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On asymptotic stability in impulsive semidynamical
systems

K. A. G. Azevedo* and E. M. Bonotto!

Abstract

In the present paper, we study results about asymptotic stability for semidy-
namical systems with impulses at variable times. By considering an impulsive semi-
dynamical system (X, 7; M, I), we state conditions for a closed subset A of X to
be asymptotically stable in the impulsive system. In order to obtain the results we
make use of Lyapunov functionals. In conclusion, we show that the continuous time
three species prey-predator population controlled by a nonlinear feedback control
input still globally asymptotically stable if we consider such system with impulses
perturbation.

1 Introduction

The theory of impulsive differential equations has been used to model real-world prob-
lems in science and technology. This theory of impulsive systems has been attracting the
attention of many mathematicians and the interest in the subject is still growing. In the
last years, the action of impulses on dynamical systems has been intensively investigated.
We refer to the papers [4, 12], [14, 18] and the references therein for instance.

In this paper, we consider a class of impulsive semidynamical systems where the im-
pulses vary on time. We study sufficient conditions in order to obtain results about
asymptotic stability. We start by presenting a summary of the basis of semidynamical
systems with impulse effect. For details, see Refs. [4], [5], [10] and [14]. Then we present
the main results of this paper. First, we consider an impulsive semidynamical system de-
fined on a metric space X and we generalize some results of asymptotic stability for closed
sets studied in [2, 3] to the impulsive case. Second, we consider impulsive semidynamical
systems defined in R™ and we prove results of stability by using Lyapunov functionals of
class C'. We finish the paper by presenting a model of three species prey-predator popu-
lation controlled by a nonlinear feedback control input with impulsive condition, that is,
we prove that the equilibrium of this system is globally asymptotically stable.
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2 Preliminaries

In this section we present the basic definitions and notations of the theory of impulsive
semidynamical systems. We also include some fundamental results which are necessary
for understanding the basis of the theory. :

2.1 Basic definitions and terminology

Let X be a metric space and Ry be the set of non-negative real numbers. The triple
(X, m,R,) is called a semidynamical system, if the function 7 : X x R, — X is continuous
with 7(z,0) = z and 7 (n(z,t),s) = w(z,t + s), for all z € X and ¢,s € R.. We denote
such system simply by (X, 7). For every z € X, we consider the continuous function
7. ' Ry — X given by 7, (t) = m(z,t) and we call it the motion of z.

Let (X, 7) be a semidynamical system. Given z € X, the positive orbit of = is given
by nt(z) = {n(z,t) : t € Ry}. Fort > 0 and z € X, we define F(z,t) = {y € X :
7(y,t) =} and, for A C [0,+00) and D C X, we define

F(D,A)=U{F(z,t):z € D and t € A}.

Then a point z € X is called an initial point, if F(x,t) =0 for all ¢t > 0.

Now we define semidynamical systems with impulse action. An impulsive semidynam-
ical system (X, m; M, I) consists of a semidynamical system, (X, 7), a non-empty closed
subset M of X such that for every x € M, there exists ¢, > 0 such that

F(z,(0,e;))NM =0 and mn(z,(0,e,)) N M =0,

and a continuous function I : M — X whose action we explain below in the description
of the impulsive trajectory of an impulsive semidynamical system. The points of M are
isolated in every trajectory of system (X, ). The set M is called the impulsive set, the
function I is called impulse function. We also define

M*(z) = (7™ (z) N M) \ {z}.

Another property of the impulsive set M is that M is a meager set in X, see Lemma
2.1in [9)].

Given an impulsive semidynamical system (X, 7; M, I) and 2 € X such that M*(z) #
(0, it is always possible to find a smallest number s such that the trajectory m,(t) for
0 < t < s does not intercept the set M. This result is stated next and a proof of it can
be found in [4].

Lemma 2.1. Let (X,m; M,I) be an impulsive semidynamical system. Then for every
r € X, there is a positive number s, 0 < s < +oo, such that m(z,t) ¢ M, whenever
0<t<s, and w(z,s) € M if M*(z) # 0.

Let (X,7; M,I) be an impulsive semidynamical system and z € X. By means of
Lemma 2.1, it is possible to define a function ¢ : X — (0, 4+00] in the following manner

s, if m(z,s) € M and 7(z,t) ¢ M for 0 <t < s,
¢(z) = e ok
+oo, if Mt (z) =0.



This means that ¢(z) is the least positive time for which the trajectory of x meets M.
Thus for each z € X, we call 7(z, ¢(z)) the impulsive point of z.

The impulsive trajectory of x in (X, m; M, I) is an X —valued function 7, defined on the
subset [0, s) of R (s may be +00). The description of such trajectory follows inductively
as described in the following lines.

