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In this paper we prove that an acyclic and simply connected open n-manifold
is homeomorphic to the space R™ if and only if its one-point compactification
is again a manifold. Furthermore, we prove that this statement is equivalent
to the Generalized Poincaré Conjecture. Also, we connect these results with
the existence of so-called compact spine of open manifolds.
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1. INTRODUCTION

Let X be a connected open n-manifold and let X its one-point compactification. If X is
again a manifold, then it is a closed n-manifold. However, X is not necessarily a manifold.
For example, the open cylinder C = S* x (0,1) is a connected open 2-manifold, but its
one-point compactification € is not a manifold, in fact, € is the “pinched” torus obtained
from the torus by collapsing one meridian into a single point. Other more complicated
example is the Whitehead Manifold W = S3 \ Wh which is contractible but is not simply
connected at infinity, that is, its one-point compactification W U{co} is such that the point
oo has no simply connected neighborhood (see [4]).

We present now the statement of the first main theorem of this paper.

THEOREM 1.1 (Main Theorem A). An acyclic and simply connected open n-manifold
is homeomorphic to R™ if and only if its one-point compactification is again a manifold.

We will prove this using the Generalized Poincaré Conjecture. Indeed, we will prove that
the Main Theorem A is actually equivalent to this conjecture.

THEOREM 1.2 (Main Theorem B). The Main Theorem A in dimension n is equivalent
to the Generalized Poincaré Conjecture in dimension n.

Currently, it is well known that the Generalized Poincaré Conjecture is true in every
dimensions (on the category Top). In dimensions 1 and 2, this Conjecture is trivial, because
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of the classification of manifolds of these dimensions. In dimensions greater than 4, the
proof of the Conjecture is a consequence of the famous h-Cobordism Theorem, whose proof
was presented in 1961 by Smale [7]. The proof in dimension 4 was presented a little later
in 1982 by Freedman [1]. Only very recently, a Russian mathematician called Grigori
Perelman proved the Poincaré Conjecture in its original version, in dimension 3. (See [6]).

THEOREM 1.3 (Generalized Poincaré Conjecture). Every homotopy n-sphere is home-
omorphic to the sphere S™.

Throughout the text, in particular in the statement of the Generalized Poincaré Conjec-
ture above, we use the following definition:

DEFINITION 1.1. An n-manifold X is said a homotopy n-sphere if it is homotopy
equivalent to S™. More simply, an n-manifold X is called a homology n-sphere if it have
the same homology groups of the sphere S™.

A homotopy or homology n-sphere is necessarily closed and orientable.
It can not be easy to check if the one-point compactification of an open manifold is a
manifold. We define a new concept to help it.

DEFINITION 1.2.  We say that an open n-manifold X has a compact spine if there is a
compact n-manifold X C X (so-called the compact spine of X) with boundary X such
that X is homeomorphic to X with an open collar attached.

In this definition, we speak X is “the” compact spine and not “a” compact spine because
X , if there exists, is obviously uniquely determined up to homeomorphism.

Suppose that X is an open n-manifold whose one-point compactification X is a manifold.
Then X has a compact spine. In fact, write X = X U{co}. Then the point co has an open
neighborhood V' in X homeomorphic to an open n-ball. Now, reducing V, if necessary,
X\ V is an compact n-manifold with boundary 8(X \ V) = 8(V) = S"~!. Here V denotes
the closure of V in X. Furthermore, '\ {oo} is homeomorphic to the cylinder S*=1x[0,1)
and X is exactly the space obtained from X \ V by attaching V \ {co} by identifying their
boundaries (which are both homeomorphic to S"’l).‘ This proves that X is homeomorphic
to X \ V with an open collar attached. Therefore, X \ V is the compact spine of X.

The cylinder (without boundary) S* x (0,1) is an open manifold which has a compact
spine, though its one-point compactification is not a manifold.

The following theorem presents a condition for an acyclic and simply connected open
n-manifold to be homeomorphic to R™, through the existence of compact spine.

