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Images and Varieties

J.W.Bruce and W.L.Marar

1 Introduction

Geometric objects in real or complex affine space are often described in two
ways: in parametrised form, as the image of a mapping, and in implicit form
as the set of zeros of some mapping. The connection between the two, in the
case of a smooth manifold, is given by the implicit function theorem. When
the object is singular (as images very often are) the interplay between the two
representations is more interesting. In this paper we investigate the defining
equations for the images of smooth mappings C*,0 — C"*! 0. We recover
some results of Piene ([14]), using an elementary lemma from linear algebra,
and give some. relevant examples from singularity theory. The authors are
very grateful to David Mond for various helpful comments, and in particular
for his assistance with Proposition 2.6 below. The second author is grateful
to CNPq for financial support.

2 Maps C*,0— C"1,0, n > 1.

It is usual in singularity theory to consider finite maps. For maps C*,0 —
C™+1 0 with n > 2 it is better to consider a certain subset.

Definition 2.1 A holomorphic map f : C*,0 — C"*! 0 is GIGIF if it is
finite, and the following holds true:

(1) for a proper analytic subset ¥ of the source we have f : C*\ £,0 —
C"*1,0 injective (f is generically injective),

(i1) the set of critical points of f has codimension > 2 (f is generically
immersive).
Remark Genericity.

One can prove that if n > 2 all map-germs C",0 — C"*1,0 off a set
of infinite codimension are GIGIF. The second condition can be deduced as
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follows. Let J'(n,n+1) be the set of 1-jets of maps C",0 — C"*!/0; we can
think of this as the set of (n + 1) X n matrices. Inside this set we have the
matrices of rank r which we denote by £"; these are smooth submanifolds of
JY(n,n+1), see [2]. Now for almost all maps f: C",0 — C"*1,0 (all f off a
set of infinite codimension) the jet-extension map j'f : C*,0 — J(n,n + 1)
will be transverse to the manifolds L™ away from 0. But X" has codimension
(n=r+1)(n—r)>2forr > 2,so almost all f are immersions off a subset
of codimension 2. The generic injective condition is proved in the same way;
see [3].

We start our investigations proper with an elementary result from linear

algebra.

Proposition 2.2 Let B be an n x (n+ 1) matriz of mazimal rank. Then its
kernel is spanned by the vector (Ay,—Az,...,(=1)"As41), where A; is the
minor obtained by deleting the i** column from B.
Proof Form an (n + 1) X (n + 1) matrix B; by adding an initial row to
B which is simply the j** row of B. Clearly the resulting matrix is singu-
lar. Expanding the determinant of this matrix by the first row we find that
Y (=1)'b;;A; = 0 where A; is the minor obtained by deleting the 7** column.
Now since B has rank n one of these minors is non-zero, and so the given
vector spans the kernel of the mapping. (This is just Cramer’s rule.)

We denote the column vector (Aq,—As,...,(=1)"Aq41)! by A(B), and
derive some properties we will need later.

Proposition 2.3 Let Bbeannx (n+1), Aan(n+1)X(n+1) and C an
n x n matriz. Then A(A(BA)) = det AA(B), and A(CB) = det CA(B).

Proof We first remark that the column vector A(B) is characterised by the
fact that uA(B) = det() for all row vectors u with n+ 1 entries. One com-
putes u(AA(BA)) = uAA(BA) = det(£5) = det((%)A) = det(5)det A =
uA(B)det A. For the second result let C* denote the (n + 1) x (n + 1)
matrix with C as its bottom right n x n block and a single additional non-
zero entry 1 at the (1,1) place. Then uA(CB) = det(gg) = det(C*(5)) =
det C* det(§) = uA(B)det C.

Proposition 2.4 Let f : C*,0 — C"*1,0 be a finite mapping, so that the
image of f is a hypersurface with defining equation F : C**1 0 — C,0 say.
Suppose further that f is an immersion off a subset of C" of codimension
2. Then for some holomorphic A : C"*,0 — C we have AA; = +9F/dz;(f)



where A; is the determinant of the matriz obtained by deleting the i** row
from the Jacobian matriz of f.

Proof Let F(z,,...,Zn41) = 0 be a reduced defining equation for the image
f(C™), so F o f is identically zero. Differentiating we find that

n+1

; OF [0z;(f(u))df:/du;(u) = 0.