If M*(z) = 0, then 7,(t) = n(z,t), for all ¢t € Ry, and ¢(z) = +oco. However if
M™*(z) # 0, it follows from Lemma 2.1 that there is a smallest positive number sy such
that 7(z,s9) = 21 € M and 7(x,t) ¢ M, for 0 < t < sp. Then we define 7, on [0, 5] by

+ —
Ty, t—So,

7a(t) = {W(m,t), 0<t< s
where zi = I(z;) and ¢(z) = so.

Since sy < 400, the process now continues from z;” onwards. If M+ (z{) = 0, then we
define 7, (t) = w(zf, ¢t — o), for sp < ¢t < +oo, and ¢(z]) = +oo. When M*(a]) # 0,
it follows again from Lemma 2.1 that there is a smallest positive number s; such that
m(xf,81) = 3y € M and w(z],t — s9) € M, for sg < t < s + s1. Then we define 7, on
80, S0 + s1] by

+

_ m(zl,t—s0), 8o <t<sg+ s
Tz (t) = .
Ty, t = so + s1,

where = = I(x;) and ¢(z]) = s1, and so on. Notice that 7, is defined on each interval
[tn, tnt1], where tp1 =Y 8. Hence 7, is defined on [0, t,41].

The process above ends after a finite number of steps, whenever M™(z;) = ) for some
n. Or it continues infinitely, if M*(z}) # 0, n = 1,2,3,..., and if 7, is defined on the
interval [0, 7'(z)), where T'(z) = Y 2, Si.

Let (X,7; M, I) be an impulsive semidynamical system. Given z € X, the impulsive
positive orbit of z is defined by the set

at(z) = {7(z,t) : t e R}

Analogously to the non-impulsive case, an impulsive semidynamical system satisfies
standard properties which follow straightforwardly from the definition. See the next
proposition and [5] for a proof of it.

Proposition 2.1. Let (X, 7; M,I) be an impulsive semidynamical system and © € X.
The following properties hold:

i) T, 0) =a,
i) 7(7(z,t),s) =7(z,t +s), for all t,s € [0,T(z)) such that t + s € [0, T(x)).

For details about the structure of these types of impulsive semidynamical systems, the
reader may consult [4, 12] and [14, 15].



2.2 Semicontinuity and continuity of ¢

The result of this section is borrowed from [10]. It concerns the function ¢ defined
previously which indicates the moments of impulse action of a trajectory in an impulsive
system. Such result is applied sometimes intrinsically in the proofs of the main theorems
of the next section.

Let (X, m) be a semidynamical system. Any closed set S C X containing z (z € X)
is called a section or a A-section through z, with A > 0, if there exists a closed set L C X
such that

(a) F(L,A)=S;
(b) F(L,[0,2]) is a neighborhood of z;
(c) F(L,u)NF(L,v)=0,for 0 < p<v <2\

The set F(L, [0,2)]) is called a tube or a A-tube and the set L is called a bar. Let (X, )
be a semidynamical system. We now present the conditions TC and STC for a tube.

Any tube F(L,[0,2)]) given by a section S through z € X such that S ¢ M N
F(L,[0,2X]) is called T'C-tube on z. We say that a point z € M fulfills the Tube Condition
and we write (TC), if there exists a TC-tube F(L,[0,2]) through z. In particular, if
S =MNF(L,[0,2)]) we have a STC-tube on z and we say that a point 2 € M fulfills the
Strong Tube Condition (we write (STC)), if there exists a STC-tube F(L, [0,2)]) through
.

The following theorem concerns the continuity of ¢ which is accomplished outside M
for M satisfying the condition T'C. See [10], Theorem 3.8.

Theorem 2.1. Consider an impulsive semidynamical system (X, 7; M, I). Assume that
no initial point in (X, ) belongs to the impulsive set M and that each element of M
satisfies the condition (T'C'). Then ¢ is continuous at x if and only if x & M.

2.3 Additional definitions

Let us consider a metric space X with metric p. By B(z, §) we mean the open
ball with center at z € X and ratio §. Let B(A, §) = {z € X : pa(z) < &} where

pa(z) = inf{p(z, y) : y € A}.
In what follows, (X, m; M, I) is an impulsive semidynamical system and = € X.
We define the limit set of z in (X, m; M, I) by

L' (2) = {y € X : 7la, ta) "=5°y, for some ¢, "=55° 400}
and the prolongation set of x in (X, m; M, I) by
D¥(z) ={y € X : T(@n, tn) "3y, for some z, 3% z and t, € [0, +00)}.

For a set A C X we consider D*(A) = U{D*(z) : z € A}.
If 77 (A) C A, we say that A is positively 7—invariant.



