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I. Introduction

Consider a Cp-semigroup 7T'(t) on a complete metric space X. In the study of the
dynamics of 7'(t), we are interested in the dependence of the long-term dynamics on a
parameter. Understanding this allows us to sensibly balance the accuracy of our models
against the ease of the mathematical analysis. It also alerts us to situations in which we
must be concerned with possible inaccuracies in model parameters. The relevant informa-
tion about the long-term dynamics is contained in the attractor. 1f we have a parameter
dependent semigroup T'x\(t), 0 < A < A, then we may have a sequence of attractors {Ax}.
The first question we ask in the study of the long-term dynamics is “Are the attractors
{Ax} continuous with respect to A?” In general, we expect to have upper semicontinuity of
the attractors if T'\(t) satisfy some basic continuity conditions (see [5]), however, we need
much stronger conditions to have lower semicontinuity. For example if the semigroup Ty (t)
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has a closed orbit, this orbit might be broken by the perturbations 7'\(¢) and the dimen-
sion of the attractor might decrease. One class of semigroups for which we do expect lower
semicontinuity however, is the gradient systems. In a gradient system, we don’t have any
closed orbits. If a semigroup 7T'(t) is gradient, asymptotically compact and if each of the
equilibria is hyperbolic and the set of equilibria is bounded, then the attractor is exactly
the union of the unstable manifolds. In this case, we might expect that if the perturbations
T\(t) are continuous in A, then the attractors will be lower semicontinuous. This is the
question that we investigate here. In the next paragraph we define the technical terms

used in this paper and then we go on to discuss previous results and our results about
lower semicontinuity of the attractors.

A set A is an attractor for T'(t) if A is the maximal compact invariant set which
attracts bounded sets under the flow. By attracts we mean that for any bounded set B,
dist(T(t)B, A) = 0 as t — co. We say that the family {.Ay\} is upper semicontinuous in A
at A = 0 if for every € > 0, there exists a A such that Ay C N.(Ag) forall A < ) where N, is
an e-neighborhood. The sequence is lower semicontinuous in A at A = 0 if for every € > 0,
there exists a A such that Ag C N¢(Ay) for all A < A If the sequence {Ay} is both lower
and upper semicontinuous, then it is continuous. A strongly continuous C!-semigroup is
a gradient system if each bounded orbit is precompact and there is a Lyapunov function
V : X — IR in the sense of Hale [5]; that is V(z) is bounded below; V (z) — oo as |z| — oo;

for each =, V(T'(t))= is non-increasing in ¢; and if V(T'(t)z) = V(z) for all ¢ then = is an
equilibrium point.

In 1989, Hale and Raugel [7] proved a result on lower semicontinuity of attractors for
gradient systems. Basically, their result relies on four major hypotheses: the perturbed
semigroups admit “nearby” attractors, the equilibria are continuous with respect to the
parameter, the flow is continuous with respect to initial conditions and with respect to
parameters for initial conditions in the attractor, and the local unstable manifolds are
themselves lower semicontinuous. In this paper, we will discuss conditions under which
the unstable manifolds are lower semicontinuous. We will show that if we assume certain
uniformity conditions on the local unstable manifolds then continuity of the equilibria and
continuity of the flow with respect to initial conditions for initial conditions in the attractor
will together give us lower semicontinuity of the unstable manifolds. These results will
make it easy for us to obtain lower semicontinuity of the attractor for an example from
RFDE’s (retarded functional differential equations) and an example from parabolic PDE’s.

In neither case are the perturbations C*; in fact, the perturbation in the PDE example is
singular.

One of the conditions on the local unstable manifolds that we will require is that
the local unstable manifold attracts the flow, as long as the flow remains in a certain
neighborhood of the equilibrium. This will be shown to be true under the same general
conditions which give us existence of the unstable manifold. We will discuss this in Section
IV. To look at the distance between the flow and the local unstable manifold, we will need
to be able to decompose the solution into part in the unstable manifold and part in the
stable manifold. To do this, we need a variation of constants formula in the phase space.
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While this is easily obtained for parabolic PDE’s, it is not so easy in the case of RFFDE’s
(here we will restrict ourselves to the case of finite delay equations, so the phase space will
be C := C([-r,0],/R™)). For example, the variation of constants formula given in [6] is
not an equation in the phase space. For this reason, we will work instead in the dual of the
sun-dual of C, & la Clément, et al. [3]. In this way we obtain a more practical variation
of constants formula without too much trouble. Hale and Verduyn Lunel [8] do obtain a
decomposition of the solution, but we prefer to work in C®* (pronounced “C sun star”).
This is mostly a matter of taste.

