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Abstract

We study the bifurcation of equilibrium points for a class of differ-
ential equations extending the Hodgkin and Huxley equations for the
nerve impulse. The equations studied model the behaviour of a large
class of excitable biological systems, allowing for an arbitrary number
of ionic channels. We obtain a geometrical description of the subset in
parameter space where there is a local bifurcation of the equilibrium
points of the equation for generic functions governing ionic dynamics.

The set of local bifurcation parameter values is shown to be a
singular ruled submanifold in parameter space. In particular we show
that for an equation with generic ion dynamics and N channels, i.e.
with 2N + 3 parameters, there is at most a multiple equilibrium of
order 2N + 2. The bifurcation set is also studied numerically for the
original Hodgkin and Huxley equations.



1 Introduction

The Hodgkin and Huxley equations [5] are one of the most successfull mod-
els in mathematical biology, providing good qualitative predictions of a nerve
cell’s behaviour in reasonable quantitative agreement with experimental ob-
servations. The equations are not entirely based on first principles but they
correspond to the generally accepted biochemical description of nerve cell
activity.

We study here the bifurcation of equilibria of a natural generalization,
that we call equations of Hodgkin-Huzley type with N channels, of the form:

{

dv Al

- = I+alv-Y)+ >_giui(y)(v - Vi)
< )
k C—fiytl = (“/,'(‘U) — y;) Ti(v)

Each of the terms g;u;(y;)(v — V;) in (1) refers to an ionic channel. The
dynamics of the i-th channel depends on gate variables y; € R™ through a
smooth function u;(y;), u; : R™ — R. The dynamics of each gate variable
y; depends only on itself and the voltage v through smooth functions +; :
R — R™ and a smooth diagonal matrix 7;(v) with 7;;(v) # 0 for all v. We
use the notation:

i T and ViV VN

and we assume g; # 0, for all j > 0, otherwise we have a Hodgkin-Huxley
type equation with less than N channels.

The original Hodgkin and Huxley equations only involve two ionic chan-
nels plus the leakage channel responsible for the term go(v — V5) in (1). The
equations describe a particular type of cell of a particular species, the giant
axon of the squid, and have to be modified if they are to apply to another
type of cell in the same species or to other animals. Models of the type above
with a larger number of channels are used for many types of excitable tissue
as for instance the crustacean motor axon [7], the pancreatic S-cell [1] or the
cardiac cell [3].

Let 1; : R — R be given by ¥;(v) = u;(7:i(v)). The equilibrium points



of (1) are solutions of the equation:

N
n(v,90,9, Vo, V, I) = I + go(v — Vo) + Y _gitbi(v)(v = Vi) =0 (2)

i=1

For a fixed value of the parameters (go, g, Vo, V), let no be the function v
no(v) = 1(v, 9o, 9, Vo, V). The number of zeros of n, depends on (go, g, Vo, V)
and changes at parameter values where 7o has a multiple zero. We show in
Theorem 1 that if 5o has a zero of order k < 2N + 2 at v, for some value of
go, 9, Vo and V, then, under generic assumptions on the functions 3;, there
are parameter values arbitrarily close to the initial one, where 7 has a zero
of order [ at a point v near vy for any ! < k. In particular it follows that
there are nearby parameter values where 7o has k simple zeros near vo. In
this case we say that 7 is a versal unfolding of 7o near v.

Theorems 2 and 3 describe the geometry of the sets Sy of parameter values
where 7, has a zero of order at least L + 2, again under generic assumptions
on the 2N + 2 first derivatives of the maps ;. We show that Sy is empty for
L >2N.

When g, = 0 for some k, the expression for 7 becomes independent of
both g and Vi, yelding an equation with fewer channels. In this case, we
prove that generically, the singular set Sy, L < 2N —2 meets each hyperspace
gr = 0 transverselly at the singular set of the Hodgkin-Huxley equation with
N — 1 channels, obtained when the k-channel is ommitted.

In the last section, we include a numerical study of the singular sets Sy
for the original Hodgkin-Huxley equation. We verify that Hodgkin-Huxley’s
original data imply genericity and, moreover, there are no singularities of
type (v — v0)*VN "2 = (v — vp)®, as the set Son = S, is empty.



