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Resumo

Neste artigo consideramos problemas parabdlicos semilineares da forma
v = Au + f(u), onde A gera um semigrupo analitico compacto com decai-
mento exponencial em um espago de Banach E e f é globalmente Lipschitz
continua e limitada de E* em E (E* = D((—A)%) com a norma do grafico).
Estas hipdteses aseguram que o problema tem um atrator global. Consideramos a
aproximacao deste problema por um esquema bastante geral que inclui o método
dos elementos finitos, o método das diferengas finitas e o método das projegoes.

Ao aplicarmos este esquema de aproximagao ao problema acima obtemos a semicon-
tinuidade superior para a dindmica assintética (atratores) deste problema. Também
provamos que, se todas as solugdes de equilibrio para problema sdo hiperbélicas
entdo, existe um numero impar delas. Adicionalmente, se impomos que toda dolugao
global converge quando ¢ — o0, (como no caso de sistemas gradientes) entdo,
provamos a semicontinuidade inferior de atratores para estas aproximagoes. A prin-
cipal hipdtese sobre a aproximacgao é a convergéncia compacta de resolventes que
pode ser aplicada a muitos outros problemas nao relacionados a discretizagao.



A GENERAL APPROXIMATION SCHEME FOR ATTRACTORS OF
ABSTRACT PARABOLIC PROBLEMS WITH HYPERBOLIC
EQUILIBRIUM POINTS

ALEXANDRE N. CARVALHO* AND SERGEY PISKAREV'

ABSTRACT. In this paper we consider semilinear problems of the form v’ = Au+ f(u) where
A generates an exponentially decaying compact analytic semigroup in a Banach space E
and f is globally Lipschitz and bounded map from E® into E (E* = D((—A)%) with the
graph norm). These assumptions ensure that the problem has a global attractor. Under a
very general approximation scheme we prove that the dynamics of such problem behaves
upper semicontinuously.

We also prove that, if all equilibrium solutions of this problem are hyperbolic, then there
is an odd number of such equilibrium solutions. Additionally, if we impose that every global
solution converges as t — =+oo, (e.g. gradient systems), then we prove that under this
approximation scheme the attractors also behave lower semicontinuously.

This general approximation scheme includes finite element method, projection and finite
difference methods. The main assumption on the approximation is the compact convergence
of resolvents which may be applied to many other problems not related to discretization.

1. INTRODUCTION

In this paper we give rather general conditions under which the asymptotic dynamics
(global attractors) of a parabolic problem behaves continuously with respect to perturba-
tions of the equation. This is done from a functional analytic point of view on general
approximation scheme. By continuity of attractors we understand upper and lower semicon-
tinuity of attractors. Next we introduce some terminology to be able to present the results
that we will prove in this paper.

Let E be a Banach space, A be a topological spaces and Ay C E, A € A. Denote by
dist(+, ") : E x E — R* the metric induced by the norm in E.
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2 A. N. CARVALHO AND S. PISKAREV

Definition 1.1. By upper and lower semicontinuity of the family of sets {Ax}rea at A = Ao
we understand the following

(1) We say that { Ay} is upper semicontinuous at Ny if SUp,, ¢4, dist(uy, A) 5

(2) We say that {Ax} is lower semicontinuous at Ay if sup,¢ 4 dist(u, .A,) i )
In order to prove upper and lower semicontinuity we employ the following result

Lemma 1.1. Let {A)}xea be as in Definition 1.1.

(1) If any sequence {uy,} with uy, € Ay, \n = o, has a convergent subsequence with
limit belonging to A, then {Ax}ren 1s upper semicontinuous at \g.

(2) If A is compact and for any u € A there is a sequence {uy,} with uy, € Ay,
An = Ao, which converges to u, then {Ay\}rea is lower semicontinuous at \g.

The proof of this result is straight forward from the definition.