In proving local attractivity of the unstable manifolds, it turns out to be practical
for us also to prove existence of unstable manifolds for the nonlinear problem along with
the facts that the nonlinear unstable manifold is homeomorphic, in a neighborhood, to
the linear one and that the two are tangent at the origin, etc, even though this has been
proved before (see [9] for the case of parabolic PDE’s and [6] for the case of RFDE’s). Our
proof will be very general however and though it will be given specifically for REFDE’s in
the context of the sun-dual-dual formulation, it is trivially adapted to any Cp-semigroup
in a Banach space. To adapt the proof to analytic semigroups generated by parabolic
PDE’s is also possible; one must work a little to account for the fact that the domain of
the nonlinearity is in a fractional power space while its image is in the base space.

Next we will describe Hale and Raugel’s result in more detail and then give a more
technical version of our own result. We will then introduce the two problems to which we

will apply our result. A discussion of the sun-dual-dual formulation for RFDE’s will be
postponed until Section ILI.

Let T'\(t) be a family of C'-semigroups on a Banach space X for 0 < A < A . Suppose
that the semigroup Ty(t) is a gradient system, asymptotically compact with orbits of
bounded sets bounded. Suppose also that each equilibrium of 7j(¢) is hyperbolic and that
the set of equilibria, Eo = {10, ¢#20, ---, #no0}, is bounded. In this case To(t) admits a global
attractor Ao and A is exactly the union of the equilibria and their unstable manifolds.
Suppose that the semigroups 7'(t) satisfy the following hypotheses.

(11) For each A > 0, there exists a neighbourhood Uy of Ay, which is independent of A,
such that T'\(t) has a local attractor Ay which attracts Uy.
(I2) If Ey is the set of equilibria for T'\(t), A € [0, A], then there exists a neighborhood O

of Eg such that ONEy = {¢12, ..., pnva} where each ¢;» is hyperbolic and, for each j,
(]5]',\ = (}5]'0 as A — 0.

(I3) For each ¢;, the local unstable manifold at ¢; is lower semicontinuous as A — 0.
(I14) For any € > 0 and to, 7 > 0, there exists A < A and § > 0 such that ||Tx(t)y—To(t)z| <
e for all t € [to, 7], A < A and for all z € Ay, y € Ay with ||z — y|| < é.

Then, according to Hale and Raugel, the attractors Ay are lower semicontinuous as A — 0.
For each ¢;y, let S;y be the stable manifold for the linearized problem and Ujx be the

unstable manifold for the linearized problem. Let Pjy be the associated spectral projection
onto U;jx and @;x the spectral projection onto Sjx. Let W;x be the unstable manifold for
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the nonlinear problem. There is a neighborhood Njy of ¢y and a homeomorphism oy
which maps Njx N Wy to Ujn. We will be interested in the distance between the flow
and the unstable manifold. This distance is bounded above by the distance from the
flow to the unstable manifold in the direction of the stable manifold, i.e. ||Q;xT\(t)xo —
oix(PjxTxyo)||. Under the same conditions required for existence of W;x and ojy, we
will show that, for fixed A, there are constants 3 and M such that

”Qj,\T)\(t).'I?O — (fj,\(Pj,\T,\(t).’U())H S MC—mHQJ‘,\.’TIQ = O’j,\(Pj)‘.’I?())“ (ll)

as long as T'\(t)ro remains in a d-ball of the origin.

In the case that (1.1) holds, we prove the following. Suppose the projections P; and
@, are uniformly bounded in A and the maps o;y are Lipschitz with Lipshitz constants
independent of A. Also suppose that d, the radius in which (1.1) holds, can be chosen
independently of A. Then, provided hypotheses (12) and (14) hold, (13) holds. In fact, we
can weaken hypothesis (14) to continuity with respect to the parameter.

