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in singular perturbation problems without uniqueness of solutions

M. C. Carbinatto e K. P. Rybakowski

Resumo

Neste trabalho definimos o conceito do indice de Conley e de uma classe de diagrama de trangas indice
para equagoes diferenciais ordindrias da forma

(E) & = Fi(z),

onde M é uma variedade de classe C? e Fy é a parte principal de um campo de vetores continuo definido em
M. Isto nos permite estender resultados obtidos em [5] sobre sistemas de equagdes diferenciais ordinérias
singularmente perturbadas

ey = f(y,z,¢),

(Ee) & = h(y,x,¢)

definidas Y x M, onde Y é um espaco de Banach de dimensdo finita e M é uma variedade de classe C? para
o caso onde o campo de vetores em (FE.) é continuo, mas nao necessariamente localmente Lipschitziano.
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ABSTRACT. We define the concept of a Conley index and a homology index
braid class for ordinary differential equations of the form

(£) &= Fi(z),

where M is a C%-manifold and F; is the principal part of a continuous
vector field on M. This allows us to extend our previously obtained results
from [5] on singularly perturbed systems of ordinary differential equations

(Ee) ey = f(y,z,¢€),

) & = h(y, z,¢)
on Y x M, where Y is a finite dimensional Banach space and M is a C2-
manifold, to the case where the vector field in E¢ is continuous, but not
necessarily locally Lipschitzian.
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1. Introduction

Let M be a finite dimensional (boundaryless) second countable paracompact
differentiable manifold of class C2. Consider the ordinary differential equation

(1.1) & = Fi(z)

where Fy is the principal part of a vector field F: M — T (M), i.e. for x € M,
F(z) = (2, Fi(z)) where Fy(z) € T,(M). If F is a locally Lipschitzian vector
field on M then (1.1) generates a local flow on M and the classical Conley index
theory applies.

However, in some applications the right hand side of (1.1) is merely contin-
wous. In such cases the Cauchy problem for equation (1.1) does not necessarily
have unique solutions, so (1.1) does not generate a flow and the classical Conley
index theory cannot be applied.

In this paper we present an extension of the Conley index theory to the case
of ordinary differential equations of the type (1.1) with a merely continuous right
hand side. For every isolating neighborhood N relative to F' we define an index
h(f,N) and show that all properties of the classical Conley index theory hold
in this more general setting. In addition, we show that the index depends only
on the isolated invariant set in question and not on the choice of its isolating
neighborhood. This generalizes some results from the paper [8] to the (technically
more involved) manifold case.

In addition, we also provide an extension of the (co)homology index braid
theory to this more general case.

As an application of this theory we show that all results of our previous
paper [5] continue to hold under some more general assumptions on the nonlin-
earities involved.

2. Graded module braids

In this section we recall some basic notions from the theory of graded module
braids. For more details, see [7].

Recall that a strict partial order on a set P is a relation < C P x P which
is irreflexive and transitive. As usual, we write z < y instead of (z,y) € <. The
symbol < will be reserved for the less-than-relation on R.

For the rest of this paper, unless specified otherwise, let P be a fixed finite
set and < be a fixed strict partial order on P.

A set I C P is called a <-interval if whenever i, j, k € P, i, k € I and
i < j <k, then j € I. By Z(<) we denote the set of all <-intervals in P.
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An adjacent n-tuple of <-intervals is a sequence (I; );»1:1 of pairwise disjoint
<-intervals whose union is a <-interval and such that, whenever j < k, p € I;
and p’ € I, then p’ £ p (i.e. p < p' or else p and p’ are not related by <). By
7,(=) we denote the set of all adjacent n-tuples of <-intervals. If I, J € Z(<)
are such that (1, J), (J,I) € Zo(=), we say that I and J are noncomparable.

For the rest of t his paper we fix a (commutative) ring I'. We write /.J instead
of I' U J and similarly for more than two intervals.