Next we introduce the notion of a global attractor for continuous semigroups. For that
we follow [30] (see also [9, 55, 67]). Let E be a Banach space, by a continuous semigroup we
understand a one parameter family {7'(¢) : ¢ > 0} of (nonlinear) operators such that

(i) T(0) =1,
(it) T(t+s) =T(@t)T(s), t,s = 0,

(iii) Rt x £ 5 (¢,z) — T(t)z € E is continuous.

For each z € E, the positive orbit y*(z) through z is defined as y*(z) = {T'(t)z : t > 0}.
A backward solution through z is a continuous function ¢ : (—oco, 0] — E such that ¢(0) = =
and, for any s < 0, T'(t)d(s) = ¢(t + s) for 0 < t < —s. A global solution through u° is a
function ¢ : R — E such that ¢(0) =z, s € R and ¢ > 0 we have that T'(t)@(s) = ¢(t + s).

Backward or global solutions may not exist and its existence may depend on the choice
of z. Also, when a backward solution exists, it may not be unique. Let the negative orbit
through x be defined as

77 (2) = UisoH (8, 7),
where H(t,z) = {y € E : there is a backward solution through = defined by ¢ : (—o0, 0]
— E with ¢(0) = z and ¢(—t) = y}.

A complete orbit y(z) through z is defined as y(z) = v~ (z) Uy (z). A set B C E is said
to attract a set C' under T'(t) if dist(T'(t)C,B) — 0 as t = oo. A set S C E is said to be
invariant under T'(-) if, for any z € S, there is a complete orbit v(z) through z such that
v(z) C S or equivalently if T'(t)S = S for any ¢ > 0.

Definition 1.2. A set A C E is said to be a global attractor for semigroup {T'(t) : t > 0} if
it is compact, tnvariant and attracts any bounded subsets of E.
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Let {T'(t,\) : t > 0} be a family of semigroups. Assume that for each A € A the semigroup
{T'(t,\) : t > 0} has a global attractors A,.

To obtain the upper semicontinuity of attractors is a relatively simple matter being enough
to prove that the union of the attractors is relatively compact in E and that the family of
semigroups behaves continuously with respect to A.

Theorem 1.1. Assume that the set U{ Ay : A € A} is relatively compact in E and that for
wy, 2N uy, i E one has ||T(t, N)ux — T'(t, Xo)u || = 0 as A — Xg for any t € RT. Then,
{Ax}xen is upper semicontinuous at A\ = \g.

Proof: If {u,,} is a sequence with uy, € A\, A\, — Ag, we may assume, from the
compactness of U{A) : A € A}, that u,, is convergent to some u), € E. To show that
uy, € Ay, it is enough to show that there is a complete bounded solution through u,,. Let
R >t~ ¢y, (t) € E be a complete solution through wuy,. Since the union of the attractors
is bounded we have that sup,,s; sup,cg ¢, (t)[[z < co. From the convergence properties of
the semigroups we have that there is a complete bounded orbit through u,, and the result
is proved.g

The upper semicontinuity has been the subject of study by a number of authors, among
them we cite [1, 3, 5, 6, 8], [11] — [16], [29] — [36], [38, 40, 41], [44] - [47], [62] - [65].

On the other hand, the lower semicontinuity of attractors is a much more complicated
matter. We will not attempt to describe this procedure in this degree of generality and
will leave for a more specific case, still in this introduction. The pioneer work done in
[43] established the procedure to obtain the lower semicontinuity of attractors for gradient
semigroups. In the sequel we cite the work [42] by the same authors. In the later the set of
equilibria does not depend upon the parameter which considerably simplifies the problem.
Other works used the reduction to finite dimension to obtain lower semicontinuity or even
better continuity results as in [11, 13, 14, 15, 46, 64]. More recently the work [5] brought
new light into the subject, in this case the set of equilibria also depends upon the parameter
and reduction to finite dimension is not available. The results in [5] are oriented in such a
manner that the continuity of attractors is drawn from the continuity of the spectrum of
the involved linear operators. Our approach resembles the steps described in [5] in a rather
general abstract formulation.