With this result in mind, consider the family of retarded functional differential equa-
tions

0
B(h)= —/ g(x(t+0))ax(0)do (1.2)x
-7
where ay is in C%([—r, 0], IR). 1t can easily be shown that the solution semigroup for each
problem (1.2) is C* (see [6]). If ag satisfies: a(—7) = 0,a(0) > 0,a(0) > 0,a(d) > 0, for
all r < 0 < 0, then we can exhibit a Lyapunov function for the problem (1.2)q (see [5]). In
this way we can show that the limiting problem is a gradient system and exhibits a global
attractor. In fact, the conditions given by Hale and Raugel for the limiting problem are
satisfied. If ay fails at any point to have these properties then a Lyapunov function is not
known. If ay, however, is close to ag in the L'-norm, then we can use the results in [11]
and [12] to show that for small A, the problem (1.2), will still admit an attractor and the
attractors are upper semicontinuous at A = 0 provided ay — ag in L*. In fact, hypothesis
(H4) holds for all initial conditions. Since the equilibria of (1.2) are given by the zeros

of the function g, hypothesis (H2) also holds. Hence, we will be able to prove that the
attractors Ay are lower semicontinuous at A = 0.

We will also consider reaction diffusion problems where the diffusion coefficient be-
comes large in a subregion which is interior to the physical domain. Suppose 2 is a bounded
smooth domain in IRN, N < 3 and suppose that the diffusion coefficient is very large in
subregions g ; where each QOJ is a smooth subdomain and Qg ; N Qo,j =@ fori# 5. Let
$lg = U}’;lﬂo,j and ©; = Q\ Q. Consider the parameter dependent problem

{u§ i Div(ae(x)Vut) + Aut + f(u¢) =0, on Q

g—:‘:cz 5 onI (13)6

o 1 T % 5 3 : C
where = ac(7)(Vu,n) and where, for each 0 < ¢ < €, a. is a regular bounded function

in  satisfying 0 < mg < a.(x) for every z € 2 and 0 < ¢ < €y. Suppose that ac(z) = oo
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uniformly on compact sets of Qg and a.(xr) = ag(z) uniformly on €2;. Then the problems
(1.3)¢ will converge to some limiting problem (which we will refer to as problem (1.3)g) for
which u is constant on each of the subregions ) ;. Carvalho and Rodrigez-Bernal study
this problem in [1] and prove that the problems (1.3)., 0 < € < €y, admit global attractors
and the attractors are upper semicontinuous at ¢ = ). Condition (H4) is also satisfied for
all initial conditions and condition (H2) is satisfied as well. Hence we can prove that, for
this problem also, the attractors are lower semicontinuous.

The remainder of this paper is organized as follows. In Section I, we present and
prove the main theorem about lower semicontinuity of the unstable manifolds. In section
111, we discuss the formulation of REFDE’s in the space C©* and we obtain the variation
of constants formula. In Section IV, we prove the existence of the unstable manifold
W;x and the homeomorphism o;x and we prove that (1.1) holds. The inequality (1.1) is
an assumption in the main theorem. In Section V, we discuss applications. In V.1, we
discuss applications to REFDE’s where the delay depends on a parameter and we discuss,

in particular, the example (1.2). In Section V.2, we discuss applications to the reaction
diffusion problem (1.3).

II. The Main Theorem

Let X be a Banach space and let T)(t) be a family of C'-semigroups on X for 0 <
A < A. Fix an equilibrium ¢; and translate all the equilibria so that this equilibrium
is at the origin for the unperturbed problem. We will still use the notation ¢;x for the
translated equilibria. Then we have the following (we will use the notation presented in
the introduction for the stable and unstable manifolds and the spectral projections).

Theorem 2.1. Suppose that the family of semigroups T (t) satisfies the hypotheses

(J1) For any € > 0 and to, 7 > 0, there exists A < A such that ||Tx(t)z — To(t)z|| < € for
allt € [to, 7], A < X and x € A,.

(J2) ¢jx is hyperbolic and for any ¢ > 0 there is a A < A such that for all A < M,
l[bix — djoll <e.

