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TOPOLOGICAL K-EQUIVALENCE OF ANALYTIC
FUNCTION-GERMS

SERGIO ALVAREZ, LEV BIRBRAIR, JOAO COSTA, ALEXANDRE
FERNANDES

ABSTRACT. We obtain some results on the topological KX-equivalence
of function-germs (R™,0) — R.

RESUMO. Neste artigo obtivemos alguns resultados sobre a K-
equivaléncia topoldgica dos germes de funcées (R™,0) — R.

1. INTRODUCTION

The K-equivalence of singularities of differential maps was intro-
duced by J. Mather and it was considered as an important step of
investigation of A-equivalence of these singularities. J. Montaldi [3]
discovered a geometric nature of K-equivalence, so-called contact of
submanifolds. He proved that two map-germs f,g: (R",0) — RP? are
K-equivalent if and only if their graphs have the “same contact” with
R™.

The paper is devoted to topological K-equivalence of function-germs
f: (R*,0) — R. We are going to introduce a complete invariant with
respect to this equivalence relation. Our results can be considered
as a confirmation of Nishimura’s results. In [1], Benedetti and Sh-
iota proved that the set of equivalence classes of germs of polynomial
functions, with respect to topological A-equivalence, is contable. This
result was generalized by M. Coste [2] for functions definable in o-
minimal structures. Clearly, these results are true for topological K-
equivalence, since topological K-equivalence is weaker than topological
A-equivalence. Thus, the classification question can be asked. In the
paper we resolve this classification question.

In Section 2, we present a complete invariant - so-called tent function.
The theory is presented in the language of o-minimal structures . We
use a definable version of the main lemma of Nishimura [4], which is
the main technical tool of the result of the section. The Theorem 2.1
can be understood as a topological K version of the results of Montaldi.

Section 4 is devoted to a special case: analytic function-germs. For
analytic function-germs the K-invariant defined in Section 2 is very
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simple. It is a finite sequence of elements equal to 1 or to —1. We
prove that all these invariants, in the case n = 2, admit a polynomial
realization. Finally, for n = 2, we give a “normal form” for topological
K-finitely determined function-germs. Note that our invariants are cre-
ated for all definable singularities and not only for generic singularities
case as it is in the classical theory.

We would like to thank Maria Ruas and Feliciano Vitorio for very
interesting discussions.

2. TENT FUNCTIONS

Let M C R" be a convex n — 1 dimensional polytope. Let Z C M
be a closed subset such that:

e Z is a union of some faces of M;
e Codimension of Z in M is not equal to zero.

Let {U;} be the family of connected components of M — Z. The
collection {U;} is called a K-decomposition of M and the set Z is called
a zero-locus of {U;}.

Let || ||as be a norm in R™ such that the polytope M is realized as a
unit sphere. Let

Z = {z e R"—{0} : € Z}and U; = {z € R"—{0} : U:}.

[ED || [E% ||
The collection {U;} is called K-decomposition of R™ associated to {U;}
and the set Z is called zero-locus of {U;}.

Let My, M, be two polytopes, Zi, Z; be two zero-loci and {U} }, {U}}
be two K-decompositions. The K-decompositions are called combinato-
rially equivalent if there exist triangulations of pairs (M, Z1), (Ma, Zs)
and a simplicial isomorphism between these triangulations.

A function T;: R™ — R defined as follows:

T(:E) _ dist(x,BUi) se T e Ui,
! o otherwise.

is called an elementary tent function. The functions Z a;T;, where

a; is equal to —1, 0 or 1, are called tent functions assiocz'ated to K-
decomposition {U;}.

Let {U;} and {V;} be K-decompositions of R™. Let a, 3 be two tent
functions associated to U; and V] respectively. The functions a and
are called combinatorially equivalent if there exists a germ of simplicial
isomorphism h: (R",0) — (R",0) such that, for each U;, there exist V;
such that h(T;) = V; and signja(z)] = sign[B(h(z))]. Clearly, if two
tent functions are comblnatm ially equivalent then C — decompositions
of the corresponding polytopes are combinatorially equivalent.
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Definition . Let A be an o-minimal structure on R. Let f,g: (R™,0) —
R be two germs of definable in A continuous functions. The germs are
called topologically K-equivalent in A if there exist germs of definable
in A homeomorphisms A: (R",0) — (R*,0) and H: (R* x R,0) —
(R* x R,0) such that H(R™ x {0}) = R™ x {0} and the following
diagram is commutative:

®*0) “4 R xR,0) T (R,0)
h | H | h |
®"0) 9 (R"xR,0) % (R"0)

where Id: R* — R" is the identity map and 7: R® x R — R is the
canonical projection 7(z,t) =z, (z,t) € R* x R.

Theorem 2.1. Let A be an o-minimal structure on R.