DEFINITION 2.1. For each J € Z(<) and ¢ € Z, let G4(J) be a I-module
and for each (1, J) € Z5(<) and q € Z let
i1,0,4: Gq(I) = Gq(1J),
P1,0,9: Ge(IJ) = G4(J) and
O1,0,4: Gq(J) = Gg-1(1).
be given maps.
The family G(<) of all these modules G4([) and all these maps i;,74, Pr,J4

and 0y 4 is called a graded homology I'-module braid over < if the following
conditions are satisfied:

(1) the sequence

1,0, PI,Jq 01,09

Go(1J) —= G4(J) —= Gog-all) —

Gq(I)

is exact;
(2) whenever I, J € Z(<) are noncomparable, then p; s 40is 74 = Id|c,(n);
(3) whenever (1, J, K) € Z3(<), the following diagram

( _—— )

Gq([) ir,Jg 01J,K,q+1 Gq'H(‘K)
\ /
ir,JK,q . J K ,q+1
: ,,‘“{/q Gq(IJ) w\ 7]
G"(IJI() Pr,JK.q iioreid G"(J)
\ /
PIJ,K,q . Gq(.]]() CY 91,4,q
/ \
Gq(l{) Or14,K,q i1,J,q-1 Gq_l(I)
3J,l\“q( P:J,q/—l Gq_l(fJ) %«,-1 )il.Jl\',q—l
Gy Gy_1(1JK)

=
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commutes.

Let G(<) be a graded homology I'-module braid over < and k € Ng. The
collection Gy (<) of the I'-modules

GQ“]\'("])7 q€ Zv J GI(-<)1

and the maps ir jq—k, pr,Jq-k and 0y, q—k, for (I,J) € Io(<) and ¢ € Z, is a
graded homology I'-module braid over < called the shift to the left by k of G(<).

Let § = G(=<) and G = §(<) be graded homology I'-module braids over <.
Suppose 0 = (04(J))qez,se1(<) is a family 0,(J): G4(J) — éq(J) of I'-module
homomorphisms such that, for all (Z,J) € Zo(<), the diagram

aI..l,rl

N2 g P e
l@,,(l) lO,I(IJ) 19,,(‘/) l@,,_l(l)
()=

q(1J)

i1,J,q P1,J,q

Gq_l(l)—>

Gq(J) Go-1(I)—

(&)

o

01,4,

commutes. Then we say that 0 is a morphism from G to G and we write 6:G — G.
If each 64(J) is an isomorphism, then we say that ¢ is an isomorphism and that
G and G are isomorphic graded homology I'-module braids over <.

DEFINITION 2.2. For each J € Z(<) and g € Z, let G9(J) be a I'-module
and for each (I, J) € Zp(<) and g € Z let

i[’J,q:Gq(I) — GY(1J),
Pr1,2,q: GI(IJ) — G(J) and
Or1,0,4: GI(J) = GIT(I).

be given maps.

The family G(<) of all these modules G¢(/) and all these maps i s, 1,7,
and Jy jq is called a graded cohomology I'-module braid over < if the following
conditions are satisfied:

(1) the sequence

ir,0,q PrI,J,q 01,4,

Qe =5 oy % ge () —

is exact;
(2) whenever I, J € Z(<) are noncomparable, then pj ;s q0is 4 = Id|ge(r);
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(3) whenever (I, J, K) € Z3(<), the following diagram

(/\ﬁ

w ai“‘/'l GI-1(K)
Vg Ga ( 0. Kig=1
11J,K,q Pr1,J.q
GI(1TK) \ GI(J)

PIJK, L 4 a
o ( PJK.q GU(JK) 91,0K,q ) Tadsg

=

G‘l([{) 914,K,q i1,J,q+1 G"H’l([)
\ /
1.8 Pr1,J,q+1 Gat! (1‘]) i1, K, q+1 MoK gt
GrHL() G (1JK)

Lo ]
commutes.