Consequently the column vector (0F/0z,...,0F/0z,4;) lies in the kernel
of the transpose of the Jacobian matrix of f. However we can deduce from
the above result that at points of the domain of f where it is an immersion the
column vector (A;, —A,,...,(=1)"A,41)! spans the kernel of the transpose
of the Jacobian matrix of f. So on this set we can find a holomorphic function

A with
(3F/('):r], cee ,8F/5:cn+1) = /\(A], '—Ag, ceo ,(—l)nAn.H).

We can now apply Hartogs’ Theorem [6] to deduce that A extends to a
holomorphic function defined on the source.

Note that we can run into problems when f fails to be generically injec-
tive.
Non-example.

Consider the map f : C*,0 — C3,0 defined by f(uj,us) = (u?,u,,0)
so F = z3 and 0F/0z3 = 1, while the corresponding minor is 2u;, so A
is meromorphic. Clearly this is rather an artificial counterexample, for the
defining equation for the image of f should be z3 = 0 not z3 = 0.

Of course the above expression for ) is co-ordinate dependent. We next
show how it is altered by a change of co-ordinates.

Proposition 2.5 Let ¥ : C*,0 — C",0, ¢ : C**! 0 — C"*!,0 be germs
of diffeomorphisms, a : C"*' 0 — C,0 a non-zero function. Then replacing
f, F by o f, Fod( respectively f by fotp or F by aF ) we replace A by
(det(dg)) o fA (respectively det(dy)) o3 and (ao f)A).

Proof These all follow from the chain rule and Proposition 2.3.

We next turn to the singularities of the image of f.



Proposition 2.6 Let f : C*,0 — C"*1 0 be a finite germ, with n > 2,
which is an injective immersion off a set of codimension 2. Then f is an
immersion.

Proof Any finite f : C",0 — C"*,0 yields (in the terminology of [8])
an analytic cover. Moreover our hypotheses imply that it is one-sheeted;
indeed this would follow from the fact that f is generically injective. As a
consequence the map f is a normalisation of its image. On the other hand
the image is a hypersurface, and hence Cohen-Macaulay, and this together
with the fact that it is smooth in codimension 1 implies that the image is
also normal by Serre’s S, criterion (see [10] Theorem 23.8).

An alternative proof can be deduced from the work of Mond and Pel-
likaan. In [12] they consider a presentation matrix of the push forward
f*(0,), and prove that the first Fitting ideal of f*(0O,) is generated by
the minors of the matrix obtained by deleting the row in this matrix corre-
sponding to the generator 1. Now by a standard result of Eagon-Northcott
([10] page 103) the codimension of the support of the first Fitting ideal can
be no greater than 2 in the target. So the singular locus of the image is of
dimension at least n — 1, unless the map is an isomorphism onto its image,
which given the hypotheses must be the case.

Definition 2.7 Let f be finite. We let D*(f) denote the double point set of
f, that is the closure of the set of points uy in the source for which there is
some up # uy with f(u1) = f(uz).

One consequence of the result above is the following:

Proposition 2.8 (i) Let f : C*,0 — C"*' 0 be finite, and an immersion
off a set of codimension 2 (again n > 2). Every critical point of f is in the
closure of the double point set of f.

(ii)) Let f : C*,0 — C"™*1,0 be finite and an immersion off a set of
codimension 2, and set X = f~}(Sing(Im f)), that is, the inverse image of
the singular set of the image hypersurface. Then X = D?*(f) and is the set
A=l

Proof (i) Suppose this was not the case. Then we could find such an f with
0 € C" a critical point not in the closure of the double point set. But this
would imply that f was an injective immersion off a set of codimension 2,

and so by the previous result that f is an immersion, a contradiction.
(ii) The fact that X = D?*(f) follows from (i). Clearly if A(u) = 0 then



grad F(f(u)) vanishes, by the previous result; that is u € X. Suppose, on
the other hand, that u is an immersive point for f with f(u) = z € f(X) say.
Then there are one or more distinct points u’ in the source with f(u') = z,
and so near u the set X is a hypersurface. Now since 0F/0z;(f(u)) = 0 we
deduce that A(u)A;(u) = 0. But one of the A; does not vanish, so A vanishes
on X near u. In other words ) vanishes on a dense subset of X, and hence
vanishes on X.