1. Let f: (R*,0) — R be a germ of a definable in A continuous
function. Then there exist a K-decomposition of R™ and a tent
function a: (R*,0) — R such that f and o are topologically
K-equivalent in A.

2. Two tent functions are topologically K-equivalent in A if and
only if they are combinatorially equivalent.

We use the following version of Nishimura’s Lemma [4].

Lemma 2.2. Let A be an o-minimal structure on R. Let U be a neigh-

bourhood of 0 € R™. Let f and g be two germs of definable in A con-

tinuous functions. If% >0, for each x € U — f~1(0), then f and g
z

are topologically K-equivalent in A.

Remark 2.3. In the original version , see [4], the lemma is proved
for some continuous maps. But it is easy to see that the arguments are
“definable in A” and the homeomorphism constructed by Nishimura are

definable in A.

Proof of Theorem 2.1. 1. Let f: (R",0) — R be a germ of a definable
in A continuous function. Let us consider a triangulation of the pair
(R™, f=1(0)). Let (M,Y) be a link of this triangulation at 0. Let cY" be a
cone over Y considered as a union of all simplexes of this triangulation,
such that {0} is a vertex and all other vertices belong to Y. By [5]
there exists a germ of a definable in A homeomorphism h: (R*,cY) —
(R™, f=1(0)). Let Z be a union of all edges of Y with codimension more
or equal to zero. Let {U;} be a K-decomposition corresponding to M
and Z. Let f(z) = f(h(z)). Let a = ZaiTi be a tent function with

a; = sign| b |Ui]' By Nishimura’s Lemma, f and a are topologically
K-equivalent in A.
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2. Let o and [ be two tent functions associated to different K-
decompositions of R™. Suppose that a and [ are topologically K-
equivalent. Then, by the definition of topological K-equivalence, a
definable in A homeomorphism H: R"” x R — R™ x R maps the graph
of a to the graph of 3. Since H is a definable homeomorphism, it can be
triangulated. A triangulation of H makes a combinatorial equivalence
between « and (. O

Remark 2.4. Theorem 2.1 can be interpreted as a topological version
of results of Montaldi [3]. Namely, we can define a definable topological
contact between submanifolds X and Y of R™ at xo € X NY in the
following way: a pair of submanifolds X,Y C R™ definable in A have
the same topological contact at ©o € X NY as a pair X', Y' C R
definable in A at g € X' NY' if there exists a germ of a definable in
A homeomorphism H: (R", xy) — (R™, xp) such that H(X) = X' and
HY)=Y"

Then Theorem 2.1 can be translated in the following form: a germ
of a definable function f: (R™,0) — R is topologically K-equivalent
in A to a germ of a definable function g: (R*,0) — R if the pairs
(graph(f),R™) and (graph(g),R™) have the same definable topological
contact.

3. POLYNOMIALS OF 2 VARIABLES AND K-INVARIANTS

A K-decomposition of R? can be described as a finite collection of
rays with initial point (0,0) € R2 The sets N; are sections between
these rays. An equivalence class of tent functions by a combinatorial
equivalence described in Section 2 is a function n: {U;} — {-1,0,1}.

FIGURE 1

In other words, this invariant can be described as an equivalence class
of finite collections of elements —1,0 or 1 by cyclic permutations. An
equivalence class n described above is called a K-invariant. A K-
invariant is called analytic if

(1) the number of sectors is even;
(2) for all 7, n(z) # 0.

Clearly, if a function-germ f: (R™,0) — R is analytic then the corre-
sponding K—invariant is analytic. We say that a K-invariant n admits
an algebraic realization if there exists a polynomial f(z,y) of two vari-
ables such that the K-invariant of the germ of this polynomial at 0 € R?
is equal to 7.
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Theorem 3.1. Every analytic K-invariant admits an algebraic real-
1zation.

We need the following lemma.

Lemma 3.2. Let vi,7: [0,€) — R? be two semialgebraic arcs, such
that 71(0) = 72(0) = 0 and the tangent vectors at 0 to v, and 7y, are
the same. Then there exists a polynomial p(z,y) such that:

(1) the set {(z,y) € R? : p(z,y) = 0} is a curve with two half-
branches v, and s;

(2) the cu2rve {(z,y) € R* : p(z,y) = 0} have a singular point at
0 € R%;

(3) the unit tangent vectors to ¥, and ¥, at 0 € R? are the same
and equal to the unit tangent vector to y; at 0 € R?;

(4) for small t # 0 we have p(y1(t)) > 0 and p(ya(t)) > O;