2 Versality

When can a multiple zero of (v, go, g, Vo, V, I) be separated into simple ze-
ros with an arbitrarily small change of parameters? This question can be
answered within the framework of elementary singularity theory [2, 6]. Let
no be, as before, the function v = ng(v) = (v, go, 9, Vo, V), for a fixed value

of the parameters. The equivalence class of C® functions that agree with
no in a neighbourhood of a point v = v,, called the germ of 7 at v = vy, is
denoted by 7o : R,vo — R.

Two germs 79 at v = vy and 7, at v = v, are contact equivalent or
K-equivalent, (denoted mo = 7)) if there exists a germ of diffeomorphism
h : R,9 — R, v, and a germ of a non-zero function S : R,vy — R such
that S(v) - no(h(v)) = To(v).

Suppose v — 1(v, 90,9, Vo, V, I) = no(v) has a zero of order k at v = v,
for some value of the parameters (go,9, Vo, V, 1), i.e. 1o is contact-equivalent
to +(v—vg)¥. Let E(v—vp) be the set of all germs at vy of smooth functions
and let TKn be the tangent space of the contact-equivalence class of 7. This
is defined as the real vector space of germs given by:

TK(no) = {¢ € E(v—10) : ¢(v) = 7'(v)Mv)+p(v)n(v) with A, u € E(v—p)}

We may obtain k simple zeros of 7 in a neighbourhood of vy and for
nearby values of (go,9,Vo,V, 1) if £(v — vg) = TKn + A(n) where A(n) is
the real vector space generated by the derivatives of  with respect to all the
parameters, i.e. by the functions dn/dg; and dn/dV;, j = 0,1,..., N and
on/ol.

Showing that £(v —vo) = TKn + A(7n) is equivalent to showing that A(n)
contains all the germs of monomials (v —vo)?, 7 = 0,..., k — 2 modulo terms
of degree k or higher.The generators of A(n) are:

parameter | derivative of 5
9o v—W

Vo —9o

g; Yi(v)(v = Vj)
V; —g;%;(v)

Since we are assuming go # 0, all monomials of degree 0 or 1 are accounted
for by 9n/dgo, dn/0V, and 0n/0I. The problem is reduced to showing the
monomials (v — vg)’ are in A(p), for j =2,...,k — 2.
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We can rewrite the generators of A(7) modulo terms of degree k or higher
and subtracting terms of degree 0 and 1 as:

on on %y T W
6_V,~(v) - 5171(%) (v vo)m(vo) =9; ;(v =)'~y
and
371 317 521) _ k-2 ; '1); '/);-l
a—gj'(v)—'a?j(%)—(v—%)agjav(%) = g(v—%) 71 (Vi —vo) = G-1)
where we denote by 1/); the derivative (;—d)..j(vo).
v
Let DY (vo) be the 2N x L matrix with lines
¥? piH
L R SR
(9’ TR A 1)!)
P? Y3 P2 At Pk
(2—;(1/1- — v) — },3—;(%—1;0)— ?;""’(ij(vj — vo) — (TJ),)

with j = 1,...,N. If D} (v,) has maximal rank L, with 1 < L < 2N, then
all monomials of degree up to L + 1 are in A(7).

The Taylor polynomial of degree k of 7 at v = vg is called the k-jet of
1 at v = vo and denoted by j*n(vo). More generally, given 3 : R — RN,
¥ = (%1, %N, its ket is j5(%(vo)) = (7*(¥1(v0)), -, 7*(¥n(v0))). The
set of all k-jets forms the vector space J¥(R, R") of dimension (k+1)N, with
a subspace J¥(1,N) consisting of jets of maps sending vp into the origin.

Theorem 1 For generic functions 1;(v), if for some value of the parameters
7(v, 90, 9, Vo, V, I) is K-equivalent to (v — vo)* with k < 2N + 2, then 7 is
a versal unfoding of 1o and thus an arbitrarily small change of parameters
splits the singularity into k simple zeros in an arbitrarily small neighbourhood

of vo.
Proof: Let Mp(¥(vo)) be the 2N x L matrix with lines

R
(_2!"_3!—""’(L+ 1)!)
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with 2 =1,..., N. Assuming that the parameters g; are non zero, it follows

that rankD,’j’ = rankMp. Let Vi 4 C JL'”(R, RN) be the set of L + 1-
jets 7E*1(y) of maps ¢ such that My (1(v)) fails to have maximal rank.