Proposition 2.9 If f fails to be an immersion with normal crossings on a
set of codimension > 2 then A =0 is a reduced defining equation for X.

Proof Let u be a generic point of D?(f), so that for some (unique) u’ we have
f~Y(f(u)) = {u,u'} and f is immersive at u and u'. At p = f(u) = f(u')
the set {F = 0} is diffeomorphic to the germ {z;z; = 0}. Indeed we may
replace u, u’' by 0 € C*, f at u by (u;,...,u,) — (0,u1,...,u,), f at o’
by (u1y.-.,us) — (u1,0,ug,...,u,), and F by z,z,. (See Proposition 2.5
above.) Calculation now shows that at u; the function A(u) = u,. Clearly
uy = 0 is a reduced defining equation for D?(f) near u; and the result follows.

Proposition 2.10 Assumingn > 2 a germ f : C*,0 — C™*1,0 which is
finitely-A-determined fails to be an immersion with normal crossings on a set
of codimension > 2. This property also holds true for a set of germs whose
complement s of infinite codimension.

Proof The fact that finitely .A-determined germs are immersions off a subset
of codimension 2 follows from the argument given after 2.2, and Gaffney’s
geometric characterisation of finite - A-determinacy, discussed in [16]. The
fact that we have normal crossings off a set of codimension 2 follows from
similar arguments involving multi-jet spaces. One simply checks that the
pairs of 1-jets of immersions with the same target, and non-transverse images
have codimension > 2 (resp. that triples of 0-jets with the same target have
codimension > 2). The second result follows from theorems in the paper [7]

(see also [3]).

Remark 2.11 We shall produce a modified version of Proposition 2.9 for a
wider class of germs in §4.

Example 2.12 Maps C%,0 — C3,0.
Given a map-germ C",0 — C"*1,0 one can use the algorithm of Mond
and Pellikan to determine the corresponding defining equation for the image



(see [12]). We provide an alternative in the case when n = 2. So sup-
pose f(z,y) = (X(z,¥),Y(z,y),Z(z,y)) and denote the defining equation
by F(X,Y,Z) = 0. We shall suppose that when we compose f with the
projection to the (X,Y)-plane we obtain a finite map-germ. This will have
multiplicity d say, where d = dimcO.,/(X(z,y),Y(z,y)). It follows that
F(0,0, Z) has initial part cZ¢ for some ¢ # 0, and this is what we shall use
below. We can deduce from our results above that

Mz,y) = 0F/0Z(f(=,y))/10(X,Y)/[8(z,y)|

= —0F/0Y (f(z,y))/10(X, Z2)/0(z,y)| = OF[0X(f(z,y))/10(Y, Z)/0(z,y)| = 0
is the defining equation of the double point curve D?(f).

(1) f(z,y) = (2,9, 9(z,y)).
Here F = Z — G(X,Y) and D*(f) = 0.

(2) f(z,y) = (2,47 9(2,¥))-

After changes of co-ordinates in the target we may suppose that g is
in the form yp(z,y?). So F(X,Y,Z) = Z? - Yp(X,Y)? and A(z,y) =
2yp(z,y%)/2y = p(z,y?).

3) f(z,y) = (z,¥% 9(=,)).

After changes of co-ordinates in the target we may suppose that g is in
the form

9(z,y) = ypi(2,¥°) + ¥’ pa(z, ¥7).
It follows that

Z® =Yp(X,Y)® + 3yYpip, + 3y*Y pip3 + Y?p3

=Yp +3Ypip2(yp1 + y*p2) + Yp3.
So,
F(X,Y,Z)= 2% -3ZYpip, - Yp} — Y?p3,

where p; = p;(X,Y). Then 8F/3Z = 3Z* — 3Y p;p, and
Az,y) = OF[0Z(f(z,y))/|0(X,Y)/8(z,y)| = (3(yp1+y’p2)’ =3y’ p1p2) /37,

ie
A(z,y) = p1(z,¥°) + yp (2, ¥%)p2(2, 4°) + ¥Ppa(2, )2

In the particular case when f(z,y) = (z,¥% 2"y + y**~!) we deduce that
Mz,y) = ¥ + z'y*~? + y**~%. Note that in this case A has an isolated
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singularity (so f is finitely A-determined by [11]), and it is weighted homo-
geneous. Using the Milnor/Orlik formula ([9]) we deduce that A has Miln
or number (6s — 5)(2r — 1). (Quite generally if a germ f : C*,0 — C™*1,0
is weighted homogeneous when weights w;,...,w, are assigned to the vari-
ables u, ..., u,, and the weight of the i* component is d;, then the defining
equation for the image is also weighted homogeneous of degree d say, and the
defining equation of the double point curve is then weighted homogeneous of

degree d — Y1 d; + ¥, w;. In this example the degree d can be deduced
merely using the fact that F contains a Z> term.)