Let G(=<) be a graded cohomology I'-module braid over < and k € Ny. The
collection G¥(<) of the I'-modules

GI™*(J), g€z, J € I(=),

and the maps i7 jq—k, Pr,J,9—k and O jq—k, for (I,J) € Ip(<) and g € Z, is
a graded cohomology I'-module braid over < called the shift to the left by k of
g(=).

Let G = G(<) and G = G(<) be graded cohomology I'module braids over
<. Suppose 8 := (04(J))qez,e1(<) is a family 8,(J): G(J) — é(J) of I'-module
homomorphisms such that, for all (1, J) € Z5(<), the diagram

GUI)23-Ga(1T) 2. Go(J) 28 Gut (1) —
loq(l) 9,,([.]) Gq(J) ioq-}-l(l)
GG ) O [l s

i1,J.q PI,J.q 0r1,4.q

commutes. Then we say that 0 is a morphism from G to gand we write 0: G — 5
If each 6,(J) is an isomorphism, then we say that ¢ is an isomorphism and that
G and G are isomorphic graded cohomology I'-module braids over <.

We define a category B whose objects are all the graded homology (resp. co-
homology) I'-modules braids over <. Given objects G and G in B let Mor;(G, g)
be the set of all morphisms from G to G.
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Given objects G and G in B we say G is related to G, and write G ~ G, if and
only if G and G are isomorphic graded (co)homology I'-module braids over <. It
is obvious that ~ is a equivalence relation in 5. Given G in B let [G] denote the
equivalence class of G.

Note that if G and G are isomorphic graded homology (resp. cohomology)
braids then so are Gy and Gy (resp. G* and Q-k) for all £ € Ng. Thus the shift
operation

(2.1) (Gl = Gkl
resp.
(2.2) [G)* = [6"]

is well defined on isomorphism classes of graded homology (resp. cohomology)
braids.

3. Approximation of continuous vector field on manifolds

Throughout this paper let M be a (boundaryless) second countable para-
compact differentiable manifold of class C? modeled on some finite-dimensional
Banach space E. Let 7'(M) denote the tangent bundle of M. Whitney Imbed-
ding Theorem implies that there is a finite dimensional normed space E and an
imbedding e: M — E of class C?. We define the metric dy on M such that e
Is an isometry.

Using the notation from [5] let I' = '": (M) — E be the map given by
[(z,u) = DMe(z)(u), (z,u) € T(M). [5, subsections 3.1, 3.3 and section 4]
imply that I' is continuous.

We now state the following basic approximation result.

PROPOSITION 3.1. Let F: M — T(M) be a continuous vector field. Then
for every e € )0, 00| there is a C'-vector field G: M — T(M) such that

sup |['(G(z)) - I'(F(z))le < e
TeEM

Proor. For every chart a:U — V C E of M the map
U— L(E,E), z~ D(eoa™")(a(z))

is continuous, therefore locally bounded. It follows that there exists an atlas
(a;: Ui — Vi)ier of M such

(3.1) Ci = sup [ID(e o a7 )(@i(@)) (e < 00, i€ 1.
zelU;
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Moreover, we may assume that the covering (U;)ies is locally finite and that
there is a C?-partition of unity (¢;: M — R);es subordinated to the covering
(Us)ier-

Let i € I be arbitrary and set F' = F|y,. The set T'(M)|y, = Uzer, {z} x
T, (M) is open in T'(M) and the map x,, given by

Xei: | ({2} X Te(M)) = 0i(Us) X B, (z,1) — (0i(2), u(cs))

zeU;

is a homeomorphism from T'(M)|y, to Vi x E. Actually xa, is a C!-diffeomor-
phism in the sense that xo, is a C'-map from T(M)|y, to V; x E and x;! is
a Cl-map from V; x E to T(M). Analogous remarks apply to o;:U; — V;.
In particular, the map Fi = M 0 Xq; © Fio ai"lr V; — E is continuous, where
my: Vi X ' — E is the projection on the second component. It follows that there
is a C'-map G: V; — E such that

sup |G'(y) = F'(y)l& < ¢/(2C5)-
yeV;
For every z € U; let Gi(z) be the uniquely defined element u of T3 (M) such
that w(c;) = G¥(ci(z)). This defines a map Gi: U; — T(M) such that Gi(z) €
T (M) for each z € U;.
For each z € M define