The aim of the present paper is to consider approximation/perturbation of attractors.
Actually, the problem of approximation/perturbation of attractors is naturally motivated by
the following arguments. The semigroup {7'(t) : t > 0} usually comes from a differential
equation that is a mathematical model for a phenomenon (physical, biological, economical,
etc). One central question in the modelling is the stability under perturbations. In fact, in
every step of modelling there is always a degree of uncertainty in the determination of the
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parameters of the mathematical model. Roughly speaking everything in the mathematical
model is determined approximately. Therefore, it is crucial to determine wether the solutions
depend continuously on all the parameters of the model. We tackle this question from the
point of view of the asymptotic dynamics; that is, we will be satisfied with the proof that
the attractors behave continuously on all the parameters of the mathematical model.

One of the important aspects of developing approximation/perturbation philosophy is the
subject of numerical analysis. In the setting of present paper we consider just discretiza-
tion in space and consider just convergence aspects, leaving the order of convergence and
discretization in time for forthcoming papers.

In fact we will concentrate on the continuity of attractor on a very general discretization
scheme, which include finite element, projection and finite difference methods and may as
well apply to many perturbations that are not concerned directly with discretization.

In [11] the authors study the continuity of attractors of a one dimensional parabolic prob-
lem in space with respect to discretization. Of course the proof of the results in [11] cannot
be extended to higher dimensions. The spectral gap and the special convergence of eigen-
values and eigenfunctions cannot be extended to higher dimensional domains and enter in a
crucial way in the proof of the results in [11].

In [31, 45, 51, 52] the authors also consider the continuity of dynamics with respect to
discretization.

To state the main results of this paper we specialize to the class of problems considered
here. Let E be a complex Banach space and A : D(A) C E — E be a closed linear operator
with compact resolvent, such that

M
1+ )
In such situation (A) = inf{Re\ : A € 0(A)} < 0. Let (—A)%, a € R*, denote the fractional
power operators [54] associated to A and denote by E® the corresponding fractional power
spaces; that is, E* := D((—A)%) endowed with the graph norm ||z||ge = ||(—A)%z||5.

If A is as above and 0 < o < 1 is fixed, consider in the space E* the following semilinear

(1.1) (M - A)7| < for any ReA > 0.

autonomous parabolic problem

u = Au+ f(u), t >0,
(1.2) i ,
u(0) = u’ € B9,
where f(-) : E* C E — E is a globally Lipschitz, bounded and continuously Fréchet

differentiable function.

Remark 1.1. The fact that —A is sectorial with compact resolvent enters in a crucial way
to prove the continuity of the dynamics near equilibria through the fact that the linearization
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of the right hand side of (1.2) has only a finite number of eigenvalues with positive real
part. This is the main dificultness to generalize such results to the case when A generates
Cy-semigroups.

Under the above assumptions the mild solution of (1.2) defined for all ¢ > 0 (see [48],
[80]). Let u(-) = T(-)u’ : R* — E° be the only mild solution of (1.2). With this notation
we have defined a family of nonlinear operators in E* {7'(t) : ¢ > 0} which is a continuous
semigroup. It is well known that nonlinear semigroup 7'(:) is given by the Variation of
Constants Formula

t
(1.3) T(t)u® = et=IAT (tg)u’ +/ DA F(T(s)u’)ds, t > to.

to

Under all above assumptions it is not difficult to prove (see [30, 48]) that
Theorem 1.2. The problem (1.2) has a global attractor A in E°.

In the models that give rise to (1.2), the nonlinearity f(-) usually does not satisfy the
condition above but only conditions that ensure local well posedness and existence of a
global attractor. After obtaining some “nice” bounds on the attractor we can change the
nonlinearity, without affecting the attractor, so that it satisfy the above conditions. This is
seen in the following example.