THEOREM 1.4 (Main Theorem C). Let X be an acyclic and simply connected open
n-manifold. Then X is homeomorphic to R™ if and only if

(1) X has a compact spine, if n =1 or 2;

(2) X has a compact spine with simply connected boundary, if n > 3.
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It follows that the one-point compactification of an acyclic and simply connected open
n-manifold X is again a manifold if and only if either (1) or (2) in the Main Theorem C is
verified.

The paper is presented with the following structure: In Section 2 we present some
preliminary results to development of the paper. In Section 3 we prove the Main Theorem
B and, consequently, the Main Theorem A, as already observed. In Section 4 we present
several corollaries of the Main Theorem A. Finally, in Section 5, we prove the Main Theorem
C and some corollaries of it.

2. REVIEW AND PRELIMINARY RESULTS

We start this section by remembering that a topological space has an one-point com-
pactification if and only if it is Hausdorff, locally compact and not compact. Moreover, the
one-point compactification, if there exists, is uniquely determined up to homeomorphism.
In special, every open manifold has an one-point compactification. However, as we already
have seen, such compactification is not necessarily a manifold. Also, an open n-manifold is
homeomorphic to R™ if and only if its one-point compactfication is homeomorphic to the
sphere S™.

In according to [8], we say that a topological space X is m-connected if m;(X) = 0 for
1 < m. In particular, X is connected if it is 0-connected and X is simply connected if it is
1-connected. In [8] we found the following consequences of the Hurewicz Theorem:

THEOREM 2.1. Let X be a simply connected space. Assume that n > 2.

(1) If X is (n — 1)-connected, then Hi(X) =0 for every i < n and mo(X) ~ Hn(X).
(2) If Hi(X) =0 for every i < n, then X is (n — 1)-connected and m,(X) ~ Hp(X).

Below, we present a version of the Whitehead Theorem in terms of the homology groups.
This version corresponds to Corollary 4.33 of [3] and is very useful to check whether two
spaces are homotopy equivalent, what in general can be difficult.

THEOREM 2.2. A map f: X — Y between simply connected CW complezes is a homo-
topy equivalence if and only if f.: H;(X) — H;(Y) is an isomorphism for each i.

We use this theorem to prove that a (closed) n-manifold with the same algebraic type
of the sphere S™ (that is, having the same homology and homotopy groups of the sphere
S™) is actually homotopy equivalent to S™.

THEOREM 2.3. Let X be a simply connected n-manifold, n > 2. Then X is a homotopy
n-sphere if and only if it is a homology n-sphere.

Proof. The “only if” part is trivial. In order to prove the “if” part, suppose that X
is a homology n-sphere. If n = 1, the result is obvious, indeed, in this case, X is actually
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homeomorphic to the sphere S*. Then, assume n > 2. By Theorem 2.1, X is (n —1)-
connected and m,(X) ~ H,(X) =~ Z. Thus, there is a map f : S® — X representing a
generator of the group m,(X). Since m,(X) = Z =~ m,(S™), the map f induces an iso-
morphism fy : m,(S™) — mp(X). By composing fyx and f, : H,(S™) — H,(X) with the
appropriated Hurewicz isomorphisms we conclude that f, : H,(S™) — H,(X) is an iso-
morphism. By Theorem 2.2, f is a homotopy equivalence and so X is a homotopy n-
sphere. |

The following result can be considered as a consequence of the Whitehead Theorem, by
using the fact that every compact manifold is dominated by a CW complex.

THEOREM 2.4. A map f: X — Y between compact and simply connected manifolds is
a homotopy equivalence if and only if f.: Hi(X) — H;(Y) is an isomorphism for each i.
A compact, acyclic and simply connected manifold is contractible.