Gi(x) =) _ ¢i()Gi()
i€l
This is actually a finite sum in 73, (M) and so G;(z) is a well-defined element of
T»(M). Now define the map G: M — T(M) by G(z) = (z,G1(z)), z € M. It
follows that G is a vector field on M. We will prove that G is of class C'. Let
zg € M be arbitrary. Then there is an open neighborhood W of zy in M, a
chart v: W — W and a finite subset J of I such that ¢gi(z)y=0forallieI\J
and all z € W. It is enough to prove that H, := x o Glw oy~ W—oWxE
is of class C''. However, for y € W,

Hy(y) = (v, > 6:(v" @)Dy o i ) ai(v™ 1))).G (@i(v ™ (v))))
icJ
and this expression clearly shows that H, is of class C.
Note that, for every z € M, F(z) = (z, Fi(z)) where Fy(z) € T»(M). For
every i € I the definition of F* implies that, for every z € U;,

Fi(z)(ai) = F'(ai()).
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It follows that
[(F(z)) = DMe(z).Fi(z) = D(e o a; ') (ei(x)). Fi (z)(x)
= D(eoaj ') (ai(x)).F(ai(z))
S0
P(F(z)) = D(eo aj ') (ai(@)). F(ci())-
Analogously,
I(G(z)) = D(eoa]")(ai(®)).G'(ai())-
It follows that, for every z € M,

IN(G(@)-T(F(2)|e
=1 ¢i(@)D(e o aj ') (i(2)).(Gi(ci(x)) - Fi(ei(2)))|m

iel
<Y ¢i(@)D(e o ai ) (@i(@)).(G(au(w)) = F(ci(2)))]e
el
< Z@ C;i-€/(2C;) = ¢/2.
el
Thus
sup |[(G(z)) - I(F(z))le <
zeEM
The proposition is proved. O

LEMMA 3.2. Let N be a compact subset of M and F and F*, k € N, be
continuous vector fields on M. Assume that sup ¢y [I'(F"*(x)) = T'(F(z))|lg — 0
as Kk — oo0. Let J C R be an arbitrary interval. For every k € N, let x,.: J — N
satisfy the equation

x(t) = &5 (t) = Ffi(zx(t), te€J.
Then a subsequence of (zx)xen converges in M, uniformly on compact subsets
of J, to a function xz: J — N satisfying the equation
z(t) = Fy(z(t)), teJ
ProOOF. For k € N let y, = e o x,. It follows that

yi(t) = D(F*(z(t))), teJ

An application of the Arzela-Ascoli theorem shows that a subsequence of (yx )xen,
again denoted by (y.)xen, converges in E; uniformly on compact subsets of J,
to a continuous function y: J — e(N). Since e is a homeomorphism of M onto
e(M) there is a unique map z:J — N with y = e oz, z is continuous into M
and (x,)xen converges to x in M, uniformly on compact subsets of J.
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For k € N and t, tg € J we have

Y (t) = yx(to) +/t [(F"(zx(s))) ds.

Letting K — oo we conclude that
t
) = (t0) + [ P(Pla(s))ds.
to

Proceeding as in the proof of [5, Proposition 4.6] we obtain that z is differentiable
into M and

z(t) = Fi(z(t)), teJd
This completes the proof. iz

An ordinary differential equation
& = Fi(z)

generates a local (semi)flow on M, provided the vector field F: M — TM is
locally Lipschitzian. However, even merely continuous vector fields can still de-
fine local (semi)flows. This is e.g. the case for a continuous vector field obtained
from an originally locally Lipschitzian vector field by a transformation via a
C'-diffeomorphism.

