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ANALYTIC TORSION FOR MANIFOLDS WITH TOTALLY
GEODESIC BOUNDARY

L. HARTMANN AND M. SPREAFICO

ABSTRACT. We prove that the extension of the Cheeger Miiller theorem (3]
[12] for manifolds with boundary and product metric near the boundary, due
to Liick [10], generalizes further under the weaker condition that the boundary
is totally geodesic. Our proof is based on recent results of Briining and Ma (2]
on the anomaly boundary term (see also the work of Dai and Fang [5]).

1. INTRODUCTION

Let (W, g) be a closed connected Riemannian manifold with metric g. Let 7(M)
denote the Reidemeister Franz torsion of M [14] [6], and T'(M) the analytic torsion
of M [13]. If M is not acyclic, assume the base for the homology is fixed by
the choice of an orthonormal base of harmonic forms, as in [13]. The theorem of
Cheeger [3] and Miiller [12] affirms the equivalence of these two torsions, proving a
conjecture of Ray and Singer [13]. When W is no longer closed, the Cheeger Miiller
theorem still holds but boundary terms appear. Namely, the results reads

logT(W) = log (W) + f(OW).

A first result for the boundary term f(0W) was given by Liick [10] in the case
of a product metric near the boundary. In this case, the boundary term is purely
topological and is proportional to the Euler characteristic of the boundary. More
recently, the boundary term has been investigated in the general case by Dai and
Fang [5], and by Briining and Ma [2]. They proved the existence of a further non
topological contribution when the metric is not a product near the boundary, called
anomaly boundary term.

In this work we show that the result of Liick extends to the more general case
of manifolds with totally geodesic boundary. Our main result is the following
theorem, where we denote by Tops(W) the analytic torsion of W with absolute
(Neumann) boundary conditions, and by Tye(W) the analytic torsion of W with
relative (Dirichlet) boundary conditions (see Section 3 for the precise definitions).

Theorem 1. Let W be a compact connected Riemannian manifold of dimension
m with totally geodesic boundary OW, then

1
(—1)™" ! log Tret (W) = log Taps(W) = log 7(W) + 7X(8W)log2,
where x(0W) is the Euler characteristic of the boundary.
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2 L. HARTMANN AND M. SPREAFICO

Our proof exploit the results of Briining and Ma [2], and is given in Section 4. In
Section 2, we recall the definition of totally geodesic submanifolds, and in Section 3
the definitions of Reidemeister torsion and analytic torsion. In Section 5, we apply
Theorem 1 to deduce the analytic torsion of an half sphere. In the last Section 6,
we exhibit an explicit calculation of the analytic torsion in the particular case of
the half sphere of dimension two.

2. MANIFOLDS WITH TOTALLY GEODESIC BOUNDARY

Let (W, g) be a connected Riemannian manifold of dimension m, and metric g. A
submanifold M of W is said to be totally geodesic if the geodesics of M are geodesics
in W. In other words, if ¢ : M — W denotes the inclusion, M is totally geodesic if
and only if the isometric immersion i : (M,i*g) — (W, g) is totally geodesic: namely
if any geodesic of (M,i*g) is carried under i into a geodesic of (W, g). If M = oW
is the boundary of W, and OW is totally geodesic, we said that W has totally
geodesic boundary. We give a local metric condition for a manifold to have a totally
geodesic boundary. Let 9, denotes the inward pointing unit normal vector to the
boundary, i.e. an orthonormal local base for NOW, the normal bundle. Near the
boundary we have the collar decomposition Coll(dW) = [0, €) x OW, obtained using
the inward geodesic flow. If y = (y1,...,Ym-1) is a system of local coordinates on
the boundary, then (z,y) is a system of local coordinates on Coll(0W). Here the
curves z — (z,y) are unit speed geodesics perpendicular to the boundary. In this
system of local coordinates, the metric tensor reads

g9 =dz @ dz + §(z),

where g(z) is a family of metric on OW such that §(0) = i*g. Let I',7; denote
the Christoffel symbols relative to the coordinate base associated to the local co-
ordinates (z,y) on (W,g), and f‘j‘k denote the Christoffel symbols relative to the
coordinate base associated to the local coordinates (y) on (W, (0)). Then, it is
easy to see that the geodesic equation on (W, g)

di [+ T,"gde f*de f? =0,
corresponds to the system of equations

i f* = 30afy;uudef¥i def¥* =0,
dZ fv + Tt de fY de f9% + GYV% () Bz iynyn (2)de f7de S = 0.

