prescribed, we consider that (X,0) is given by f(qg)
where (a, 3) pair of primitive parametrization with pair multiplicity (no,n1)
and ng = N1 > 0.

Proposition 3.2. Given a pair of primitive parametrization («, 3) of plane
complex curves with pair multiplicity (no,n1) and ng > ny > 0, then the
germ (X, p) of ruled surface given by f(a,3) is such that m1(X,p) = ng —n1.

Proof. We have that the polar multiplicity m;(X,p) is the multiplicity of
the the variety P;(X, L) defined by

(2) {ge€ X;dimcT,XNL>1}

where L is a generic line through the p = f, g)(t, ) = (x,y,2) which can
be consider given by {(z,y,z) + w(a,b,c); w € C} where (a:b:c) € P4 is
generic.

The condition (2) is equivalent to

v € span(vy,vs) = TpX where v = (a,b,c).

Without loss of generality we can consider v; = (0, (¢t) + ufi(t)) and
vo = (1, 81(t), B1(t)) where o(t) and B;(t) denote the derivative of ;(t) and
Bi(t) with respect to t.

In this way we have that v.(v; Ave) = 0 that is

u (a(B2(t)B1(t) + Bo(t)Br (1)) + bF3(t) — cBi(t)) =
(a(Br(t)an(t) — Ba(t)) () — bas(t) + cai ().
Using the generality of (a: b : ¢) € P? and that min{ord,8;(t);1 = 1,2} =
ny < ng = min{ord;a;(t);i = 1,2} we have that
P(t)

3) w= g € Gl
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where
P(t) = a(Ba2(t) 51 (t) + Ba(t)Br(t)) + bBa(t) — cPi(t)
and
Q(t) = a(Br(t)ay(t) — Ba(t)y (1)) — bai(t) + caiy (t).
Hence Py(X, L) is the curve ¥(t) in (X, p) such that f, g)(t,u) =0 with
w as (3), that is,
55 (PO, Q00 + POAD, QE)a®) + POB)

Analyzing the multiplicity of each component of ¥ and taking in count
the generality of (a : b: ¢), we have that

ordy(P(t)) < min{ordy(P(t)a1(t)+ P(t)Ai(t)), ordy(Q(t)ca(t) 4+ P(t)Ba(t))}.
But

w(t) =

ordy(P(t)) = min{ord;c/; (t), ordian(t)} = ng — 1
and
ordi(Q(t)) = min{ordB1(t), ordiB5(t)} =nq — 1.
In this way, the multiplicity of Py(X, L) is ordi(P(t)) — ord¢(Q(t)) =
ng — n1, hence my (X, p) = ng — ny. O

Now the next theorem is immediate from the above propositions. Notice
that this result show us that we can find examples of germs of ruled surfaces
for any given positive Euler obstruction.

Theorem 3.3. If (X,0) is a germ of ruled surface given by f(q,g) as in (1)
where (a, ) is a pair of primitive parametrization of plane complex curve
with pair multiplicity (ng,n1) and ng > ny > 0, then Eux(0) = n;.

Proof. 1t is following from Propositions 3.1, 3.2 and Leé-Tessier formula that
Eux(0) = mo(X,0) —mi(X,0) =ny.
d

Corollary 3.4. Let (X,0) C (C30) be a germ of a ruled surface, if the
Euler obstruction Eux(0) is bigger than 1 then (X,0) have non-isolated
stngularity at the origin.

Proof. The polar multiplicities are related with the Milnor number of the
hypersurfaces with isolated singularities by the equation m;(X) = u;(X) +
pir1(X) where p; is the Milnor number of the intersection of the hyper-
surface with a hyperplane of dimension ¢ [10]. Therefore we have in this
case
Eux(0) = mo(X) — p1(X) — p2(X).

It is well known that mg(X,0) — 1 = p;(X), therefore we have Fuy (0) =
1 — p2(X), since the Milnor number is an integer bigger or equal to zero, we
can conclude by the last result that all germs of ruled surfaces with Euler
obstruction bigger than 1 have non-isolated singularities. O
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