(4) f(z,y) = (z,2y +¥°, 9(z,))-
After a change of co-ordinates in the target we can reduce f to the form

f(z,y) = (z,zy + ¥, yp1(z, 7y + ¥°) + ¥*pa(z, 2y + ¥°)).

Then Z = yp; + ¥°p2, 22 = y?p} + 2(Y — X)pips + (Y = Xy)yp? and
Z3 = XYpipt +Yp3 + Yp3 — 2Xp, 2% — Z(Xp} + X?p} — 3Y pipy). So

F(X,Y,2)=Z°+22%¢ + Zg; + qo,

where ¢, = Xpy, 1 Xp? + X?p3 — 3Ypip, and g XYpp?2 — Yp2 — Ypi. It
follows that

Nz,y) = OF[0Z(f(z,y))/10(X,Y)/0(z,y)| = p} + ypip; + (z + y*)p3.
In the case f(z,y) = (z,zy + y3,zy® + cy?) we deduce that
Mz, y) = (1 - )’z + (1 —c+ )2y’ + (S + c)ay* + Fy°.

(5) f(z,y) = (%, 4", 9(z,y)).
After a change of co-ordinates in the target we can reduce f to the form

f(z,y) = (2%, ¥, zp (2%, ¥%) + ypa(2?,4°) + zyps(2?, 42)).
Similar calculations to those above show that
F(X,Y,Z) = Z*' - 2Z%, — 8Zq: + q,

where

9 = (Yp3 — XYp3)* + X’p} — 6XYpi(p3 + Xp3),
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1 = XY p1paps,
0 = Xp} +Yp} + XYpi.
It follows that

X(z,y) = pa(pr + yp2)” + 2pa(p1 = ypa)’ + ypa(p2 + 2ps)”.
(a) In the case when f(z,y) = (2?,3%, 2> *! + zy + y***?) we find that
)\(z,y) = zy2a+2 e I2r+2y s ($2r+] & y28+1)2 - $2Ty4a+l e z4r+ly23.

This is semi-weighted homogeneous with principal part zy***? 4+ 2% +2y, and
hence Milnor number (2r + 2)(2s + 2). In particular the germ is finitely-.4-
determined.

(b) When f(z,y) = (2%,y% z(2? + y*) + y(«* — y?)) we have p; = 2% +
y?, p; = z2—y? and p3 = 0. A calculation shows that A(z,y) = (z—y)(z(z?+
zy + y?) — v*)(z(2? + zy + y*) + ¥®). Clearly this has an isolated singularity
at the origin, and indeed its Milnor number is 36. Consequently the germ f
is finitely-.A-determined.

(c) If p; or p; is zero then the germs of this type are not finitely-.A-
determined. For if p; = 0 (respectively p, = 0) the double point curve is
given by y2papa(p; + zp3) = 0 (respectively z%p, p3(p; +yps) = 0) and in both
cases we have a non-isolated singularity at the origin.

3 Plane Curves

The condition n > 1 in section 2 excludes the germs C,0 — C?,0. This case
is worth analysing, because it will be important when extending the results
of section 2 to some non-generic, but nevertheless very natural, mappings.

So let f : C,0 — C2%,0 be the parametrisation of an irreducible plane
curve (equivalently f is £- or A-finite). The defining equation for its image
we denote by F' = 0. As before F'o f(u) = 0 so differentiating we find

F(f(u)fi(u) + Fy(f(w)) f3(u) = 0
so that Fo(f(u))/fi(v) = —Fy(f())/ f2(u).

We now seek an interpretation of the orders of these quotients.



Proposition 3.1 The above order is 26 where § is the delta invariant of the
plane curve singularity discussed in [15], or [9]. (In the latter reference 26
is shown to be u, where p is the Milnor number of the singularity.)