(5) the set {(z,y) € R* : p(z,y) < 0} is bounded by the curves

V2.
A
¥
P(x)<0
fA
8
FIGURE 2

Proof. We can apply a blowing-up at 0 € R? several times and obtain
a picture where the inverse images of the curves v; and 7, will have
different tangent vectors. Let 7: X — R? a composition of the blowing-
up, where X is a 2-dimensional manifold. Let §; = 7~ 1y; (for i = 1, 2)
be the inverse images of these arcs. Since 7; and ¥, have different
tangent vectors at the 71(0) = 72(0) = zo € X, there exists a real
algebraic curve # with a cuspidal singularity such that 3 is contained
in the area locally bounded by +; and ¥, and the singular point of 3 is
equal to zo (see Figure 3).
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Let p(Z) = 0 be an algebraic equation of 3 such that 5(Z) < 0 in
the cuspidal area. Applying the map 7 to the function p we obtain a

function p satisfying the statement of the lemma.
O

==

,:;fﬂ

FIGURE 3

We say that an analytic K-invariant 7 is alternative if, for each 1,
(i) # n( +1).

Claim 1. Letn be an analytic alternative K-invariant. Then n admits
the following algebraic realization:

p(z,y) = (z+y)(2z +y) - (s + ).

Proof. The set {(z,y) € R? : p(z,y) = 0} is the collection of the lines
li ={(z,y) € R* : iz +y=0}. Let U, Uis1 be two sectors such that
U; N U;4, is a half-line of the line /;. Observe that the function iz +y

have different signs in int(U;) and in int(Uis+1). So, the function p also

have different signs in int(U;) and in int(U;4+1). Thus, the K-invariant
of p is alternative. O

An analytic K-invariant 7 is called double alternative if, for each ¢,
n(i) # n(i + 2). The corresponding sequence looks like

i I e 1, T
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Claim 2. An analytic double alternative K-invariant admits the fol-
lowing algebraic realization.:

p(z,y) = (z+y)(2z +y)* Bz + y)(dz + y)? - - (252 + y)*.

FIGURE 4

Proof. Let 6 € S*. Then, for all 7 > 0, we have sign[p(r6)] = sign[p(6)].
Suppose that # moves along S'. Then p(f) does not change the sign
when 6 crosses a point [;N.S?, for i even, and p(#) change the sign when
6 crosses a point [; N S, for 7 odd, where l; : iz +y = 0 (see figure 4).
Thus, the K-invariant of p is double alternative. O

Proof of Theorem 3.1. Observe that the number of sectors, for an an-
alytic KC-invariant, is even, that is, 2r, for some integer » > 0. We use
induction on r. If r = 1 the statement is trivial. In fact, a sequence
(—1,1) is realized for example by the function p(z,y) = z, a sequence
(1,1) is realized by p(z,y) = 22 and a sequence (—1, —1) is realized by
p(z,y) = —2%. Let us suppose that all K-invariants, for all r < 7o, are
algebraically realized. Consider now a sequence with 2r¢ + 2 elements.
If the sequence is double alternative, then it is realized (cf Claim 2).
Thus we can suppose that the sequence is not double alternative and,
thus there exist three consecutive elements 7(z),n(i + 1), n(i + 2) such
that n(i) = n(i+2). Let us consider another K-invariant obtained from
the first one by taking these elements away and putting 7(7) instead of
them:

N9/ nes

/ T| (i+2)

v

FIGURE 5

By the induction hypotheses, the new configuration is algebraically
realized. Let p;(z,y) be a germ of a real polynomial realizing this new
K-invariant. Let «; and -, be the semialgebraic arcs bounding the
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area corresponding to 7(i). By Lemma 3.2, there exists a polynomial
p(x,y) satisfying the conditions of the lemma and positive outside the
area bounded by the curve {(z,y) € R?* : p(z,y) = 0}. Thus, the
realization p of our K-invariant can be obtained as a product p = py.p

O

Corollary 3.3. Let f(z,y) be an analytic function at 0 € R?. Then
there exzists a polynomial p(x,y) such that the germ of f at 0 € R? is
topologically K-equivalent to the germ of p at 0 € R2.

The following theorem gives a normal forms for all germs of topolog-
ically K-finitely determined functions (R?,0) — R.

Theorem 3.4. Let f(z,y) be a topologically K-finitely determined germ
of a definable in A function at 0 € R2 Then f is topologically K-
equivalent to a product of linear functions

p(z,y) = (z+y)(2z +y)-- (sz +y).

Proof. Since f is topologically K-finitely determined, we have f=1(0) N
Sing(f) = {0} (cf [6]). Let v be a half-branch of the curve {(z,y) €
R? : f(x,y) = 0}. Since y—{0}NSing(f) = 0, the function f changes
a sign if one crosses . Thus, the K-invariant of f is alternative. By
the result of Claim 1, f is topologically K-equivalent to a product of
linear functions

p(z,y) = (z+y)(2x+y) - (sT+y).
0

Corollary 3.5. Two topologically K-finitely determined germs are topo-
logically K-equivalent if and only if their zero-sets have the same num-
ber of half-branches.
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