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Resumo. Provamos a semicontinuidade inferior de atratores para problemas de evolug¢ Go
semilineares nao-autonomos em espag¢os de Banach sob perturbagoes singulares. Como
condi¢ao geral assumimos que o atrator limite é caracterizado como o fecho da unido de
um numero contdvel de variedades instaveis de solugdes globais hiperbdlicas (que, em geral,
nao s ao equilibrios). A difereng significativa com relagdo a resultados anteriores (veja [13]
or [15]) € que consideramos perturbagoes singulares para as quais resultados de robusteza
da dicotomia nao sao encontrados na literatura existente. A robusteza e a continuidade
da dicotomia exponencial para a linearizagao em torno de solugoes globais hiperbdlicas sob
perturbacoes singulares € a principal ferramenta utilizada aqui. Em particular, nossos resul-
tados implicam a caracterizagao e atragao exponential uniforme para atratores de problemas
gradientes sob perturbagoes nao-autonomas e singulares.
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ABSTRACT. We prove lower semicontinuity of attractors for non-autonomous semilinear dif-
ferential equations in Banach spaces under singular perturbations. Our general assumption
is that the limiting attractor is the closure of the union of unstable manifolds of hyperbolic
solutions (in general not equilibria). The significant difference with respect to previous re-
sults [13, 15] on this subject is that we consider singular perturbations for which results
on roughness of dichotomy were not known in the literature. The roughness and con-
tinuity of exponential dichotomy for the linearization around global hyperbolic solutions
under singular perturbations is the main tool we used here. In particular, our results imply
characterization and exponential attraction for attractors of non-autonomous and singular
perturbation of autonomous gradient systems.

1. INTRODUCTION

Attractors for infinite dimensional dynamical systems have been the subject of the work of
many mathematicians and applied scientists in the last four decades. In the case of infinite
dimensional autonomous dynamical systems (nonlinear semigroups) the theory for existence
and upper semicontinuity relatively to perturbations (singular or not) of attractors is quite
well developed. The characterization of attractors for infinite dimensional autonomous dy-
namical systems remains restricted to some very specific cases (mostly gradient systems)
though it is our belief that attractors are in general the union of the unstable manifolds
of normally hyperbolic invariant manifolds (see [19]). The study of lower semicontinuity
of attractors under singular perturbation is connected to the characterization of attractors
and remains restricted to the class of autonomous dynamical systems that are gradient,
asymptotically compact, with bounded set of equilibria.

The regular perturbation case is a consequence of the results in [13] and was considered
in [15].

The study of the lower semicontinuity of attractors for semilinear differential equations in
Banach spaces has its origin in the work of [23] where an abstract result has been proved and
applications to partial differential equations have been considered. The results in that paper
that have been used and simplified since then says that: If the limiting equation is gradient,
has a finite number n of equilibria, all of them hyperbolic, the perturbed nonlinear semigroups
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vary continuously, the sets of equilibria have fized finite cardinality and vary continuously
with the parameter, and the local unstable manifolds of the perturbed problems are lower
semicontinuous, then the family of attractors behaves lower semicontinuously. The proof of
this result relies on the continuity of the equilibria and of the local unstable manifolds under
perturbation. Once we have these, the lower semicontinuity of the global unstable manifolds
and, consequently, the lower semicontinuity of attractors is obtained in the following way:
given a point yo in the limiting attractor, we follow the solution through it backwards in
time until it enters the neighborhood of an equilibrium point where we have the lower
semicontinuity of local unstable manifolds; we then approximate it by a point in the unstable
manifold of a hyperbolic equilibria of the perturbed problem and follow the solution starting
at this approximation point forwards the same time, obtaining the approximation of 3 by
points in the perturbed attractor.

In the applications [23] considers situations for which the set of equilibria does not depend
upon the parameter. That makes the application of the abstract result somewhat simpler,
though the change of type in the equation makes it complicated anyway. Later in [1, 3, 10, 17
the authors consider situations for which the set of equilibria changes with the parameter
while maintain the gradient structure of the limit problem. In all these works becomes clear
that one must account for the uniform exponential dichotomy of the linearization around
each hyperbolic equilibrium (accomplished because the linear operator is sectorial in all
these papers). In [7] the authors consider the situation for which the linear operator for
the perturbed problem is sectorial whereas in the limit it is only the generator of a strongly
continuous semigroup (here the uniform exponential dichotomy for the linearizations around
equilibria becomes a major problem).