Proof. Since each compact manifold is homotopy equivalent to a CW complex (see [3]),
the first part of the theorem is a consequence of Theorem 2.2. Now, if X is a compact,
acyclic and simply connected manifold, let zo € X be a point and let [ : {zg} — X be
the natural inclusion. Obviously, I, : H;({zo}) — H;i(X) is an isomorphism for each i. By
the first part of the theorem, the inclusion [ is a homotopy equivalence. Therefore, X is con-

tractible. |

Despite the equivalence of the previous theorem, apparently is more restrictive to as-
sume that a compact manifold is contractive than to assume that it is acyclic and simply
connected. The assumption acyclic and simply connected appear in most of the statements
of our theorems.

3. PROOFS OF THE MAIN THEOREMS A AND B

In order to prove the Main Theorems A and B, we start by proving that if the one-
point compactification X of an acyclic and simply connected open n-manifold is again a
manifold, then X is a homotopy n-sphere.

THEOREM 3.1. Let X be an acyclic and simply connected open n-manifold and let X be
its one-point compactification. If X is a manifold, then it is a homotopy n-sphere.

Proof. Let X = X U{oo} be the one-point compactification of X. Suppose that X is a
manifold. Then, it is clear that X is a closed n-manifold. Let V' be an open neighborhood
of 0o homeomorphic to an open n-ball of R®. Then X = XUV with X and V open in X.
Now, the intersection X NV is exactly the subspace V'\ {co} of X, which is homeomorphic
to the cylinder S*~! x (0,1) which is homotopy equivalent to the sphere S"~!. Thus, we
have the following Mayer-Vietoris exact sequence related to space X = X UV,

— Hi(sn—l) — Hl(V) (&) HI(X) —_ H,()-{) — H,;_l(Sn—l) —
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Now, by assumption, H;(X) = 0 for each i. Moreover, it is clear that H;(V) = 0 for
each 7 > 1, since V is contractible. Then, the exactness of the sequence implies that
Iu_{i()?) ~ H;_1(S™!) for each i > 1. Therefore H;(X) ~ H;(S™) for each 3. It follows that
X is a homology n-sphere.

Now, since X = XUV, with X and V open and simply connected, and moreover XNY is
path connected if n > 2 (the case n =1 is trivial), it follows by the van Kampen Theorem
that X is also simply connected.

Finally, by Theorem 2.3, X is a homotopy n-sphere. |

Now, we will prove the Main Theorem B. As we already observed, the Main Theorem
A is a consequence of it. At first, we will prove that the Generalized Poincaré Conjecture
implies the Main Theorem A and next we will prove that the Main Theorem A implies the
Generalized Poincaré Conjecture.

Proof (Proof of the Main Theorem B). Suppose the Generalized Poincaré Conjecture
is true in dimension n. We will prove that the Main Theorem A is true in dimension n. Let
X be an acyclic and simply connected open n-manifold and let X = X U {co} be its one-
point compactification. If X is homeomorphic to R™, then it is clear that X is a manifold;
indeed, in this case, X is homeomorphic to S™. Now, suppose that X is a manifold. Then,
by Theorem 3.1, X is a homotopy n-sphere. By the Generalized Poincaré Conjecture in
dimension n, X is homeomorphic to the sphere S™ and so X is homeomorphic to R™.

The proof of the reciprocal is more complicated and requires specific arguments for
some dimensions. For n = 1, it is no necessary a proof. Assume that n > 2. Let YV
be a homotopy n-sphere. Then Y is closed, orientable, connected and simply connected.
In special H,(Y) ~ Z. Let yo € Y be an arbitrary point in ¥ and let V be an open
neighborhood of yg in Y, homeomorphic to an open n-ball. Let Yo =Y \ {y0}. Then Yy is
a connected open n-manifold whose one-point compactification is Y. We will prove that Yj
is acyclic and simply connected, concluding that Y is homeomorphic to S™, by the Main
Theorem A and, therefore, that the Generalized Poincaré Conjecture is true in dimension
n. At first, note that V, Yy and V NY; are path connected open subsets of Y. Moreover
V NYy is exactly the subset V' \ {yo}, which we denote simply by V. Note that Vg is
homeomorphic to the cylinder S*~! x (0,1) and so it is homotopy equivalent to S™~!.
Finally, we note that Y = Yp UV and we apply the van Kampen Theory.