For L < 2N, Vi, is the algebraic variety defined as the zero set of the
L x L-minors of Mp(¥(v)). Now, it is a simple consequence of Thom’s
Transversality Theorem that for each L, 1 < L < 2N, there exists a residual
set G(L) of mappings

p:R—RY  P(v) = (Y1, %2...,¥N),

such that jZt!y is transverse to Vi4;. Notice that when L # 2N, the
codimension of V., is greater than 1, hence transversality will imply that
jL*1(2) does not intersect Viyy, i.e. rankMp(¥) = L. Let G be the inter-
section of all G(L), 1 < L < 2N. Then, given any function % in G with a
singularity at vy and K-equivalent to (v — vo)¥, with k < 2N + 2, it follows
that £(v — vo) = TKn + A(n).

When L = 2N, Von4; is a codimension one subvariety of JZ2N+1(1, N).
Thus, for any ¢ € G, det Mon(¥)(v) = 0 only at isolated points where
Mjn_1(¢)(v) has rank 2N —1. We shall see in Theorem 2 that for a generic set
of ¥, n®¥+2) will be non-zero at these points and therefore n &~ (v—v0)2¥+2, O



3 The recognition problem

Introducing new parameters W; = V;g;, expression (2) takes the form:

N
ﬂ(v,go,g, wOa W) ]) =1+ 9oV — WO =+ zgiv'/)i(v) - W.¢',(v)

1=1

For any fixed value of v we can solve (v, go,g,W,I) = 0 for Wy — I and
A /v = n'(v, go, 9, Wo, W,I) = 0 for go. For k > 2 the derivatives n(¥)(v) =
8*n/dv* do not depend on the parameters go, Wy and I and are given by:

N
1™(v,0,W) = Y g (v (0) + k(" (v)) - Wil (0)  (3)

Let A} (vo) be the L x 2N coefficient matrix for the v-dependent linear
equations on (g, W) given by n(*)(ve,g,W) = 0 for k = 2,...,L +1. In
general we expect to be able to solve 2N — 1 of these equations. For a given
value vg of v we want to describe the local singular sets £, C R?, the germs
at vg of the closure of the sets:

{(g, W) : n(v, 90, g, Wo, W, I) = (v — v9)“*? for some 1, go, Wo}
Notice that for L =1,...,2N we have
£ = {peR?:AJ(v) p=0for v near v}
- {(g,W) : Jv near vp such that for k=2,...,L+1 ¥ (v,g, W) = 0}
and thus S,y C -+ Zp41 CEp--- C L.

Theorem 2 For generic functions ¥;(v) and for L = 1,...,2N the local
singular set £, is a generalized ruled cone at the origin of codimension L — 1
with singularities on Xp41. For L > 2N, the sets ¥ are empty.

Proof: The coefficient matrix AY(v) has the same rank as the matrix
M ()(v) used in the proof of Theorem 1. The residual set G can be refined to
contain only map germs 9 such that Man,4;(%)(v) also has rank 2N for all v,
in the following way: consider the codimension 2N +1 algebraic variety Von 42
of J?N+2(R, RN) given by the zeros of the 2N x 2/N-minors of My 41 (¥(v));
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then for ¢ in the residual set GNG(2N +1) the rank of AY (v)is L for L < 2N.
Moreover ANy (v) has rank 2N for all values of v except at isolated values v,
where rankAJy (vo) = rankA%y_;(v) = 2N — 1 and rankAD},,(ve) = 2N.
Therefore, for generic 9, for each L < 2N and each v € R, the solutions
of AY(v)(9,W) = 0 lie on a codimension L vector subspace of R*N. For
isolated values of vy the solutions of A2\ (ve)(g, W) = 0 lie on a line through

the origin, coinciding with the solutions of Ay _, (vo)(g, W) = 0.

Let f1: R x S?M-! — RE be given by f1(v,p) = AY(v)-pfor L < 2N.
By the implicit function theorem, it follows that f; = 0 defines locally
a codimension L submanifold of R x S?™-1. Moreover, 8f,/0v(v,p) =
P (Af“(v) -p), where P, is the projection from R?" onto R*V~! that ‘“for-
gets’ the first coordinate. For L < 2N, the restriction to f; = 0 of the map
(v,p) + p is singular when A} ,(v)-p=0,ie. on Ep4 N SN,

When L = 2N — 1 the same argument applies to all values of v where
ANy (v) has rank 2N. Near those isolated values v, where both A\ _;(v)
and A}, (vo) have rank 2N —1 the expression fon_;(v,p) = AN, _,(v)-p=0
defines a curve (v,p(v)) in R x S?M-! projecting into a curve in SV with
a singularity at p(v): at these points p’(vo) = 0 and since AJy_,(vo) has
rank 2N and 8°fon-1/8v*(vo, p(vo)) = Pi(Pi(Adyi1(v0) - p(vo))) it follows
that p"(vo) # 0. m