A point z € X is called stationary or rest point with respect to 7, if 7(x, t) = z for
all t > 0.

Let A C X. The set A is orbitally 7T—stable if for every neighborhood U of A, there
is a positively 7—invariant neighborhood V' of A, V' C U. We define the set

ﬁ;{,(A) = {z € X : for every neighborhood U of A, there is a sequence

{ta}ns1 C Ry, t, "=55° 400 such that 7(z, t,) € U}.

The set ﬁ;{,(A) is called region of weak attraction of A with respect to 7. If z € P (A),
then we say that z is #—weakly attracted to A. A subset A C X is called a weak
T—attractor, if PJ,(A) is a neighborhood of A. A set A C X is called asymptotically
m—stable, if it is both a weak T—attractor and orbitally 7—stable.

3 The main results

In this section, we shall present sufficient conditions to characterize asymptotic sta-
bility of closed sets. We are going to make use of a non-negative scalar function defined
on a neighborhood of the given set and decreasing along its trajectory to get the results.
We divide this section in two parts. In the first one, we consider impulsive semidynamical
systems defined on a metric space X and in the second part we consider impulsive systems
defined in R™.

3.1 Asymptotic Stability

Throughout this section we shall consider an impulsive semidynamical system
(X, m; M, I), where (X, p) is a locally compact metric space. Moreover, we shall assume
the following additional hypotheses:

(H1) no initial point in (X, 7) belongs to the impulsive set M, that is, given € M there
are y € X and ¢t € R, such that 7(y, t) = z.

(H2) each element of M satisfies the condition (STC) (consequently, ¢ is continuous on
X\ M).

(H3) MNI(M)=0.

(H4) Foreach z € X, the motion 7(z, t) is defined for every ¢ > 0, i.e. [0, +00) denotes the
maximal interval of definition of 7,. By following [14], the impulsive systems where
the motion 7(z,t) is defined for all ¢ > 0 are the most important and interesting,
and, moreover, in many cases we may restrict ourselves to such systems (because of
the existence of suitable isomorphisms), due to the paper [12].

The first lemma is proved in [7], Lemma 3.1. We note that X does not need to be
locally compact to obtain Lemma 3.1.

Lemma 3.1. Let (X, 7; M, I) be an impulsive semidynamical system where X is a metric
space. Let 1 : X — R be a functional satisfying:
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a) Y(m(z,t)) <(x) forz € X and t > 0;
b) v(I(z)) < ¢Y(z) forz e M.
Then (7 (z,t)) < (x) for allz € X and t > 0.

Let A be a non-empty closed positively 7—invariant subset of X with boundary 9A
compact. Our aim is establish sufficient conditions to guarantee asymptotic 7—stability
of the set A. We start by presenting some auxiliary results.

Lemma 3.2. Let (X,m; M,I) be an impulsive semidynamical system and A be a non-
empty closed positively m—invariant subset of X with A compact. Suppose G is a neigh-
borhood of A, I(G\ A)NM) C G\ A and let v : G — Ry be a non-negative scalar
function satisfying:

a) Y(m(z,t)) < Y(z) whenever w(x,[0,t]) C G, t > 0;
b) v(I(x)) < Y(z) for allz € M NG,

¢) Given € > 0, there exists 6 > 0 such that ¥ (z) < ¢ whenever p(z, A) < §. If
{Zn}nz1 C G and P(x,) "=5°0 then p(z,, A) "=5° 0.

Foreacha >0, letV, = {z € G : Y(z) < a}. Then there exist ag > 0 and a neighborhood
U of A such that U NV, is a positively T—invariant neighborhood of A for a < ay.

Proof. By hypothesis of X and A, there exists a closed neighborhood U of A such that

AcU=UCG and OU cU— A is compact.

By item c), given a > 0 there exists J, > 0 such that ¢(z) < o whenever 2 € B(A, d,).
Thus V,, is a neighborhood of A and consequently U NV, is a neighborhood of A.

Let ap = inf{y)(z) : z € G\ U}. From item c) we have ag > 0. We claim that U NV,
is positively 7—invariant if o < ap. In fact, take 0 < o < ag. By the proof of Theorem
10.10, [2], we can assure that

m(xz,t) e UNV, forall x € UNV, and for all ¢t > 0. (3.1)
Now, let z € (UNV,) N M. By item b) we have
W) < () < o
which implies I(z) € V,. Suppose I(z) ¢ U, then
ap < Y(I(z)) < Y(2) < a,
which is a contradiction by the choice of .. Hence,
I(2) eUNV, forall ze (UNV,)NM. (3.2)

By (3.1) and (3.2) we get 7(z,t) e UNV, for all z € UNV, and for all ¢t > 0. O



Definition 3.1. Let z € M be given and suppose there exists a sequence {wy}n>1 C X

such that w, "2 . We say that = € M if the sequence {w, },>1 admits a subsequence

{wn, }r>1 such that w,, ¢ M for all natural ny, and 7(w,,, ¢(w,,)) Stige z, see Figure 1.