In all of the works cited above the perturbation is singular, in the sense that it affects
the highest order terms of the equation, and the continuity of the resolvent operators of the
associated linear unbounded operator is used in an essential way.

Any attempt to consider perturbation of attractors with more general structure would have
to take into account linearizations around nonconstant (in time) solutions which would be
non-autonomous linear equations and therefore would lead to exponential dichotomies and
their roughness under singular perturbation (see [15] for the case of regular perturbation,
that is, perturbation of lower order terms). That has been a barrier to consider more general
attractors under singular perturbation as the results on roughness of exponential dichotomy
under singular perturbation are unknown in the present literature (see [24] for the case of
regular perturbation). Our aim in this work is to overcome this difficulty and consider lower
semicontinuity of more general attractors under singular perturbation.

In this paper we prove that, if the limiting attractor of a nonlinear process (coming, for
instance, from a non-autonomous differential equation on a Banach space) is the closure of
a countable union of unstable manifolds of global hyperbolic solutions, then the attractors
behave continuously under singular perturbation. The main tool is a version of the result
on continuity of local unstable manifolds proved in [13] and the proof on the roughness of
exponential dichotomy under singular perturbations. Note that, in particular, all the results
hold when we apply a singular perturbation plus a non-autonomous nonlinear term to an

autonomous semigroup.
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In [13] it is proved that the pullback attractors of non-autonomous dynamical systems
behave continuously under regular (i.e. lower order) perturbation when the limit dynamical
system is autonomous and its attractor is the union of unstable manifolds of hyperbolic
equilibria. In the present paper we prove that the same result also holds under singular
perturbation of a non-autonomous limit nonlinear process. As a consequence of this and
the results in [16, 14] we prove that if the limiting semigroup is gradient then the perturbed
non-autonomous attractor is exactly the union of unstable manifolds of global hyperbolic so-
lutions, and that in fact the pullback attractor is also a forwards time dependent exponential
attractor.

We remark that, detecting when a pullback attractor is also a forwards attractor has been
one of the most interesting problems in the recent theory of non-autonomous dynamical
systems. In general, a pullback attractor is not expected to be a forwards attractor (see
[16, 14]). Moreover, due to the fact that local unstable manifolds of global hyperbolic
solutions are exponentially attracting, our time dependent global attractor will also attracts,
uniformly on bounded sets, at an exponential rate (see [14]). Actually, what we get, now in
a non-autonomous framework, is what Babin and Vishik [6] defined as a regular attractor.

An important step in this paper is to prove the lower semicontinuity of pullback attractors
for nonlinear processes in the situation when (a) the attractor for the limiting nonlinear
process is given as union of unstable manifolds of hyperbolic global solutions and (b) the
perturbations of the limiting nonlinear process are singular. To accomplish this we follow
an adapted procedure similar to what is done in [13, 16, 15] (which in turn are based on the
procedure adopted in [1, 3, 7, 10, 17]), namely:

e To prove that for each global hyperbolic solution of the limiting process and for small
values of the parameter, there is a unique global hyperbolic solution of the singularly
perturbed process; that is, a solution with the property that the linearization of the
process around it has exponential dichotomy.

e To prove that these global hyperbolic solutions converge as the parameter becomes
smaller to the corresponding global hyperbolic solutions of the limiting problem.

e To prove, in a fixed neighborhood of the limiting global hyperbolic solution and
for each small values of the parameter, that the global hyperbolic solution has an
unstable manifold which converges to the unstable manifold of the corresponding
global hyperbolic solution of the limiting problem. They key property here is that
the neighborhood does not depend on the (small) values of the parameter.

e To prove that the continuity of the local unstable manifold implies the continuity of
the global unstable manifold and of attractors.

To follow the above outline, adapting the results of [13, 16, 15] to the new situation in
this paper and to consider applications to continuity of attractors for systems of partial
differential equations under singular perturbation, another important step in this paper is
to obtain the roughness of exponential dichotomy under singular perturbations. The main
difficulty will be of course to obtain continuity of the associated projections under singular

perturbations.
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2. NOTATIONS AND OUTLINE OF THE RESULTS

In this section we introduce some terminology and state the main results. We start with the
definition of evolution processes, which includes the definition of semigroups and processes
(linear or not). Throughout the text C()) will denote the space of continuous, possibly
nonlinear, operators defined in a Banach space J and by £()) the space of linear and
bounded operators on ).