This shows that a geodesic of (0W,i*g) is a geodesic in (W, g) if and only if
9:9(z) = 0, and hence proves the following result.

Lemma 1. Let (W,g) be a connected Riemannian manifold with boundary OW.
Let (z,y) be a sytem of local coordinates near the boundary, where z is the geodesic
distance from the boundary, and the metric reads g = dz @ dz + §(z). Then, OW
is totally geodesic if and only if 8,g(z) = 0.

We interpret this result using the second fundamental form of 0W, whose defi-
nition we briefly recall now. Let i : M — W be a submanifold of (W, g). The re-
striction of the tangent bundle TW)s decomposes as the Whitney sum TM & N M,
where N M is the normal bundle to M. For a vector v denote by vtan and vporm the
components. Let V € T'(W,T*W ® End(TW)) be the Levi-Civita connection of
(W, g). Given two sections u,v € I'(M,TM) of TM, the second fundamental form
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S of M is defined by Sar(u,v) = (Vu¥)norm. It is easy to see that M is totally ge-
odesic if and only if its second fundamental form vanishes identicaly. Recalling the
local description of the second fundamental form as a the symmetric (0,2)-tensor

Sysue = Ty ey, = —3028y;4,, Lemma 1 follows.

3. REIDEMEISTER TORSION AND ANALYTIC TORSION
We recall the definitions of Reidemeister and analytic torsion. Main reference

are [11] and [13]. We follow the notation introduced in [7], and we refer to that
work (or to the original ones) for further details. Let

3m am -1 az

(1) C: Cm —"Cm—l L

Cl CO )

be a chain complex of real vector spaces. Denote by Z, = kerd,, by By =
Im&y4+1, and by Hy(C) = Z,/B, as usual. For two bases z = {z1,...,zx} and
vy = {v1,...,yx} of a vector space V, denote by (y/z) the matrix defined by the
change of base. For each ¢, fix a base ¢, for Cy, and a base hq for Hy(C). Let
bg be a set of (independent) elements of Cj, such that 94(bg) is a base for B,_;.
Then the set of elements {9g+1(bg+1), hq, bq} is a base for Cy. In this situation, the
Reidemeister torsion of the complex C with respect to the graded base h = {h,} is
the positive real number

m
(2) (03 1) = [ ] Idet(@g+1(bg41), has ba/cq) "

=0

Let (K, L) be a pair of connected finite cell complexes of dimension m, (f( p I:)
its universal covering complex pair, and identify the fundamental group of K with
the group of the covering transformations of K. Let C((K,L); R) be the real chain
complex of (K ,I:). The action of the group of covering transformations makes
each chain group C,((K,L);R) into a module over the group algebra R (K),
and each of these modules is R (K)-free and finitely generated by the natural
choice of the g-cells of K. We have got the complex C((K,L); Rmy(K)) of free
finitely generated modules over Rm;(K). Let p : m1(K) — G be a representation
of the fundamental group in some group G (typically G = O(k,R), and consider
the twisted complex C((K, L); (Rm1(K)),). Assume Hy(C((K, L); (Rm(K)),)) are
free finitely generated modules over R (K). The Reidemeister torsion of K with
respect to the representation p and to the graded base h is defined applying the
previous construction to the twisted complex C((K, L); (Rm; (K)),), namely

mr((K, L); h, p) = Tr(C((K, L); (Rmy (K)),); h),
in R*. If (K, L) is the cellular (or simplicial) decomposition of a pair of spaces
(X, A), the Reidemeister torsion of (X, A) is defined accordingly, and denoted by
mR((X, A); h, p).