Therefore the following definition is natural:

DEFINITION 3.3. Let F' be a continuous vector field on M and 7 be a local
semiflow on M. We say that 7 is generated by F if for every intervall J C R and
every function z: J — M, x is a solution of 7 if and only if z is differentiable on
J and

z(t) = Fy(z(t)), teJd

Given z € M and a € ]0, oo we denote by B, (z) the set of all y € M with
dm(y,z) < a. Since (M, daq) is locally compact, B, (z) is compact for o small
enough (depending on x).

LEMMA 3.4. Let@ € M be arbitrary and § € |0, 00| be such that N := Bas(a)
is compact. Let 7 be a local semiflow on M generated by the continuous vector
field F on M. Let C € ]0,00( be arbitrary with C' > sup,en [I'(F(2))|g. Define
7=40§/C. Let T € M be arbitrary with dyp(Z,a) < 6. Then TnT is defined and
Zr [0,7] C N.

PRrooOF. Since N is compact, m does not explode in N. Thus if the assertion
of the lemma does not hold, then there exists a smallest r € [0, 7] such that Znr
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is defined and daq(Znr, @) = 26. It follows that Zm [0,7] C N and 0 < 7 < 7. Let
y(t) = e(znt) for t € [0,7]. It follows that

dpm (ZTmr,T) = |y(r) — y(0)|g = t/ ['(F(zws))ds| <Cr<Cr=9§
0 E
and so
20 = dm(Trr,a) < dp(ZTar, T) + da (T, @) < 5 + 5 = 26.
This contradiction concludes the proof. O

We now obtain the basic

THEOREM 3.5. Let F'®, k € Ny, be continuous vector fields on M and m,,
k € Np, be local semiflows on M. Suppose that 7y is generated by F* for k € Ny.
In addition, assume that, for every compact subset N of M, sup,¢n |[I'(F"(z)) —
L(F°z))|g — 0 as k — oo.

Under these hypotheses, 7, — my as k — 0.

We need the following lemmas:

LEMMA 3.6. Assume the hypotheses of Theorem 3.5. Let ko € N be arbitrary
and (Gx)k>r, be a sequence in M and ag € M witha, — @ in M as k — co. Let
N be compact in M and 7 € |0, 00[ be such that am,7 is defined and a7, [0, 7] C
N for all k > Kko. Then GomoT is defined and SUP;e|o,7] da (@ mit, @gmot) — 0 as
K — 00.

PROOF. Define z,(t) = @xmyt for k > kg and ¢ € [0,7]. By Lemma 3.2
a subsequence of (z)x>x, converges in M, uniformly on [0,7], to a function
x:[0,7] — N satisfying the equation

i(t) = FO(z(t)), teJ

It follows from our assumption that z is a solution of mg. Since z(0) = @y we see
that @omot is defined and @omot = z(t) for all t € [0, 7].

This argument also proves that every subsequence of (z)x>x, converges to
« in M, uniformly on [0, 7]. Therefore the full sequence (z,).>x, converges to
x in M, uniformly on [0, 7]. This proves the lemma. O

LEMMA 3.7. Assume the hypotheses of Theorem 3.5. For everya € M there
are §, 7 € ]0,00[ such that for every @y € M with dpm(@o,a@) < & and every
sequence (Ay)x converging to ag in M there is a kg € N such that both GomoT
and Gx7.T, K > Ko, are defined and SUPye(o,7] dpm(a@gmit, agmot) — 0 as kK — oo.

PROOF. Let @ € M be arbitrary and § € 0,00 be such N := Bas(a) is

compact. By our assumption there is a C' € ]0, co[ such that

C > sup sup [I'(F*(z))[Ee.
keNg zeN
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Let 7 = 6/C. For every @y € M with da(@,a) < 0 and every sequence

(@), converging to @ in M there is a kg € N with dap(as,@) < § for k >

ko. Lemma 3.4 implies that both agmg7 and @.m7, Kk > kg, are defined and

ao7o [0,7) € N and @xm, [0,7] C N for K > kg. Lemma 3.6 implies that

SuPye(o,r] M (@it omot) — 0 as Kk — oo. O
We can now give a

ProOF oF THEOREM 3.5. We must prove that whenever T,, — T in M,
tx — to in [0,00[ as k — oo and Tgmotp is defined, then T mt, is defined for &
large enough and T, 7wkt — Tomoto in M as k — oo.