In the original parameters (g, V) the local singular sets are the germs at v,
of the sets

S. = closure {(g, V) : (v, 90,9, Vo, V, I) = (v — vp)X*? for some I, go, Vo}.

The local description of Sy is given in two ways. In the first we use the maps
b; : (95, W;) — (95,V;) = (9;, W;/g;) to send X1 —U;{g; = 0} into a singular
manifold contained in Sy, non singular whenever X is smooth. The map

b:R™ —U;{g; = 0} — R* —U;{g; = 0} given by

b(glv""gN7W1"'°9WN)= (gh'“)gN,Wl/gla“-,WN/gN)

is a diffeomorphism that blows-up the cone ¥ at the origin. Its inverse b~!
can be extended to R?M, sending the subspace S, = M;{g; = 0} into the
origin of R?V.

At points of Sy, not in the image of the blow-up, g; must be zero for some
k. In that case the expression for 7 is independent of both g, and V,, yelding
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an equation with fewer channels. We relate the singular sets S for a generic
system with N > 1 channels to the singular set Sy (k) of the Hodgkin-Huxley
type equation with N — 1 channels obtained omitting the k-th channel. By
induction the picture is complete when the special case N =1 is studied.

Theorem 3 For an equation of Hodgkin-Huzley type with N channels and

generic functions ¥;(v), the local singular set Sy for L = 1,...,2N is a
codimension L — 1 singular submanifold of R*N singular at Sp4,. For L >
2N, S, = 0 and for each L < 2N, S, is a generalized ruled manifold, with
rulings parallel to the subspace N;{V; = 0} C R*™. There are two local
descriptions for Sp:

1. All points (g,V) € Sy with g; # 0 Vj are in (XL — U;{g; = 0}).

2. For L < 2N — 2 the singular set Sy meets each hyperspace {g; = 0}
transverselly at S (7). For N> 1 and L=2N -1 or 2N, S, N {yg; =
0} C Se for all 5.

Proof: The residual set of Theorem 2 can be refined again to yeld, for
N > 1, a generic system with the same properties after removal of each
channel. When one channel is omitted, rankA} ~!(v) is still maximal for
L < 2N —2, except for a discrete set of values vy such that rank AN, (ve) =
2N — 3 and rankAJN,(v) = 2N — 2.

The map b: I — U;{g; = 0} — R?" takes each line (Ag,AV), A # 0
through the origin in R?N —J;{g; = 0} into the line (Ag, V) with V; = W;/g;
for all j = 1,..., N. Since b is a diffeomorphism of R?*N — U;{g; = 0} this
proves assertion 1.

For N > 1, let fi : R x R? — R’ be given by

fL(v')g’ V) = ("(2)(”? g’ V)’ oeie3y ”(L+l)(v’ g’ V))'

At a point (v,g,V) with gi = 0 for some k and g; # 0 for ;7 # k, the
derivative of fi has the same rank as AY(v) and f, is a submersion for
L < 2N — 2. This shows that {f; = 0} is transverse to {gx = 0} in R?N+1,
We may proceed as in the proof of Theorem 2, to show that the restriction
to {fr = 0} of the map (v,g,V) — (g,V) is thus non singular whenever
(9,V) €SL -S4
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In order to show that S; = @ for L > 2N, let

oy { (9, V) 0(v,90,9, Vo, V, 1) = (v = v) "+ } |

for some I, go,V, and v near vy

A necessary condition for (g,V) to be in oy, is 7"(v, go,9, Vo, V,I) = -+ =

1 (v, go, 9, Vo, V,1) = 0. For N =1 and L > 2, genericity implies Al(v)

has rank 1 and a direct calculation shows that the necessary condition is

satisfied if and only if either rankA}(v) < 2 or g; = 0. Genericity rules out

the first possibility and if g; = 0, then n(v, go, 91, Vo, V1, I) = go(v = Vo) + 1 is

clearly not K-equivalent to (v —vg)2+? with L > 2. Thus o, = @ and S, = 0.
For N > 1 and L > 2N, we already know £ = 0 and thus

b! (O'L - U{g,- = 0}) (@)}

is also empty. By induction we have Sy (k) = @ and therefore o N {g; =
0} C Sp(k) is also empty, showing S;, = 0.