Example 1.1. Let Q C R™ be a bounded smooth domain. Consider the second order strongly
elliptic operator

n

(1.4) Lu= Z 04§ (T ) Ug;z; + Z bj(z) + (c(z) + v)u,

1,j=1
where the coefficientes a;j, bj, ¢ are smooth. Consider the associated parabolic problem

u(t, z) = —Lu(t,z) + f(u(t,z)), t>0, z€Q,
(1.5) u(t,z) =0, t>0, z €09,
u(0,2) = u%(z) € H§ ().

Let E = L*(Q) and define the operator A : D(A) C E — E by D(A) = H*(Q) N Hy(Q) and
Au = —Lu for all w € D(A). It is well known that A generates an analytic and compact
Cy-semigroup {exp(tA) : t > 0}. Assume that v is chosen such that the spectrum of A is
located to the left of the imaginary azis. Then, we can define the fractional powers (—A)® of
_ A as before. It is well known that E' = D(A) = H*(Q) N HY(Q) and Ez = HL(Q).
Concerning the nonlinear term f(-), it was shown in [4], [7] that under some growth
conditions, the problem (1.5) is locally well posed in Ez. These growth restrictions are

expressed as follows:
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(G)g: Let f(-) : R — R be a C*(R,R) function and assume one of the following
ol = 1,
i) n=2 and f satisfies, for everyn > 0, that there exists ¢y > 0 such that
N N
(16) £ (2, 1) = F(,0)] < (™™ + ™7 ) ju — ),

i) n > 2 and [ satisfies

i 1£5,) = £(@,0)] < el =l (=" + oo~ +1),
with ezponent p such that
1<p<n+?
n— 2

It is also known (see [4],[7]) that, under these assumptions, these solutions are classical.
If in addition to the assumptions above we assume that

(1.8) lim sup /() <0,
lul—so0 U

then all solutions of (1.5) are globally defined. In this case we have, for each u° € E: a
globally defined solution t — u(t,u®) € E3, t > 0.

Under the above hypotheses, the nonlinear semigroup {T'(t,-) : t > 0} associated to (1.5)
has o global attractor A in E? and the attractor A satisfies (see [8])
(1.9) sup [ul| () < oo

ueA

This bound enable us to cut the nonlinearity f(-) in such a way that it becomes bounded with
bounded derivatives up to second order, but the problem with such changed nonlinearity has
the same attractor. Hereafter we may assume that f(-) is bounded with bounded derivatives

up to second order.

The equilibrium solutions of (1.2) are those solutions which are independent of time u(t) =
u, t > 0; that is, the solutions of equation in E¢

(1.10) Au+ f(u) = 0.
We denote by & the set of solutions to (1.10); that is, & = {u € E*: Au+ f(u) = 0}.

Definition 1.3. We say that a solution u* of (1.10), i.e. u* € &, is hyperbolic if the spectrum
a(A+ f'(u*)) is disjoint from the imaginary azis, i.e. o(A+ f'(u*)) NiR = 0.

About the solutions of (1.10) we can prove the following result

Proposition 1.1. (see Proposition 2.1) If all solutions of (1.10) are hyperbolic, then £ has
2k + 1 elements for some non-negative integer k.
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This feature can be seen in [17], so called Chafee-Infante example, for which one can check
that the number of equilibrium points is always odd.

Definition 1.4. The unstable manifold of the equilibrium set £ is the set W*(E) = {n €
E® :u(t,n) is defined for all t < 0 and u(t,n) — € as t - —oc}.

The unstable manifold of an equilibrium solution u* € £ is defined by W*(u*) = {n € E*:
u(t,n) us defined for all t <0 and u(t,n) = u* as t — —oo}.

We now specialize to a class of equations for which we can describe the structure of
attractor. We assume that any bounded global solution ¢(-) : R — E® of (1.2) has limits

(1.11) () = ¢~ ast — —oo and ¢(t) = ¢, ast — oo.