Definition 2.1. A family {S(¢,7): t > 7 € R} CC ()) satisfying
1) S{rr) =1,
2) S(t,0)S(o,7) = S(t,7), foreacht >0 > T,
3) (t,7) — S(t,7)y is continuous fort > 7, y € Y

is called an evolution process. In the particular case when each S(t,7) € L(V), t > T, we
say that {S(t,7): t > 7 € R} is a linear evolution process.

An evolution process for which S(t,7) = S(t+s,7+3s) forallt > 7 € R and for all s € R
is called autonomous. If we write S(t,7) = S(t — 7,0) =: U(t — 7) then {U(t) : t > 0} s
semigroup (linear or not). Hence, a semigroup is a family {S(t) : t > 0} such that S(0) = I,
S(t+s) = S(t)S(s), for allt,s >0 and (0,00) X YV 3 (t,z) — S(t)z € Y is a continuous.

Conversely if {U(t) : t > 0} is a semigroup and we define S(t,7) = U(t — 7) for all

t > 71 €eR, then {S(t,7) : t > 7 € R} is an evolution process.
Remark 2.2. We observe that the continuity of the process {S(t,7) :t > 7 € R} att =7
is not assumed. In fact, there are many applications for which this continuity does not hold
and it is shown that it does not play any role in the study of the asymptotic behavior as long
as the singularity at t = 7 is integrable.

The concept of “invariance” for evolution processes is as follows: a family {C(t)}ier of
subsets of Y is positively invariant for the process S if S(¢,7)C(7) C C(¢) for each t,7 € R,
t > 7 and it is invariant for S if S(¢,7)C (1) = C(¢t) for each t,7 € R, t > T.

Important objects for the dynamics of semigroups or processes are the “globally defined
solutions” that we now define

Definition 2.3. A continuous curve ¢ : R — ) is a complete solution or global solution
of the process {S(t,T) : t > T} if for each t > s we have ¢(t) = S(t,s)d(s). Clearly, if
#:R — Y is a global solution and C(t) = {¢(t)}, then the family {C(t) }ier is invariant.
Remark 2.4. We observe that, given (to,y) € Rx Y there is a unique solution £ : [to, 00) for
the process {S(t,7) : t > T} such that £(to) = y. The ezistence of a global solution § : R — Y
which satisfy £(to) = y may impose restrictions on the data y and, when a global solution
exists, it may not be unique.

We can now define the concept of unstable manifold of a global solution, which will play
an essential role in what follows.
Definition 2.5. Given a global solution of {S(t,7) : t > 7} & : R — Y, the unstable
manifold W™(€*) of € is defined as W*(*)={(t,y) € R x Y: there is a global solution
$:R—Y of {S(t,7): t > T} such that ¢(t) =y and [|€*(s) — ¢(s)lly "= 0}.
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Remark 2.6. For the sake of notation, we will denote by W*(£*)(t) the section at time t of
WY (£*), that is W*(&*)(t)={y € Y: there is global solution ¢ : R — Y with ¢(t) =y, such
that ||€*(s) — ¢(s)|ly *==" 0}. Note that {W“(£*)(t)}ier is invariant.

Observe that the unstable manifold is a global object in the dynamics of the process S
and therefore its structure and behavior under different perturbations is not easy to describe.
Hence, it seems natural to define the local version of the unstable manifolds,

Definition 2.7. Given a global solution & : R — Y for {S(t,7) : t > 7}, its p—local
unstable manifold is defined as Wk (&%, p)={(t,y) € R x V: |ly — &*(t)|ly < p, there is a
global solution ¢ of {S(t,7) : t > 7}, with ¢(t) =y, ||#(s) — £*(s)|ly < p for all s < t, and
lg(s) = &*(s)lly == 0}.

Observe that, even in the case of autonomous processes, in general it is not true that

We.(€%,p) = {(t,y) € W*(&*) : |ly — €& (¢)|ly < p}, being enough to consider the case when
the equilibria has a homoclinic orbit (see [22, Page 298]).