Let (W,0W, g) be a closed connected orientable Riemannian manifold of dimen-
sion m, with boundary 8W and Riemannian metric g. Then, all the previous
assumptions are satisfied, and the R torsions mr(W;h,p) and mr((W,dW);h, p)
are well defined for each fixed graded base h for the homology of W, and each
representation p of the fundamental group. Moreover, it is possible to prove that
TR((W,8W); h, p) does not depend on the cellular decomposition. In this context,
Ray and Singer suggest a natural geometric invariant object, by fixing an appropri-
ate base h for the homology using the geometric structure, as follows. Let £, — W
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be the real vector bundle associated to the representation p : 71 (W) — O(k,R).
Let Q(W, E,) be the graded linear space of smooth forms on W with values in
E,. The exterior differential on W defines the exterior differential on QI(W, E,),
d: QI(W, E,) — Q1+ (W, E,). The metric g defines an Hodge operator on W and
hence on QY(W, E,), % : Q¥(W, E,) — Q™" 9(W, E,), and, using the inner product
in E,, an inner product on Q4(W, E,,).

In order to deal with the boundary, we need suitable boundary conditions. Con-
sider the natural splitting of AW as direct sum of vector bundles AOW & N*W.
The smooth forms on W near the boundary decompose as w = wian + Wnorm. Let
Babs(w) = wnorm|ow and Brel(w) = wian|ow. Absolute boundary conditions are
defined by

3) Babs(w) = Babs(w) ® Babs((d + dT)(W)) =0,
and relative boundary conditions by
(4) B:ei(w) = Brei(w) ® Brai((d + df)(w)) = 0.

Then the operator A = (d + df)? with boundary conditions B(w) = 0 is self
adjoint, and the relevant spaces of harmonic forms are

HIW,E,) = {w € QI(W,E,) | ADw =0},
His(W, Ep) = {w € QY(W, E,) | ADw =0, Byps(w) = 0},
HL (W, E,) = {w e QW (W,E,) | ADw =0, B (w) = 0}.

rel

Following Ray and Singer, we introduce the de Rham maps Ag:
A HY(W, E,) — Co((W,0W); E,),
A:bs :Hq (Wx EP) = CQ(W;EP)a

abs

both defined by (see [7] for details on the contruction)

(6)  AMw) = AF(w) = (-1 DY ( /

(*W,ei)> Cq,5 Dp €i)
Jsi

WJ

where the sum runs over all g-simplices ¢, ; of W in the absolute case, but runs
over all g-simplices ¢,,; of W — W in the relative case, and ¢ denotes the Poincaré
dual of c.

In this situation, let a be a graded orthonormal base for the space of the harmonic
forms in AW ®, R*. Then, we call the positive real number

(6) R((W, 9); p) = TR(W; A**(a), p),
the Reidemeister torsion of (W, g) with respect to the representation p, and
U] R((W, 8W, 9); p) = (W, 8W); A™(a), p),

the Reidemeister torsion of the pair (W, dW, g) with respect to the representation p.
It is possible to prove that both 7r((W, g); p) and Tr((W, W, g); p) do not depend
on the choice of the orthonormal base a.

Next, we define the analytic torsion. First assume W has no boundary. With
the inner product previously defined Q(W, E,) is an Hilbert space. Let df =
(=1)ma+m+1 4 di be the formal adjoint of d, then the Laplacian A = (dfd + dd) is
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a symmetric non negative definite operator in Q(W, E,), and has pure point spec-
trum SpA. Let A(@ be the restriction of A to Q4(W, E,). Then we define the zeta
function of A9 by the series

C(S,A(Q)) = Z )\—s’

z\ESp_'_A(")

for Re(s) > %, and where Sp, denotes the positive part of the spectrum. The
above series converges uniformly for Re(s) > %, and extends to a meromorphic
function analytic at s = 0. Following Ray and Singer [13], we define the analytic
torsion of (W, g) with respect to the representation p by

m

1
(8) log T((W, 9); p) = 5 >_(~1)%a¢’(0, A®).
q=1
If W has a boundary, we denote by T,ps((W, g); p) the number defined by equa-
tion (8) with A satisfying absolute boundary conditions, and by Tye1((W, g); p) the
number defined by the same equation with A satisfying relative boundary condi-

tions.