Proof There are a number of possible approaches but we give a geometric
proof using deformations. So deform f via a family f* with f* having é double
points for ¢ small and non-zero. We can also deform the defining equation F'
to F* so that F* = 0 and the image of f* coincide for ¢ small. (See [4].) Now
F(f(u)) measures the contact between F, = 0 and the image of f. So for
small ¢ the equation F!(f*(u)) = 0 has roots corresponding to the singular
points of the image of f, or smooth points wth horizontal tangent. Moreover
each double point, which we can assume has non-horizontal tangent lines,
corresponds to a pair of roots. On the other hand the points with horizontal
tangent are given by (f*)'(u) = 0, and the result now follows.

Example 3.2 The A, singularities.

Consider the Ay singularity f(u) = (u?,u?*1), with F(z,y) = y? — 221,
We can choose f'(u) = (u?,u?**! + tu). Note that for t # 0 this is an
immersion with k ordinary double points, determined by the roots of the
equation u?* 4+t = 0; for given any root r we have f(r) = f(—r) a double
point. Now the corresponding defining equation is F*(z,y) = y* — z(z* + ¢)?
and F!(f'(u)) = —(u®* + t)((2k + 1)u®* + t). We have k ordinary double
points from the first bracket, and 2k horizontal tangents from the second
(the derivative (f])'(u) = (2k 4+ 1)u®* + t). On the other hand F}(f*(u)) =
2u(u?* + t). The first factor corresponds to the one horizontal tangent, the
other to the k double points.

Example 3.3 Cuspidal edges.

Given a plane curve parametrisation f : C,0 — C2,0, consider now a map
g :C",0 = C"*1 0 of the form g(u,v1,...,v5-1) = (f(u),v1,...,v,-1). The
defining equation for the image of g is exactly the same as that for f, and we
deduce that if we define A as usual, it is holomorphic, a function of u only of
course, and has order equal to twice the delta invariant of f. In other words
we get the defining equation of the singular set raised to the power 26.

The approach for curves works for multi-germs f : C,S — C?,0, where
S is a finite set, and F is the defining equation for the plane curve which is
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the union of the images of the germs making up f. Indeed we can establish
the following result in the same way.

Proposition 3.4 At each point s of S the order of the quotient is
26, + Y m(s,s),

where &, is the delta invariant associated to f : C,s — C2,0, and m(s,s’) is
the intersection multiplicity of the branch at s with that at s'. The summation
is over all s' € S with s # s'. (Note that summing over all s € S we obtain
twice the delta invariant for the image of f.) We denote this sum by ¢(s).

Example 3.5 A bi-germ.

Consider the case of a bi-germ, with component germs f(u) = (u?,4%) and
g(u) = (u*,u?). The defining equation is simply H(z,y) = (22 —y®)(y* — z3).
We deform [ as f'(u) = (u*,u® + tu), and g as g*(u) = (u® + tu,u?). The
corresponding defining equation is H'(z,y) = (y*—z(z+1)?)(z2—y(y+1)?) =
F(z,9)G4(z,y). Now H' = FiG+F'Gq,s0 H(f4(u)) = Fi(f*(2))G*(f*(u)).
The number of ‘small’roots of the first factor is the same as that for the
individual germ f, namely 4. The number of ‘small’roots of the second is
that of u* — (u3+tu)(u®+1tu+1)? which is clearly the intersection multiplicity
of the two curves, in this case 4.

Similar results hold for a family of curves. So let f: C",0 — C"*1,0 be
of the form f(u,y) = (9(u,y),y) where (u,y) € C x C*"1, g(0,y) = 0 € C?,
and for all small y the germs g, : C,0 — C?2,0 all have the same § invariant
(in particular they are all topologically equivalent). Let F(z,y) = 0 be the
defining equation for the image of f.

Proposition 3.6 For such an f we have A\(u,y) = u* p(u,y) with p(0,0) #
0, and where 6 is the delta invariant of all/any of the g,’s.

Proof Note first that the multiplicity is also constant for the family. Suppose
without loss of generality that the first component of gy is u” where r is
this multiplicity. Then A(u,y) = g—%(g(u,y),y)/%(u,y). But %lul(u,yo)
has order at least r — 1 for small yo, and hence order exactly r — 1, so we
can write %‘f}(u,y) = u"la(u,y) with «(0,0) # 0. So for all small y, the
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