Recall that Njy is a neighborhood such that W;xNNjy is homeomorphic to Ujx NN .
Suppose the following are true for the projections and for the neighborhoods Njy.

(J3) There exist positive real numbers p and q such that ||P;5|| < p and ||Q;x]| < q for all
A<A

(J4) The Lipshitz constants of ojx, Lgy,, are independent of .

(J5) There exists a 61, independent of A, such that Bs, (¢;x) C Njy for all A < A.

(J6) There exists a 6, and an M such that for all A < A the following estimate holds as
long as Tx\(t)xo € Bs, ((/)j)\):

1QiaTA(t)o — aia(PiaTja(t)zo)|| < Me™P|Qjxz0 — aja(Pjazo)]|

where 3 > 0 can depend on .
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Let § = min(dy,d) and let r = max(l,p). Define p = % Then the manifolds Vjy =
Wix N B,(¢jx) are lower semicontinuous at A = 0.

Proof: Define Vy := V;y and drop all of the other j subscripts as well. Notice that Vg is
compact. We will show that for any € > 0 and for any y € Vy, there exists a A such that
we have y € N.(Vy) for all A < A Since V; is compact, we can choose the parameter A
independently of y, hence we will have that Vy € N.(Vy) for all A < .

Choose € > 0. Define € := min(£, §) where K = 1 + Mq + 2MpL, + M and
choose 7 > 0 so that Ty(—7)Vy C Be(¢p). By hypothesis (J1) there exists Ay such that
IT\(t)x — To(t)x|| < € for all t € [0, 7], A < A; and © € Ay and by hypothesis (J2) there
exists a Ay so that ¢ € B:(¢g) for all A < Ay, Choose A = min(A, Ag).

Pick any y € Vj. Define « := Ty(—7)y. Then

d(y, Vx) < d(y, Tx(7)x) + d(Tx()z, V).

Remember that [|[QaT\(7)x — ox(PAT(t)x)|| is an upper bound for the distance between

the flow and the unstable manifold. Using this and hypotheses (J1), (J3), (J4) and (J6),
we get

d(y, Va) < ||To(7)z — Th(T)z|| + [|QATA(T)x — O'A(I Tx(7)z)||
< ||To(m)x — T\(7)z|| + M||Qrx — ax(Prz)||
<€+ I\JHQ,\:IYH + M”O’,\(I .,) - O’,\(P)\qb)\) +O')\ P)\d))‘ H

=E MllQﬂII + ML |IPAv = aﬁxll + Mlld)AH
< €+ Myllz]| + MpLe|lz — ¢al] + M]|gal|

Notice that ox(Papx) = ¢ since ¢y is in both Uy and Wy. Also when we use these

estimates, we are assuming that 7\(7)z and Pyx are in Bs($,). We will verify this at the
end of the proof.

Now, using hypothesis (J2) and the fact that = € Be(¢y), we get

d(y,Va) < e+ Mge+ 2MpL,e + Me
=(1+Mq+2MpL, + M)e
<e€

It is easy to see that x € B,(¢x) since x € Be(¢g) and ¢y € B:(¢o). Since ||Prz|| <
p||x|| this shows that Pyz € Bs(¢y). To see that T\(7)x € Bs(¢x), notice that ||Tx(7)x —
To()x|| < 4—‘51— Then, since Ty(7)x € B%(d)g), T\(r)x € Bﬁ_,s((f)o). Since ¢y € Be(¢o),

. 36
s = dall < T+

36 0
<

_Z’I—'+:17
<4é
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where the last estimate holds because we chose r > 1.

This estimate holds for all A < A. We can obtain such an estimate for any y € V4 and
since V4 is compact, we can pick A independently of y. Hence we have the result. [ |

Now we will state the theorem for lower semicontinuity of the attractors. We will have
to combine the hypotheses (11) through (14) and (J1) through (J6).