In particular, we have also proved that o;ny_; N {gx = 0} = 0. It re-
mains to show that points in oox_; cannot accumulate on the hyperspaces
{gx = 0} anywhere outside S.. First we observe that the genericity of the 1;
when the k-th channel is removed guarantees that rank ANy, (v) = 2N — 2
for all v € R. Thus (¢9,W) — ANl (v)(g,W) is clearly an injective
linear map from R?V=2 into R?M~! for each V. Therefore any non triv-
ial solution of AN\ _;(v)(g,9k, W,Wi) = 0 with g, = 0 satisfies Wy # 0
ie. Yon-1 N{gx = 0} C {0} U {Wi # 0} for each k, thus showing that
San-1 C Se- O

Notice that although 7 is linear in S, this subspace is also a bifurcation
set for the equations.
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4 The original Hodgkin-Huxley equations

As an example, the original Hodgkin-Huxley equations are treated numeri-
cally in this section. This is a system with two channels, corresponding to
Na and K ions. In the original notation the first equation in (1) is:

9 B = =
= = ~Tnam®h(o = Vi) = Tgn(v = Vi) = Golo = V) + 1

and thus in our notation,

Ul(ymylz) = y?]!llz — uNa(m, h) =m%h U2(y21) = y;1 = UK(n) =n?

and
¥1(0) = ¥na(v) = Tm(V)M(v)  ¥2(v) = YK (v) = 72 (v).
In the Hodgkin and Huxley article 5] the functions v; are fitted to experi-

mental data and are given in the form

(o) = —%(v)
75(v) a;(v) + B;(v)

for j = m, n or h, where

am(v) = @ ((v+25)/10)  Bn(v) = 4e/8
ay(v) = 0.1p((v+10)/10) Bu(v) = 0.125¢/%°

ap(v) = 0.07e*/% Bu(v) = (1+e<v+so)/m)“
with tp(z):{‘;/(ez_l) iz 0

Notice that a;(v) + B8;(v) # 0 for all v and ;.

The functions 4;(v) of [5] were chosen to be almost constant outside an
interval. They are monotonic, asymptotically 1 or 0 at +00. Their derivatives
tend to zero very fast as v tends to oo and the same is true a fortiori of
derivatives of 1;(v) (see figurel). We restrict our study to values of v where
results may be significant both from a physiological and from a numerical
point of view.

For single channel equations, both det M, (¢x(v)) and det M, (¥na(v))
are never found to be zero (figure 2); note that det M, (¥;(v)) and the
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Schwartzian derivative of 9; [4] always have opposite signs. The generic-
ity conditions of Theorems 1-3 hold and the singular set S, is empty.
When only the K channel is present, the singular set S, is given by

{(9x,Vk) : Vk = v + 29 (v)/¥k(v), veR}CR’

forming a double (K) cover of R? (figure 3). Thus, for each (gx, Vx) € R?,
with gk # 0, there are two values of the parameters gy and goV, — I such that
n0(v) = (v, 90,0, gk, Vo,0, Vi, I) has a triple zero. Similarly, there are three
parameter values for go and goVo—1 where 7o(v) = 7(v, g0, gna, 0, Vo, Ve, 0, I)
has three triple zeros.

The set S of fold points (double zeros) defines a curve in two dimensional
slices of parameter space, with isolated singularities on S; like those in figure
4. For the K channel the two cusp points appear on very different scales. In
order to understand figure 4A and B, one must recall that gop = 0 may also
be a bifurcation line. Only for very small positive values of gy can we find
more than one zero of 7o(v). The fold curve for the Na channel appears to
be closed (figure 4C).

The genericity conditions of Theorems 1-3 also hold for the two channel
Hodgkin and Huxley equations, since det My (¥n,(v),¥k(v)) is also never
zero for v in the interval [—300,100] (figure 5) and thus S, is empty.

Recall that S; is a ruled surface of the form (V. (v), Vk (v), Agna(v), Agx (v)).
Thus S3 is completely defined by its intersection with the affine subspace
gx = 1, a curve with many branches separated where either gy, or gx tends
to zero (figure 6). Only on a small part of the curve can we find gy, and
gk with the same sign. Assuming g; > 0 for all 7, the presence of a large
number of zeros seems to be restricted to a narrow range of parameters. Fig-
ure 7 shows the intersection of Sy with several planes in parameter space, all
parallel to the subspace I x go of RE.
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