Since V is contractible, the fundamental group m;(Y’) is isomorphic to the quotient
m1(Yo)/N (j) of the group m (Yp) by its normal subgroup N(jx) generated by the image of
the homomorphism jx induced on fundamental groups by the natural inclusion j : Vo — Yb.
Now, we have two cases:

CASE 1: If n > 3, then Y and V; are simply connected. Hence Yj is simply connected.

CASE 2: If n = 2, then V{ has the homotopy type of the sphere S and so m (Vo) = Z.
Since Y is simply connected and 1 (Y) = m1(Yo)/N(j#), either Yp is simply connected or
m1(Yo) ~ Z and the homomorphisms jy : m1 (Vo) — m1(Yo) and j. : Hy(Vo) — Hi(Yo) are
isomorphisms. By Exercise (22.45) of [2] (which is true!), the inclusion OV — Y; induces
trivial homomorphisms on homology. But it is clear that such homomorphisms are identical
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to homomorphisms induced by the inclusion j : Vy < Y;. Therefore, j. : Hy (Vo) — H1(Yp)
can not be an isomorphism. Hence Y} is simply connected.

Now, we continue with valid arguments for every n > 2. We will prove now that Yj is
acyclic. Since Vp is homotopy equivalent to S"~!, the Mayer-Vietoris exact sequence of
the space Y = Yy UV can be write as

— Hi(S""l) — H,(V) (&%) Hi(Yo) — H,,(Y) — H,-_l(S"‘l) —

It is obvious that the homomorphism Ho(S"™1) — Ho(V) @ Hy(Yp) is injective. More-
over, since V' is contractible, it follows that H;(Yo) ~ H;(Y) for each i < n—1. By Theorem
2.1, H;(Yy) = 0 for each i < n — 1. Also, since Yj is open, we have H,(Yp) = 0. Thus, we
have the short exact sequence

0— Ho(Y) = Hpo1(S™1) — H,_1(Yo) = 0

where the homomorphism 7 is identical to that induced by the natural inclusion 9V —
Yo, which is trivial. Therefore, H,,—1(Yp) = 0. Thus, we conclude that H;(Yy) = 0 for
every i, what shows that Yy is acyclic. Moreover, since we have proved that Yp is simply
connected and, by assumption, its one-point compactification, Y, is a manifold, the Main

Theorem A implies that Yp is homeomorphic to R™ and so Y is homeomorphic to S™. |

4. CONSEQUENCES OF THE MAIN THEOREM A

In this section, we prove some corollaries of the Main Theorem A. By the Main Theorem
B, such corollaries are consequences also of the Generalized Poincaré Conjecture. However,
we use essentially the Main Theorem A to prove them.

COROLLARY 4.1. A (n — 1)-connected open n-manifold is homeomorphic to R™ if and
only if its one-point-compactification is a manifold.

Proof. TFor n = 1 the result is trivial. For n > 2, let X be a (n — 1)-connected open
n-manifold. Then X is connected and simply connected and, moreover, H;(X) = 0 for
each 7 < n, by Theorem 2.1. Hence X is acyclic. Now, we apply the Main Theorem A. |

This corollary applies, in particular, if X is a contractible open n-manifold, what proves

that a contractible open n-manifold is homeomorphic to R™ if and only if its one-point
compactification is a manifold.

COROLLARY 4.2. LetY be a closed n-manifold not homeomorphic to the sphere S™ and
let yo €Y be a point. If Y \ {yo} is acyclic, then m (Y \ {yo}) is a nontrivial perfect group.