4. THE PROOF OF THEOREM 1

We proceed by taking (W,8W, g) a fixed compact connected Riemannian man-
ifold with boundary W and metric g. We start by assuming absolute boundary
conditions on W for the Laplacian operator A on forms associated to g, as de-
fined in equation (3). Since our result does not depend on the representation of the
fundamental group of W, we will use the simplified notations 7(W) and Tups(W)
for the torsions g ((W, g); p) and Tups((W, g9); p) defined in the previous Section 3,
respectively. With this notation, Cheeger [3] proves that

log Taws(W) = log 7(W) + f(OW),

where the last term only depends on the boundary. When the metric g is a product
near the bundary, Liick [10] proves that

1
log Tabs(W) = log 7(W) + Zx(@W) log 2,

where x(X) is the Euler characteristic of X. In the general case, a further contri-
bution appears, that measures how the metric is far from a product metric:

log Tas (W) = log 7(W) + 7X(8W) log2 + A(9W).

A formula for this new anomaly contribution has been recently given by Briining
and Ma [2]. More precisely, in [2] (equation (0.6)) is given a formula for the ratio
of the analytic torsion of two metrics, go and g1,

Tabs(W,91) 1 / ™W ™W
log —————L£ = - B(V - B(V )
€ Tovs(W,g0) 2 aw( (Vi) = B(Ve™))

where V?W is the connection of the metric g;, and the forms B (V}‘W) are defined

in equation (11) below (see Section 1 of [2]), and note that we use the formula of (2]

in the particular case of a flat trivial bundle F. Taking g; = g, and go an opportune

deformation of g, that is a product metric near the boundary,

Tabs (VV; g 1)

A(OW) = log ———=,
( ) g Tabs(Wy 90)
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and therefore
1 1
(9)  10g Tuws(W) = log (W) + 7x(0W)log2 + 5 /8 (BVTW) - BVE™)).

We recall now the definition of the forms B (V?W). First, we need some notation
from [1] Chapter III and [2] Section 1.1. For two Z/2-graded algebras A and B,
let A®B = A A B denotes the Z/2-graded tensor product. For two real finite
dimensional vector spaces V and E, of dimension k and n, with E Euclidean and
oriented, the Berezin integral is the linear map

B
/ tAV*QAE* — AV*,

B (_1) n!nz-{-l)
/ :a®ﬁ L g W—%ﬁ(el’ s )en)a)

where {e;}}7_; is an orthonormal base of E. Let A be an skew symmetric endomor-
phism of E. Consider the map

A A=

t\DI»—l

i (e, Aer)é? NE.

[et=ri(3),

and this vanishes if dimE = n is odd. Second, recalling the splitting of the tangent
bundle T'W on the collar Coll(dW) = [0, €) x OW described in Section 2, we define
the section s of one forms with values in the skew-adjoint endomorphisms of TW

s = (thg)norm + (VPnorm)tg,

where V is the Levi-Civita connection on (W, g), and P denotes the projection
associated to the splitting TColl(0W) = NOW @ TOW. With this notation, we set

For example,

1 m-—1
S= 5 (7' s(ek))norméku
(10) k=1
R =R,
where (ey,,...,€y,_,) is an orthonormal basis in T0W, and R is the curvature of

1*V, on OW. These quantities permit to define the forms appearing in the boundary
anomaly term

2 1
B vTW / / _'ER u S2 k—lskd :
(11) ( 3 F( 1) U

Thus, in order to obtain the anomaly boundary term, by using equation (9), we
consider the metrics
go = dz ® dz + §(0),
g1 = dz @ dz + §(z).
in the system (z,y) of local coordinates introduced in Section 3 on the collar

Coll(0W) of the boundary of W. Note that in the language of bundles and conec-
tions (used in [7]), if w denotes the connection one form associated to the metric g,
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and © be the curvature two form of the boundary, using the notation M?, for the
entry with line a and column b of the matrix M,

175 A
=z Z i*w — i"wp)”®,, EY*,
(12) _1 m-—1
=6= = ), B we A e
k=1

This shows that Sy vanishes identically. However, also S; vanishes when the
boundary is totally geodesic. For, by the definition in equation (10), S; is the re-
striction of the form s on the boundary, and this is precisely the second fundamental
form Sps of the boundary. This follows as well using the formula in equation (12),
recalling that (i*w)®,, = L'y, %y, vanishes by Lemma 1. This completes the proof
of Theorem 1, in case of absolute BC. In case of relative BC, we apply Poincaré
duality for analytic torsion, as given in Proposition 2.10 of [10].