Theorem 2.2. Suppose the C*-semigroups Ty(t) are gradient, asymptotically compact,
and that orbits of bounded sets are bounded. Let Aqy be the attractor for Ty(t). Sup-
pose also that each equilbrium of Ty(t) is hyperbolic and the set of equilibria, £ =
{$10, P20, ---Ono0}, is bounded. Suppose that Tx(t), A < A, is a family of Cl-semigroups
which satisfies the following.
(H1) For each A\ > 0, there exists a neighbourhood Uy of Ag, which is independent of A,
such that T'\(t) has a local attractor Ay which attracts Uy.
(H2) For any € > 0 and to, T > 0, there exists A < A and 6 > 0 such that ||Tx(t)y—To(t)z| <
e for all t € [tg, 7], A < X and for all x € Ay, y € Ay with ||z — y|| <.
(H3) Let E be the set of equilibria of T)\(t). There exists a neighborhood O of Ey such

that ONEy = {@1x, ..., dnr} where each ¢, is hyperbolic and, for each j, ¢jx — ¢jo
as A — 0.

(H4) For each j, there exist positive real numbers p; and q; such that ||P;a|| < p; and
[|Qjxl| < g; for all X < A.

(H5) The Lipshitz constants of jx, L,,, are independent of \.

(H6) For each j, there exists a 61(j), independent of A, such that Bs (¢;ja) C Njx for all
A<A.

(H7) For each j, there exists a d3(j) and an M (j) such that for all A\ < A the following
estimate holds as long as Th(t)xo € Bs,(¢jx):

|1PxTa(t)wo — oja(QirTia(t)wo)|| < Me™PY||Pjrzo — 05x(Qjam0)l|

where 3 > 0 can depend on A.

Then the family of attractors { Ay} is lower semicontinuous at A = 0.

III. Unstable and Stable Manifolds for RFDE’s

In the next section, we will show that (H7) holds under the same hypotheses which are
required for existence of the nonlinear unstable manifold and the homeomorphism. We will
give the proof for the case of RFDE’s since in that case, the set-up is more complicated. In
this section, we discuss the local theory for REDE’s. In order to prepare the way for the
local theory, we will first develop the global theory and then give a variation of constants
formula for the nonlinear problem. As mentioned in the introduction, the usual variation
of constants formula is not actually a formula in the phase space C([—r,0], IR"). If we
work instead in the dual of the sun-dual, a la Clément, et al., we can get a variation of
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constants formula in the phase space. This will allow us to decompose the solution into
the part in U and the part in S. This, along with the fact that there is a homeomorphism

from U to W, will allow us to get our hands on the distance between the flow and the
unstable manifold.

To begin, we will present the lincar theory. Then in subsection 1, we will describe the
sun dual spaces and their corresponding semigroups and generators. In subsection 2, we
will show how to formulate the linear and nonlinear problems in these new spaces and we
will give the variation of constants formula that we will use in the remainder of the paper.
Finally, in subsection 3, we will give the decomposition of a solution in C.

Consider the retarded functional differential equation

w(t] = Ly (3.1)

where u;(0) := u(t +0), v, € C := C([-r,0],IR"), and L is a linear bounded functional
from C into IR™. Let Tp(t) denote the solution semigroup associated with (3.1); that is,
if ¢ is an initial condition in C' then the solution through ¢ is given by u,(-; ¢) = TL(t)¢.
Tp(t) is a Cy-semigroup. The infintesimal generator of Ty, (t) is

i,
[Ad>](9)={f’(¢) S

where D(A) = {¢p € C : ¢ € C and ¢(0) = L(¢)}.
The spectrum of A is entirely point spectrum and v € o(A) if and only if
A(v):=det (vI — L(e”)) =0 (3.2)

We refer to equation 3.2 as the characteristic equation. The roots of equation 3.2 have real
part bounded above and have finite multiplicity. If no roots of the characteristic equation
lie on the imaginary axis then we say that the equilibrium is hyperbolic. Suppose this is
indeed the case. Let I' = {v : A(v) = 0 and Re(r) > 0}. There are a finite number of
eigenvalues in I', each with algebraic multiplicity k(v). Define U = U,erN(A — vI)F(®)
and S so that C = S@ U. U and S will be called the unstable and stable manifolds,
respectively. Both U and S are invariant with respect to 7 (t) and if P and @) are the
respective spectral projections then there are positive contants K and ~y such that

IT(t)Po|l < Ke'||Pgll, t>0
IT()Qell < Ke™||Qall, t<0

We want to develop the local theory for the nonlinear equation

u(t) = Luy + f(u) (3.3)