In this case ¢%, and ¢*  are in £ and the attractor has a representation A = Uy.ce W*(u*).
Such structure of attractor one gets for example in case of gradient system with isolated
equilibria.

Definition 1.5. We say that {T'(t) : t > 0} is gradient if there is a continuous function
V . E* - R such that function R* 3t — V(T(t)u’) € R is non-increasing and & = {u® €
E*: V(T (t)u®) = V(u°), Vt € R}. |

Theorem 1.3. (see Theorem 2.3) If A, a and f are as before and if {T(t) : t > 0} is
gradient then the attractor A for (1.2) can be characterized as the unstable manifold of the
equilibrium set &€; that is, A = W*(E). If in addition, each u* € £ is isolated then & is a
finite set and A = Uy-ceW*(u*), i.e. attractor consists of the union of the unstable manifolds

of equilibrium solutions.

Example 1.2. If the operator L in Ezample 1.1 is in the divergence form, then the semigroup
associated to (1.5) is gradient.

In the mean time our general assumption (1.11) admits the case ¢* = ¢, which is not
allowed in case of gradient systems.

Our results on lower semicontinuity of attractors require that the attractor A of (1.2) is
characterized in the form
(1.12) A= W)

ur€€

with £ being a finite set consisting only of hyperbolic equilibria of (1.2). Other results on
upper semicontinuity of attractor or on continuity of the set of equilibria do not require such

special characterization.

Definition 1.6. We say that an invariant set I' is asymptotically stable if there is a neigh-
borhood V of T’ such that, for any v € V dist(T'(t)v,I') = 0 as t = oo.
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In fact, in the proof of lower semicontinuity of attractors, we may assume that the attractor
is the union of unstable manifolds of hyperbolic equilibria W*(u}), 1 < i < n*, together with
asymptotically stable invariant set I'; that is,

A= [Jw@w)ur
1<ign”
which can be approximated (upper and lower semicontinuously). As an example, under the

same assumptions on A and f(-) we can approximate uniformly stable periodic orbits of
(1.2), see [10, 27].

Example 1.3. In Chafee-Infante ezample [17] the attractor is the union of unstable mani-
folds of equilibrium points.

Next we introduce the general discretization scheme and state the main results of the
paper. The general approximation scheme [22] — [24], [66] — [75], can be described in the
following way. Let F, and E be Banach spaces, and let {p, } be a sequence of linear bounded
operators p, : E — E,,p, € B(E,E,),n € N={1,2,---}, with the following property:

(1.13) lpnz||E, = ||z]|g as n — oo for any z € E.

We will also use the operators p& = (—A,)  %pn(—A)* € B(E®, E%) with the same property
(1.13), but for the spaces E%, ES. Operators A, and A are supposed to be related with
conditions (1.1), (A) and (B).

Definition 1.7. A sequence of elements {x,},z, € E,,n € N, is said to be P-convergent to

. : : P
z € E iff ||zn — puzl|s, — 0 as n — oo; we write this as T, — .

Definition 1.8. A sequence of elements {z,},z, € E,,n € N, is said to be P-compact if
for any N' C N there ezist N' C N and ¢ € E such that xnim:, asn — oo in N,

Definition 1.9. A sequence of closed linear operators {A,}, A, € C(E,), n € N, is said
to be compatible with a closed linear operator A € C(E) iff for each x € D(A) there is a
sequence {z,},zn € D(Ay) C En,n € N, such that zn—P-m and AnanAx. We write this
as (An, A) are compatible.

Consider in Banach spaces E, also the family of parabolic problems

u;l = Ayu, + fn(un)y t >0,

1.14
\L14) un(0) = ul € E2,

where u%iwo, operators (A,, A) are compatible, f, : Ey — E, is bounded, and Lipschitz
continuous. Consider the associated elliptic problems in E¢

(1.15) Anty + falus) =0.