5. REIDEMEISTER TORSION AND ANALYTIC TORSION OF HALF SPHERES

‘We compute in this section the torsion of the half spheres. Since these are simply
conected manifolds, the representation of the fundamental group only enters as
dimension of the representation space. Let $;* denote the half sphere of dimension
m and radius [, S* = {z € R™*! | |z| = |, Z;m4+1 = 0}. The boundary of S is the
sphere S = {z € R™*! | |z| =, ;41 = 0}. We parameterize S[* by

( zy = Isin#,,sinf,,_---sinf3sin f; cos b,
To = [lsinf,sinfy,_1---sinf3sinf;sin by
z3 = [lsin6,,sinf,,_1---sinf3cosby
St =
Tm = [lsinf,cosl,_1
Tm+1 = lcosOp,
\

with 6, € [0,27], 02,...,0m_1 € [0,7] and O, € [0, F]. The induced metric is
g = sin? Omgsm-1 + 12df,, ® db,,

i
(Z ( ] sin 0)d0k®d0k+d6m®d9m>,
J=

Jj=1 j=1i41

and +/[detg| = I™(sin 0)™ 1 (sin Oyp—1)™ 2 - - - (sin 03)*(sin 63).

Let K be the cellular decomposition of 8}, with one top cell, one m — 1-cell
and one 0-cell, K = c}, U Cm—1 U cO Let the subcomplex L of K be the cellular
decomposition of 98, L = c},_; Uc}.

We consider first the case of relative boundary conditions. Then the complex of
real vector spaces of equation (1) reads

Cal: 0 R[cL,] 0 e 0 0 0,
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with preferred base ¢, = {cl,}. To fix the base for the homology, we need a
graded orthonormal base a for the harmonic forms. Since a base for Q™(S]") is

detg|dfy A---Adbp }, we get am = eyl v g | Applying the formula
Vol, (57) 2

in equation (5) for the de Rham map, we obtain h,, = {hL }, with

1
h,l.n = A:Sl(a}n) = T(Sm) /t ¥4/ |detg|d01 AT Y dGmC}n
g\Ml P
i

— —-——C,In.

VLT
As bg =0, for all ¢, we have that
1
det( NN J—
|det(hm/cm)| VoL )

Applying the definition in equations (7) and (2), this proves the following result.

|det(bg/cq) =1, 0<g<m—1.

Proposition 1.

. (=1)™ 'rk(p)
(ST, S, g): ) =( Volg(sz"))

(=)™ 1rk(p
e\
T (=52)

Next, we consider the case of absolute boundary conditions. By equation (1),
the relevant complex is

Cabs: 0 R[cl ] — Rlck,_4] 0 0 R[c}] 0,

with preferred bases ¢y, = {c}, }, cm—1 = {cl,_1} and co = {c}}. Hence, H,(K) =0,
for p > 1, and Ho(K) = R|[c}]. Since a base for Q°(S]") is the constant form {1},

we have ap = \/To_ll,—ﬁ } Applying the formula in equation (5) for the de Rham

map, we obtain hg = {h}}, with

hf = A5 (a}) =

1 / 1
— [ u
Vel Jsp
= 4/ Voly(SP)ca.
Asb,=0for ¢=0,...,m—1, b}, =c}, and 9(b},) = cm—1, we have that
|det(ho/co)| = 1/ Volg(S]"),
|det(8(b},)/m-1)| = 1, |det(bm/cm)| = 1.

Applying the definition in equations (6) and (2), this proves the following result.
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Proposition 2.

rk(p)
(S 9);p) = ( Volg(sz"))

ma =t =
—\P(BE

For the analytic torsion, in the absolute case, using Theorem 1, we have:

Corollary 1.

rk i b e e
Tuna((ST",9); ) = S 1og Vol (S7") + 1x(S™ 1) log 2

_ 1k(p) ) I |

5 108 -1"—(7"——57'—? + Z((m — 1)mod2) log 2.