Now, as Tomoto is defined, there is a b > to, b € ]0,00[, such that Tomor is
defined for all r € [0, b[. Define

I:={r €[0,b] | there exists an ko € N such that ZTym,r is defined for k > kg
and sup dm(Txmes,Tomos) — 0, as K — 0. }.
s€(0,r]

It is clear that 0 € I. Furthermore if 0 <7’ <r and r € I, then ' € I. Let
T:=supl.

It follows that 7 < b and [0,7[ C I. An application of Lemma 3.7 with @ := Zj
shows that 7 > 0. We claim that ¥ = b. Suppose, on the contrary, that 7 < b.
It follows that ZTomoT is defined. Let § > 0 and 7 > 0 be as in Lemma 3.7 with
a = ZTomoT.

Choose r € R with 0 < 7 <7 < r+ 7 and dm(ZTomor, TomoT) < §. We have
that » € I so there exists an kg € N such that T, m.r is defined for all Kk > kg

and
(3.2) sup da(ZTpmxs, Tomos) — 0, as k — oo.
s€(0,r]

Set @p = TomoT, Gx = Qo for K < kg and @y := Txmr for K > Kg. Applying
Lemma 3.7 and choosing k¢ larger if necessary we see that both @pmo7™ and @7, T,
K > Ko, are defined and
(3:3) sup da(agmet, @pmot) — 0 as k — o0.

telo,7)
Formulas (3.2) and (3.3) imply that Tomo(r + 7) and Z,m.(r + 7), K > Ko, are
defined and

sup  dm(Tx7mxs, Tomos) — 0, as K — oo.
s€(0,r+7)

Thus r+ 7 € I, but r +7 > T, a contradiction, which proves that 7 = b.
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Since to € [0,b], it follows that there is an 7 € [0,b] with {g < r and ¢, < r
for all x large enough. In particular Zomot, and T, m.t. are defined for  large
enough and

A (Temgty, Tomots) — 0 as kK — 0.
Since
dpm(Tomot sy, Tomoto) — 0 as k — oo,
we have that
Am (Tirti, Tomoto) — 0 as kK — 0.
The proposition is proved. O

Given a continuous vector field F' on M and N C M let Sol(F, N) be the

set of all functions z: R — N satisfying the equation

iM(t) = Fi(z(t)), teR.
Lemma 3.2 immediately implies the following result.

PROPOSITION 3.8. Let N be a compact subset of M and F and F*, k € N,
be continuous vector fields on M such that
sup [I'(F"(z)) = I'(F(z))|g — 0, as k — oo.
z€N
Set T, := Sol(F*,N), k € N, and T := Sol(F,N). Then T,, —» T (in C(R, M))
as k — oo (in the sense of [1]).

We conclude this section with the following result.

COROLLARY 3.9. Let F be a continuous vector field on M and N be a com-
pact subset of M such that Invy(N) C Inta(N), where T = Sol(F, N). Then

there is an € € ]0,00[ such that whenever F is a continuous vector field on

M with sup,ey [T(F(z)) = T(F(z))|[e < € then Invz(N) C Inty(N), where
T = SOI(F',N). Let ¢(F,N) be the supremum of all such numbers €.

PROOF. This follows from Proposition 3.8 and (1, Proposition 2.14]. O

4. Conley index in the absence of uniqueness

We assume that the reader is familiar with the classical Conley index theory,
as expounded in the monographs (6], [9] or [10].

In this section we give an extension of Conley index theory to the case of
ordinary differential equations on M with a merely continuous right hand side.
This extends some results from (8] to the manifold case.






