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The Nash modification and hyperplane sections
on surfaces

Jawad Snoussi

Resumo: Provamos a correspondéncia 1-1 entre as componentes planas do
cone tangente em um ponto de wma superficie analitica complexa e os pontos
base das sec¢oes hiperplanas pela modificagdo de Nash. Essa correspondéncia
¢ usada para caracterizar relagoes de dominacgao entre a modificagao de Nash
normalizada ¢ a explosao normalizada de um ponto.

Abstract: We prove that the planar components of the tangent cone of a
complex analytic surface at a point correspond to the base points of hyperplane
sections by the Nash modification. This correspondence is then used to charac-
terize domination relations between the normalized Nash modification and the
normalized blow-up of a point.

Mathematics Subject Classification: 32505, 32525, 32545, 14B05.

1 Introduction

For studying singularities of germs at a point of complex analytic surfaces, two
particular modifications may be considered: the blow-up of the point and the
Nash modification. Both transformations have desingularization virtues. In
fact, the surface can be desingularized after a finite iteration ol normalized
point, blow-ups ([11], [1]) or normalized Nash modifications ([9]).

The domination relation between these two modifications is related to hy-
perplane sections and polar curves and their base points after one or another
modification.

It is well know that the normalized blow-up of a point factors through the
Nash modification if and only if the family of local (absolute) polar curves does
not have a base point after the blow-up ([3], [9]). These base points correspond
to the so called “exceptional tangents” of the surface at the blown-up point
([6]). They are completely characterized in the case of normal surfaces in [8].
For the casec of hypersurfaces of C* with non-isolated singularities we refer to
[5].

In this work, we give a necessary and sufficient condition for the normalized
Nash modification to factor through the blow-up of a point.

We first characterize the base points of hyperplane sections after Nash modi-
fication. We prove that these base points are in one-to-one correspondence with
the planar components of the tangent cone of the surface at the considered point
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(theorem 3.2).

Then we prove that the normalized Nash modification of the surface factors
through the blow-up of a point if and only if the tangent cone of the surface at
that point does not have any planar component (theorem 4.2).

In the last section, we use the characterizations of the base points of the
polar curves after the blow-up of a point, given in (8], to prove that, in the case
of normal surfaces, the normalized blow-up of a point dominates the normalized
Nash modification if and only if they are isomorphic (theorem 5.4).

The main tool we use to prove the results of this work is the so-called
“normal-conormal” diagram, adapted to the case of the Nash modification (see
for example [6]).

During the preparation of the manuscript, the author was supported by a
post-doctoral grant from Instituto do Milénio - CNPq, Brasil, and hosted at
the ICMC-USP in Sao Carlos. The author would like to thank particularly
M.A. Ruas for all the help she provided, and also R. Bondil, D.T. L&, and P.
Popescu-Pampu for fruitful discussions and comments on preliminary versions
of the manuscript.

2 Planes of the tangent cone

Let (S,0) be a germ of reduced and equidimensional complex analytic surface
embedded in (CV,0).

Denote by e : S” — S the blow-up of the origin in a representative of (5,0);
or equivalently the blow-up of the maximal ideal m of the local ring Ogg of
holomorphic functions on (S5,0). Call Sp the non-singular locus of the surface
S, and consider the morphism A\ : Sy — G(2, N) such that A\(z) = T,.S; where
G(2, N) is the Grassmannian of 2-dimensional linear subspaces of CV and TS
is the direction of the tangent space to S at x. The closure S of the graph of A
in § x G(2, N) is a reduced analytic surface. The induced morphism v : § — §
is called the Nash modification of S; it is an isomorphism over the non-singular
locus of S (see for example [3], (5] or [9]). The blow-up of the ideal mOg, defines
a morphism ¢’ : X — S.