6. THE ANALYTIC TORSION OF THE HALF SPHERE IN DIMENSION TWO

9

In this section we investigate the problem of obtaining the analytic torsion by
direct application of its definition. This is of some interest as an example of ap-
plicability of analytic tools in geometry (indeed this was the original aim of Ray
and Singer), and also due to the few appearences in the literature of works where

similar explicit calculations are performed (see for example [16] [8]).
Let S? the hemisphere of radius ! in R®

1 = Isinfycosb,
St2 — ) w2 = lIsinf;sinf;
r3 = lcosfy

with 6, € [0,27], 62 € [0, §]. The induced metric is
g = 12d6; @ dfy + 1% sin® 0d6; ® db;.
We just need the Laplace operator on function, that reads:

_ 1 2 cos O 1.5
A= (12 sin” 0, % Bone, " T ‘902)

The boundary conditions follow applying equations (3) and (4). We obtain the

following absolute boundary condition

0 —forms: 8y, f(61,7/2) =0,
foz(elr %) =0,
aﬂzfal(oll %) = 01

2 —forms: fg,9,(61,7/2) = 0.
and relative boundary conditions

0—forms: f(61,7/2) =0,
f91 (011 %) e O’
3ogfag(01a %) =0,
2 — forms: 8y, fo,0,(01,7/2) = 0.

(13) absolute BC 1 — forms : {

(14) relative BC 1 — forms : {
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In order to obtain a spectral resolution for the Laplace operator on functions
on 37, we proceed as follows. It is well known that a spectral resolution for the
Laplace operator on function on the sphere S/* can be obtained by using harmonic
polynomials. More precisely, denote by HJ* the vector space of polynomials P(z) €
Clzo, - . .,zm] that are homogeneous of degree j and harmonic with respect to the
Laplace operator A = —92 —---—082 in R™*!. Then, the subspace H = 3 o0, H™
is dense in C*°(ST*) by the Stone Weierstrass theorem, and therefore 7 = L?(SJ").
Moreover, taking polar coordinates z = (r, ),

m 1
A=-8%- —0r+ 5 8sps

and therefore
Asm P(0) = n(n+m — 1) P(6).
This shows that L2(ST*) = Yoo ,’H™, and that the eigenvalue relative to the
eigenspace HI" is A\, = n(n+ m — 1). It is also well know that

(15) dimH™ = <m+"> - (m+"_2).

m m

Now, let denote by S the reflection in R™*! obtained by changing the sign of
the last coordinate. Then, S defines Z/2-grading on H, by setting Py = P + SP,
for P € H. It is clear that P = (P4 + P_), for each P, and that SPy = +P,.

With this notation, and recalling equations (13) and (14) for the boundary condi-
tions, we see that a spectral resolution for Agm is given by the family of eigenspaces
and eigenvalues displayed below:

absolute BC {/\n = n_(n++—1)’ (HT)+} )
relative BC {)\n = IL_(P_+lzm—_1)» (Hnm)—} .

We need the dimension of these subspaces. We consider first the case m = 2.
Then, dimH2 = 2n + 1. Since obviously (H2)+ consists of the constant map, the
unique possible partition is n + (n + 1), and hence

dim(H2)y =n+1
dim(H2)_ = n.

This can also be proved using induction, as follows. Assume we have dim(H2), =
n+ 1, and dim(H2)_ = n. Let P be any one of the n + 1 generators of (H2),.
Let [, denote the inverse operation of 8;, namely [, 8;P = P. Then, Q = [, P €
(H2 +1)—- For @ is obviously homogeneous of degree n + 1 and odd, by definition.
Moreover, AQ = A [, P= [, AP =0, since P is harmonic.

Next, using properties of homogeneous harmonics polynomial, we can prove the

following result for the general m, that is of some independent interest, and we
were not able to find in the existing literature.

Proposition 3. The spectrum of the Laplace operator on the m-dimensional hemi-
s 4 4w sgie ’ n(n+m-—1 o2

sphere of radius | with Dirichlet boundary condition is {/\n = J—la—l} o and
n=|

the eigenvalue A, has multiplicity ('""tff"). The spectrum with Newmann boundary
m+n—-1) .

conditions is the same, but the multiplicity is ("I"]