We say that = € M, if the sequence {w,},>1 admits a subsequence {wp, }r>1 such that

Wr, € M for all ny, see Figure 2. We say that = € M, if the sequence {wy }n>1 admits a

subsequence {wp, }x>1 such that w,, ¢ M for all natural ny and 7(w,,, \) Eodie m(z, A)

for 0 < A < ¢(x), see Figure 3.

M M M
T T T |, —— T, /\)
Wny,__| W, y— T (Wn,,, )
Wn3 Wny Zjn.{——»——— W(wnz, /\)
Wps— | W, WpT— 7T(U)'Ill: )\)
wni——k—__ wnl
Figure 1: z € M, Figure 2: z € M, Figure 3: x € M,

Lemma 3.3 below deals with the orbital 7—stability of the set A defined in Lemma
3.2

Lemma 3.3. Let (X,m; M,I) be an impulsive semidynamical system and A be a non-
empty closed positively ™—invariant subset of X with A compact. Consider G and 1 :
G — Ry satisfying the hypotheses of Lemma 3.2. Assume v : G — R, is a continuous
function on G\ M. Then A is orbitally 7—stable.

Proof. Let us prove that every neighborhood V' of A contains some neighborhood U NV,
a < ag, where V,, ap = inf{¢)(z) : = € G\ U} > 0 and U are constructed in Lemma

3.2 and its proof. Suppose the contrary, then there are sequences {A,},>1 C R, and
n—+o0o

{za, }n>1 C X such that A, — 0, A\, < ap and
Iy, € UﬂV)\n = V,

for each n € N. Set W = V,, N U. Since W — A is compact, we can assume without loss
of generality that

n—-+4o0o
Ty =k D,

n

Note that p € W C G and
p¢A (3.3)

because z,, ¢ V for each n € N. We have two cases to consider: when p € M and p ¢ M.



First, we consider the case when p ¢ M. From the continuity of ¢ on G'\ M we have

W(za,) "= Y (p). (3.4)

n—-+o0o

Since Y(zy,) < An, n € N, and A\, — 0, it follows by (3.4) that

P(p) =0.

By property ¢) of ¢ we have p € A and it contradicts (3.3).

Now, we consider the case when p € M. We need to study three subcases: when
p € M., when p € M, and when p € M,. First, suppose p € M,. We can assume without
loss of generality that x,, € M, for each n = 1,2,.... By continuity of I, we have

I(zy,) "=5° I(p) ¢ M.

Then
Y(I(2,)) "5 (I (p)).

Since ¥(I(zy,)) < ¥(zx,) < Ap and A, "=5° 0 we have

¢(I(p)) =0,

that is, I(p) € A (by condition ¢) of ¢) and it is a contradiction since I((G \ A) N M) C
G\ A

Second, we consider the case p € M;. We can assume without loss of generality that
{22, }ns1 € X \ M and 7(z,,, #(zy,)) "=25° p. Then

Y(I(T (@2, $(2,)))) "= $(1(p)).
Since Y(I( (2, $(22,))) < Y(7(2r,, 6(2,)) < Y(2,) < Ay and A, "Z5° 0, we have
¥(I(p)) =0,

and I(p) € A which is a contradiction.

The last situation occurs if p € M,, that is, there exists a subsequence {zy, },>1 in
n—-+4o0o

X\ M (we also denote this subsequence by {z, }n>1) such that 7(z,,,€) = m(zy,, ) "—
m(p,e) = 7(p,€), with 0 < € < ¢(p) and 7(p,e) ¢ AU M. Thus (n(zy,,€)) "=5°

Y(m(p, €)). Since P(7(z,,€)) < Y(zx,) < An and A, "=25° 0, we have (7 (p, €)) = 0 and
thus 7(p, €) € A which is a contradiction.
Therefore, every neighborhood V' of A admits a positively 7—invariant neighborhood

UNV,of A, a < ag, and A is orbitally 7—stable. O

Now, we mention an important lemma that will be very useful in the next result. The
reader may consult [5] for a proof.

Lemma 3.4. Given an impulsive semidynamical system (X, m; M, I), where X is a met-
ric space, suppose w € X \ M and {z,}n>1 15 a sequence in X which converges to the point

w. Then, for any t > 0, there exists a sequence of real numbers {e, }ns1, with e, "—5° 0,

n—-+00 ~

such that 7(2z,, t +e,) — 7(w, t).