We have the following commutative diagram:

7

€

SxPV-1'xG(2,N) > X C SxG(2,N)

S
u'v}v uJ (1)
S

SxPN-1 5 g £ c eV

where the morphism ¢/ is induced by the universal property of the blowing-up.
Let us call £ : X — S the composed morphism voe' = eov'.
Recall the following description of the fibers of the morphisms e and v:
le=1(0)] is isomorphic to |Proj Cs|, where |[Proj Cs | is the set of genera-
trices of the tangent cone of S at the origin (sce [10, §8]). In other words, a line
| represented by a point of PY~1 is such that (0,) € |e~*(0)] if and only if there
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exists a sequence (z,,) of points in S converging to 0 such that the sequence of
lines (0z,,) (called secants) converges to | in PV =1,

On the other hand, |[v=1(0)| is the set of all limits of directions of tangent
spaces at the origin. In other words, (0,7T) € |v~1(0)| if and only if there exists a
sequence (z,) of non-singular points in S converging to 0 such that the sequence
(T, S) converges to T in G(2,N).

Thanks to Whitney’s lemma (see [10, theorem 22.1]), we can give the fol-
lowing description of the fibers of the morphism ¢ (see also [5, proof of theorem
1.4.4.1)):

A point of £71(0) is of the form (0,1, T) where [ and T are respectively
limits of sccants and directions of tangent spaces reached by the same sequence
of non-singular points; in particular we have | C T.

Consider now the irreducible decomposition [£71(0)| = (J, Da. All the
components D, are of dimension 1. Call W, = |¢/(D,)|, and V,, = |v'(D,)|.
The duality between the V,’s and the W,’s is important for the description of
the limits of tangent spaces (see [6] and [2]). We are going to use this duality to
describe some particular components of the tangent cone of the surface at the
origin; namely the planar components.

Proposition 2.1. The sets W, of dimension 0 are in one-to-one correspon-
dence with the 2-dimensional planes of the tangent cone |Cg .

Proof: 1f dimW, = 0 then it is of the form (0,7, ) with 7,, € G(2, N). The
component D, being of dimension one, there exists an irreducible component
Cq of |Cs| such D, = {(0,1,T,),l € Proj (Ca)}. By the description we gave
for £71(0), we have C, C T,. Since T, is a two-dimensional plane, we have
Cou=Ts:

If Ty is a two-dimensional plane contained in the reduced tangent cone of S
at 0, then Ty is a limit of tangent spaces to S at 0 ([4, theorem 1.5]). Hence
Do, = {(0,1,Tp),l € Proj (To)} is an irreducible component of [£71(0)|. The
image W,, = € (Da,) = {(0,7p)} is of dimension 0.

o

Remark 2.2. Note that a W, of dimension 1 is an irreducible component of
the fiber [v=1(0)|, in case it has dimension one. By the characterization given
in [6], it is either a pencil of planes containing an exceptional tangent or the
planes tangent to a non-planar irreducible component of the tangent cone at the
origin.

3 Base points of hyperplane sections by the Nash
modification
D.T. Lé and B. Teissier showed that the exceptional tangents correspond exactly

to the base points of the local (absolute) polar curves after the blow-up of the
maximal ideal ([6, proposition 2.2.1]).
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We are going to prove a dual statement, making a correspondence between
the planes of the tangent cone and the base points of hyperplane sections after
the Nash modification.

Definition 3.1. Let (C,,0) be a family of germs of curves on the surface (S,0),
parameterized by a projective space PT. Consider a modification of the surface
p:X—S.

A point 1 € X 1is a base point of the family of curves (Cy) by the modification
i if there exists an open dense set Q C P, such that n is a point of the strict
transform of the curve C, for any a € Q.

Theorem 3.2. A pointn € S is a base point of the hyperplane sections of S
by the Nash modification if and only if n corresponds to a plane of the tangent
cone of S at 0.

Proof Set n = (0,7,) € v~1(0), and suppose Ty is a plane of the tangent
cone Cgp.

By proposition (2.1), there exists a such that {(0,73)} = W, = ¢'(D,). On
the other hand, V,, = v/(D,) is an irreducible component of Proj |Cg | that is
actually Proj (Tp).

For any hyperplane H € (PY~1)V, we have Proj (H)NProj (Ty) # 0. Hence
by commutativity of the diagram (1), the strict transform of HNS by v contains
the point 7; so 7 is a base point.

Conversely, suppose 7 is a base point of the hyperplane sections of S by v. By
commutativity of the diagram (1), for a generic hyperplane H, the intersection
Proj (H) N v/'(e'~!(n)) is not empty. Hence, dim ¢~(n) > 0. The point 7
corresponds then to a W, of dimension zero, which is, by proposition 2.1, a
plane of the tangent cone.

a

Remark 3.3. From the proof of theorem 3.2, it follows that if the tangent
cone Cg contains a plane then, the strict transforms by the Nash modification
of all the hyperplane sections (not only generical ones) will contain the point
corresponding to that plane.