Proof. Certainly, Y \ {0} is not homeomorphic to R™. Moreover, Y is the one-point
compactification of the open n-manifold Y'\{yo}. By the Main Theorem A, Y'\{yo} either is
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not acyclic or is not simply connected. Now, if Y\ {yo} is acyclic, then H; (Y'\{yo}) = 0, but
m1(Y'\{yo}) is nontrivial. Since H; is the abelianization of m it follows that m; (Y'\{yo}) is a

nontrivial perfect group. |

COROLLARY 4.3. Let Y be a closed n-manifold and yo € Y be a point. If Y \ {yo} is
acyclic and simply connected, then Y is homeomorphic to S™ and so Y \ {yo} is homeo-
morphic to R™.

Proof. 'The statement of this corollary can be considered a restatement of the previous
corollary. ||

We say that an open n-manifold W is a model Whitehead Manifold if it is contractible
but is not homeomorphic to R™.

COROLLARY 4.4. The one-point compactification of any model Whitehead Manifold is
not a manifold.

Proof. Let W be a model Wh_itehead Manifold of dimension n and let W its one-point
compactification. Suppose that W is a manifold and so a closed n-manifold. Certainly, W
is not homeomorphic to S™. By Corollary 4.2, either W is not acyclic or 7r; (W) is nontrivial.

This is a contradiction, since W is contractible. |

THEOREM 4.1. Let Y be an orientable and connected closed 8-manifold. Then Y is
homeomorphic to S3 if and only if it is simply connected. If Y is not homeomorphic to S®
but H1(Y) is trivial, then w1 (Y") is a nontrivial perfect group.

Proof. Certainly, H3(Y) ~ Z =~ Hy(Y). Furthermore, by the Poincaré Duality (see
Theorem 26.6 of [2]), we have H;(Y) = H(Y).

Suppose that Y is simply connected. Then both H,(Y) and H»(Y') are trivial. Let yo
be a point in Y and let Yy = Y \ {y0}. Then Y} is an open 3-manifold whose one-point
compactification is Y. Moreover, the same arguments of the proof of the Main Theorem B
show that Yj is acyclic and simply connected. By the Main Theorem A, Y} is homeomorphic
to R3 and so Y is homeomorphic to S°.

Now, assume that Y is not homeomorphic to S% but H,(Y) is trivial. By the first part
of the theorem, 71 (Y') is not trivial. Then, since H;(Y) is the abelianization of 7 (Y'), it fol-

lows that 71 (Y') is a nontrivial perfect group. |
The previous theorem has a natural generalization in high dimensions.

THEOREM 4.2. LetY be an orientable and connected closed n-manifold, n > 3. Suppose
that H;(Y) = 0 for each integer 1 <1 < (n+1)/2. ThenY is homeomorphic to S™ if and
only if it is simply connected. Moreover, if Y is not homeomorphic to S™ but Hi(Y) is
trivial, then m1(Y") is a nontrivial perfect group.
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Proof. We use again the Poincaré Duality and repeat the arguments of the proof of the
previous theorem. |

5. PROOF OF THE MAIN THEOREM C

Let Y be a compact n-manifold with boundary dY. Then dY x [0,1) is a n-manifold
with boundary 9(8Y x [0,1)) = 9Y. As in Proposition 3.42 of [3], we can consider the
space X =Y Ugy (8Y x [0,1)) obtained from the disjoint union of ¥ and 8Y x [0,1) by
identifying each z € Y with (z,0) € 9Y x [0,1). The space X constructed in this way is
an open n-manifold, which is said to be obtained from Y by attaching an open collar. By
the way, we say also that X is Y with an open collar attached.

In according to Definition 1.2, a compact manifold X, which boundary X, contained
in an open manifold X, is the compact spine of X if X is homeomorphic to X with an
open collar attached. In particular, if Y is a compact manifold with boundary, then Y is
the compact spine of Y with an open collar attached.

The space R™ is homeomorphic to D™ with an open collar attached, where D™ is the
unitary closed n-disc in R™. Therefore, the space R™ has a compact spine whose boundary
is the sphere S™~!. For an acyclic and simply connected open manifold with compact
spine, we have the following general result:

THEOREM 5.1. Let X be an acyclic and simply connected open n-manifold and suppose
that X is the compact spine of X. Then the boundary 80X is a homology (n — 1)-sphere.