Among the class of global solutions an special role is played by those which are hyperbolic
and more specifically for the subclass of “hyperbolic bounded global solutions”. In certain
sense the concept of “hyperbolic bounded global solution” is, as we will see, the natural
generalization for the non-autonomous case of hyperbolic equilibrium.

Remark 2.8. In general, throughout the paper, there will be two Banach spaces which will
play a role, the phase space ) for the problems (2.4) and (2.3) and an auziliary space Z. To
avoid excessive repetition we will sometimes write W to denote indistinctly Y and Z.

For non-autonomous problems, the concept of hyperbolicity is expressed in the notion of
exponential dichotomy for linear evolution processes, as follows:

Definition 2.9. Let Z be a Banach space and consider a linear evolution process {U(t,T) :
t > 71 €R} CL (Z). We will say that U has ezponential dichotomy with exponent w and
constant M and singularity v € [0,1) if there ezists a family of projections {Q(t) : t € R} C
L(Z) such that
i) Q)U(t,s) =U(t,s)Q(s), forallt > s ;
ii) The restriction of U(t,s) to R(Q(s)) is an isomorphism from R(Q(s)) onto R(Q(t)).
Its inverse is denoted by U(s,t) : R(Q(t)) — R(Q(s)), for s < t.
i11) The following estimates hold

U, s)(I —Q(3)lle(z) £ M max{1, (t - s) et t> s

Ut 9)Q(s)llc(z) < Met™), t<s.
Now we make precise the type of evolution processes, as well as the perturbations and
linearizations that we will consider in this paper. We note that we do not assume that @, (t)

has finite rank but, of course, the rank of @,(t) is independent of ¢ € R
Let us assume the following

Condition 2.10 (S). Let Z and Y be Banach spaces and B, be a linear (unbounded) operator
which generates a singular semigroup {e®* : t > 0} in L(Z) and in L(Y) and with e®* €

(2.1)



6 J. M. ARRIETA, A. N. CARVALHO, J. A. LANGA, AND A. RODRIGUEZ-BERNAL

L(Z,Y) for each t > 0, n € [0,1]. Assume that there are constants v € [0, 3), B> 0 and
M > 1, independent of n € [0, 1], such that
le® ey < MtT7e™
le®*llc(zy < Mt (2.2)
le®™* ez < Mt~
for alln € [0,1].

Observe that, in the above condition, no relation between ) and Z is assumed.
We consider the semilinear “limiting” problem in the Banach space ), which will be our
common phase space for the different problems we are considering,

y=Boy+ f(ty), t>r
y(T) = Yo

and a singular perturbation of it
g'/=%,,y+f(t,y), t>7
y(7) = Y.

With respect to the nonlinear term, we assume the following
Condition 2.11 ((HN)). The function f : R x )Y — Z is continuously differentiable,
bounded and globally Lipschitz continuous in the second variable uniformly in the first vari-
able. Moreover, if we denote by D,f(t,y) € L(Y,Z) the partial derivative of f with

respect to the second variable in (t,y), we will have that ||Dyf(t,y)llzo,zy < L for all
y € Y and that t — D,f(t,y) € LV, Z) is locally Holder continuous. We also have
UDyex D, (t9) — Dy f (. )lew.z < Cllly — Glly) where C(s) — 0 as s — 0.

From this we have that, for any bounded set B C Y and for any § > 0 small there is an
e > 0 such that

(2.3)

(2.4)

lf(t,v) = f(t vo) = Dyf(t,%0) (¥ —vo)llz < 6lly — volly
fO’f‘ all Yo = BJ ”y - yOHy < €, te R

In this setting, problems (2.3) and (2.4) are globally well posed in ) and for any yo € )
we have the following representation of the solutions

t
Ty(t, T)yo = €P1¢yo + / =) f(s, T, (s, 7)y0) ds, 7 € [0,1]. (2.5)

3
In this way, {T,(¢,7) : t = 7 € R} defines a nonlinear evolution process in ), for any

0<n< L
Hence, if £}(-) : R — Y is a global solution of (2.4), n € [0, 1], we consider the linearization

of (2.4) around &(-)
=By + (Dyf(t,f:,(t)))y

=g G, (26)