4 Factorization of the Nash modification through
the blow-up of the maximal ideal

It is known that the Nash modification has a “universal property” with respect
to polar curves, in the sense that a normalized modification p of the origin does
not have any base point for the polar curves if and only if p factorizes through
the normalized Nash modification (see [9, III.1.2] and [3, 1.2]).

In this section we will state a similar result with respect to hyperplane sec-
tions and the blow-up of the maximal ideal.

We first prove an algebraic version of the statement that seems to be well
known to many specialists.
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Let fi,..., fr be holomorphic functions in Og g, whose unique common zero
in a sufficiently small neighborhood of the origin is 0. The linear system of
curves generated by the f;’s is the family of curves defined by an equation of
the form oy f1 + ...+ o fr = 0 with (o : ... : ;) € P71

Proposition 4.1. Let p: X — S be a normalized modification of the surface
S. The linear system of curves generated by f1,..., fr has no base point by p if
and only if the ideal sheaf (f1,..., fr)Ox is locally principal.

Proof: Let us call I the ideal of Og o generated by fi,..., fr.

Suppose 7 € p~'(0) C X is not a base point by u of the linear system
generated by fi,..., fr. Then there exists a linear combination f of the f;’s
such that:

i) The strict transform of f = 0 by p does not contain 7, and

ii) The valuation of f along the irreducible components of the exceptional
divisor passing through 7 is minimum among the valuations of all the functions
in /.

Let g € I. Since X is a normal surface, the exceptional divisor of p is Cartier
outside a finite number of points. So the quotient (go u)/(f o p) is well defined
near 7 except maybe in 7. Again by normality of X, this quotient extends to a
holomorphic function near . Hence (f o u) generates 1Oy ,,.

Conversely, suppose IOx , principal, with n € p=(0) € X. If f;, is such
that the order at n of (fi, o ) is minimum among the orders at n of the other
generators, then /Ox , = (fi, o #)Ox.,. Since the ideal I is primary for the
maximal ideal of Og g, the strict transform of f;; = 0 by p does not contain 7.
So, for a generic linear combination f = a; f; + ...+ a, f, the strict transform
by p of f =0 does not contain the point 7. Hence 7 is not a base point.

a

If we apply proposition 4.1 to the Nash modification, consider the case I = m
and use the universal property of the blowing-up and theorem 3.2, then we
obtain:

Theorem 4.2. The normalized Nash modification of a reduced equidimensional
germ of surface (S,0) dominates the blow-up of the origin if and only if the
reduced tangent cone of S at 0 does not contain any two-dimensional plane.

5 Comparison between Nash modification and
point blow-up for normal surfaces

We already know that, the normalized blow-up of the origin of a normal surface
dominates the Nash modification if and only if there are no base points of the
polar curves by the blow-up of the origin ([9, theorem III, 1.2]).

In [8, theorem 5.8], we gave characterizations of base points of polar curves
on a normal surface by the blow-up of the origin. We used for that the fact that
they correspond one-to-one to the exceptional tangents of the surface at 0 (sce
[6, proposition 2.2.1]).

()]
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Let us state this result for the commodity of the reader:

Theorem 5.1. Let (S,0) be a germ of a normal surface singularity. Call e :
S" — S the blow-up of the origin, and n : S — S’ its normalization. The base
points of the family of polar curves by the blow-up e are:

- the image by n of the singular points of the surface S,

- the image by n of the singular points of the exceptional divisor |(eon)=1(0)],

- the critical values of the restriction of n to the exceptional divisor |(e o
n)~1(0)|, and

- the singular points of the analytically irreducible components of the excep-
tional divisor |e=1(0)].

As a corollary of this theorem we have the following properties for the normal
surfaces without base points for the polar curves by the blow-up of the origin.

Corollary 5.2. Let (S,0) be a germ of a normal surface such that the family of
polar curves does not have base points by the blow-up of the origin. Then, the
normalized blow-up of the origin is smooth and the tangent cone at the origin is
irreducible.