Proof. Certainly, Xisa strong deformation retract of X. Thus, also X is acyclic and
simply connected. By Theorem 2.4, X is contractible. Since X is orientable (since X is
simply connected), also int(X) is an orientable n-manifold. By the Lefschetz Duality (see
Theorem 28.18 of [2]), we have H;(X,0X) ~ H™" 1( ) for each i > 0. Now, since X
1s acyclic, it has the cohomology of a point. Hence, H, (X 6X) = 0 for each 7 # n and

H,(X,0X) ~ Z. Considering the exact sequence of homology of the pair (X, dX), namely,

— H;(8X) — Hi(X) — Hi(X,8X) — H;_1(8X) —

we conclude that H;(8X) =0 for eachi #n —1 and H,_;(8X) =~ Z. |

Proof (Proof of the Main Theorem C). (1) Let n =1 or 2 and let X be an acyclic and
simply connected open n-manifold. If X is homeomorphic to R", it is obvious that X has
a compact spine, as we have seen. Now, suppose that X is the compact spine of X. Then,
by Theorem 5.1 and the classification of the compact manifolds of dimensions 1 and 2, we
have that X is homeomorphic to S®~!. Moreover, since X is contractible (due Theorem
2.4), X is homeomorphic to the closed disc D™. Hence, X is homeomorphic to R".

(2) Let n > 3 and let X be an acyclic and simply connected open n-manifold. If X is
homeomorphic to R™, then it is obvious that X has compact spine with simply connected
boundary, indeed, in this case, the boundary of a compact spine of X is homeomorphic
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to the sphere S"~!. Now, suppose that X is a compact spine of X and X is sim-
ply connected. Then, by Theorems 2.3 and 5.1, X is a homotopy (n — 1)-sphere. By
the Generalized Poincaré Conjecture, X is homeomorphic to the sphere S*~!. Now,
by Theorem 2.4, X is contractible. Then, by the characterization of closed n-discs (see
[5]), X is homeomorphic to the closed disc D™. Therefore, X is homeomorphic to R™. |

As consequences of the Main Theorem A and C and Theorem 5.1 we obtain the following
corollaries:

COROLLARY 5.1. Let n > 3 and let X be an acyclic and simply connected open n-

manifold not homeomorphic to R™. Suppose that X is the compact spine of X. Then
m1(0X) is a nontrivial perfect group.

Prm_)f. By the Main Theo;‘em C, 7r1(6X ) is not trivial. However, by Theorem 5.1,
H;(0X) = 0. Therefore, m1(0X) is a nontrivial perfect group. |

COROLLARY 5.2. Any model Whitehead Manifold does not have compact spine with
boundary simply connected.

Proof. 1t follows from Main Theorem A and C and Corollary 4.4. |

REFERENCES

1. M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (3), 357 — 453,
(1982).

2. M. J. Greenberg and J. R. Harper, “Algebraic Topology, A first course”, Benjamin/Cummings Pub-
lishing Company, London, 1981.

3. A. Hatcher, “Algebraic Topology”, Cambridge Univeristy Press, 2002.

4. R. C. Kirby, “The Topology of 4-Manifolds”, Lecture Notes in Mathematics 1374, Springer-Verlag
Berlin Heidelberg, 1989.

5. J. Milnor, “sl Lectures on the h-Cobordism Theorem”, Princeton, New Jersey, Princeton University
Press, 1965.

6. J. W. Morgan and G. Tian, Ricci Flow and the Poincaré Conjecture, arXiv: math/0607607v2. [math.DG]
21 Mar 2007, 492 pp..

7. S. Smale, Generalized Poincaré’s Conjecture in dimensions greater than four, Ann. of Math., Second
Series, Vol. 74, No. 2, 391 — 406, (1961).

8. G. W. Whitehead, “Elements of Homotopy Theory”, Springer-Verlag, New York Inc., 1978.