Proof: The smoothness of the normalized blow-up is immediate from theorem
5.k
If the reduced tangent cone is not irreducible, then the exceptional divisor
|(e on)~1(0)| will have at least two irreducible components. By Zariski’s main
theorem, there is at least one singular point of the exceptional divisor |(e o
n)~1(0)|. By theorem 5.1, the image of such a point will be a base point of the
polar curves by e. So the reduced tangent cone needs to be irreducible.
O

Remark 5.3. Notice that, in theorem 5.1, an intersection point of two irre-
ducible components of e=1(0) does not need to be a base point of the polar curves
by e (unless it is one of the other points specified in theorem 5.1). However, in
the case of hypersurfaces of C3, or normal singularities whose blow-up at the
origin is still normal, these intersection points are always base points of the
polar cureves (see [4, theorem 3.1] and [8, corollary 5.11] respectively).

We can now state and prove the main result of this section:

Theorem 5.4. Let (S,0) be a singular germ of a normal surface. The normal-
ized blow-up of the origin dominates the normalized Nash modification if and
only they are isomorphic. In this case they both desingularize the surface.

Proof: Suppose that the normalized Nash modification does not dominate
the blow-up of the origin. By theorem 4.2, the tangent cone Cgs contains a
two-dimensional plane. Two cases are possible:

i) The reduced tangent cone is not irreducible. By corollary 5.2, the polar
curves have a base point by the blow-up of the origin. Hence, by [9, theorem
III, 1.2], the normalized blow-up of the origin does not dominate the Nash
modification.
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ii) Cg is irreducible and is a two-dimensional plane. In this case, consider
a linear space L C CV of dimension N — 2, such that L N |Csol = {0}. Call
p: CN — C? the linear projection whose kernel is L. The restriction of p to
S is a finite generic map 7 : § — C2. Since the surface S is singular at 0,
the discriminant of 7 is a non-empty curve (see (7, proposition 2.3]). Let D be
a line of the tangent cone of the discriminant at 0. By, [8, theorem 3.3|, the
hyperplane H = p~!(D) is a limit of tangent hyperplanes to S at 0. Because of
the condition L N |Cg| = {0}, the hyperplane H can not contain the tangent
plane to the tangent cone (that is the tangent cone itself). So H contains an
exceptional tangent (see [6] or [8]). Hence the polar curves have a base point by
the normalized blow-up of the origin. So, by [9, thcorem II1, 1.2], the normalized
blow-up of the origin does not dominate the Nash modification.

We have then proved that, if the normalized blow-up of the origin dominates
the normalized Nash modification then the converse is also true, and hence they
are isomorphic.

The other implication is obviously true. The smoothness is given by corollary
5.2,

]

6 Examples

i) Consider the surface S defined in C3 by the equation f = z™ + y™ + z" = 0.
f being homogeneous, the tangent cone Cgsg is also defined by f = 0. It is
an irreducible cone that is not a plane. So the normalized Nash modification
dominates the blow-up of the origin (theorem 4.2).

We can prove independently of the results contained in this work, that the
normalized Nash modification of this surface is isomorphic the the blow-up of
the origin. In fact, the Nash modification is the blow-up of the jacobian ideal
(z"~1,y""1,z"71). The jacobian ideal has the same integral closure as the
ideal (z,y, )" !, and this last one has the same blow-up as the maximal ideal
(z,y,z). So the normalized blow-up of the jacobian ideal is isomorphic to the
blow-up of the maximal ideal (that is already normal).

ii) S is defined in C3 by 22 +y? + 23 = 0. The tangent cone is a union of two
planes. So the normalized Nash modification does not dominate the blow-up of
the origin (theorem 4.2).

Actually, the blow-up of the origin is the minimal resolution of (S,0). On
the other hand the normalized Nash modification produces two singular points
of multiplicity 3 each one (sce for example [3]).

iii) Consider the surface S union of two planes in C* intersccting at the
origin. The Nash modification of S is the normalization of S, that is non-
singular. The blow-up of the origin is a resolution of the singularity; it factors
then through the normalization. But they are not isomorphic since the blow-up
is not finite. This proves that we can not extend theorem 5.4 to non-normal
surface singularities.
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