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STRUCTURAL STABILITY OF SINGULAR ACTIONS OF IR"
HAVING A FIRST INTEGRAL

J. L. ARRAUT AND C. A. MAQUERA

REsuMo. Comegamos caracterizando a familia de n-variedades analiticas reais
fechadas e orientdveis que admitem uma agao analitica real de IR™ com pelo
menos uma 6rbita difeomorfa a T"~! x IR. Depois, para cada n-variedade
fechada e orientdvel N definimos um subconjunto %, de agdes singulares
em A“(IR™,N) tal que cada agdo ¢ € %, tem uma integral primeira nio
constante assim como algumas propriedades genéricas e logo provamos que ¢
é C! estruturalmente estdvel. Uma agdo de IR™ é chamada singular se cada
6rbita tem dimensao menor do que n.

ABSTRACT. We begin by characterizing the family of real analytic closed ori-
entable nm-manifolds, n > 2, that admit an analytic action of R™ with at
least one orbit diffeomorphic to T"~! x R. Next, for each closed orientable
n-manifold N we define a subset %, of singular actions in A¥(R™, N) such
that each action ¢ € %, has a non-constant first integral as well as some
generic properties and then we prove that ¢ is C! structurally stable. An
action of R™ is called singular if every orbit has dimension less than n.

1. INTRODUCTION

Let M be a closed connected real analytic m-manifold and A™(R™, M) the set
of C™, 1 <r <w, actions of R™ on M whose infinitesimal generators are also of
class C”. We consider in A"(R™, M) the C'-topology induced by the C!-distance
between infinitesimal generators. An action of R™ on a manifold is called singular
if every orbit has dimension less than n.

In this paper we characterize the family of analytic closed orientable n-manifolds
that admit an analytic action of R™ with at least one orbit diffeomorphic to
T" ! x R, see Theorem 2.11. This family consists of 7" and H, , the family
of manifolds obtained by glueing two copies of 7"~2 x D? by an orientation pre-
serving diffeomorphism of 77! = 9(T™~2x D?). An action ¢ € A"(R", M) is said
to be of type 7, 0 < j < n, if the union of the j-dimensional orbits is an open dense
subset of M. Denote by A;(R", M) the set of actions of type j. For each analytic
closed connected orientable n-manifold N we define a subset %, C A%_,(R™, N)
such that each action ¢ € %, has a non-constant first integral. Our main result is
to prove that each action in ¢, is C! structurally stable, see Theorem 2.15. It is
proved in Lemma 2.8 that if p € %, , then there exists ¥, € A“(R"~!, N) with
the same orbits than . C. Perellé proved in [8] that Morse-Smale C* vector fields
on an analytic orientable closed surface are C!-structurally stable. It follows from
his theorem that if ¢ € €, then v, is not C'-structurally stable.
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The fact that there are C! structurally stable singular actions is not new. In fact,
Kato and Morimoto proved in [5] the following theorem: Let X € X"(N), r > 1
and n > 3, be an Anosov vector field. Then, Y € X"(N) satisfies [X,Y] = 0 if
and only if Y = cX, with ¢ € R. As a consequence of this result, we can define an
open set # C A"(R™ N) of singular actions such that each element in % is C!
structurally stable.

The fact that there are C! structurally stable actions with non-constant first
integrals is also not new. Write 7% = S! x T? and let F be the foliation of 73
with leaves {0} x T2 6 € S'. Saldanha in [9], defined a subset of locally free
actions ¥ C A®(R?,T3) such that each ¢ € ¥ has F as underlying foliation and
is C! structurally stable.

What is new in our result is that each ¢ € %, , besides being C! structurally
stable, is a singular action and at the same time has a non-constant first integral.
Finally, we show that this phenomenum is typical of analytic actions. In [1], to
be published, we consider actions ¢ € A7 (R™, N). We defined the concept of
transversally hyperbolic compact orbit and proved for n = 2 and n = 3 that if
p € Al (R™, N), r > 1, and every compact orbit is transversally hyperbolic, then ¢
is structurally stable. The problem of characterizing the structurally stable actions
in AY(R™, N) is still an open and interesting problem.

2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULTS

M will denote a closed connected and orientable real analytic m-manifold. A
CT-action of Lie group G on M isa C™-map ¢ : GxM — M, 1 <r < w,
such that ¢(e,p) = p and ¢(gh,p) = ¢(g,¢(h,p)), for each g,h € G and p € M,
where e is the identity in G. O, = {¢(g,p); g € G} is called the @-orbit of p.
Gp = {9 € G; ¢(9,p) = p} is called the isotropy group of p. For each p € M
the map ¢ — ¢(g,p) induces an injective immersion of the homogeneous space
G/Gp in M with image O,. When G = R™, the possible -orbits are injective
immersions of TF x R¢, 0 < k+ £ <n, where TF = 8! x --- x S, k times.

For each 0 <i < n—1 let Sing;(p) = {p € M;dim0O, = i} and Sing(p) =
UM, Sing; (). If p € Sing(p), O, is called a singular orbit and when p € Sing,(p),
Op is also called a point orbit and p a fized point by . We also write p
Sing{(y), i =1,...,n—1, when O, is a T*-orbit. If Sing(p) = M, we call ¢ a
singular action.

For each w € R™\ {0} ¢ induces a C"-flow (¢!,)icr given by ¢! (p) = p(tw,p)
and its corresponding C"~!-vector field X,, defined by X,,(p) = D1¢(0,p) - w. If
{ws,...,w,} is a base of R™ the associated vector fields X,,,,..., X, determine
completely the action ¢ and are called a set of infinitesimal generators of ¢. Note
that [X,, Xw,;] =0 for any two of them.

Denote by A"(R™, M) the set of CT-actions, 7 > 1, of R™ on M such that
their canonical infinitesimal generators are also C™ vector fields. Given two actions
{0; X1,...,Xn} and {¢;Y1,...,Yn} define di(p,¥) = 1T?<xn”X’ — Yi||k. With

this distance A"(R™, M) is a metric space and the corresponding topology is the
Ck-topology. We say that ¢ is an action of type j and write ¢ € AZ(R™, M) if
the union of the j-dimensional orbits is an open dense subset of M. Note that
for analytic actions A“(R™, M) = A§(R™",M)U AY(R*,M)U---UA%(R", M), see
Lemma 2.6. This is not the case for non-analytic actions since it is possible to have
p € A%(R™, M) which does not belong to any A (R", M), see [4].

Let ¢ € A"(R¥, M) and X,,...,X; a set of infinitesimal generators of ¢. We
shall denote by ¥(y) the commutative Lie subalgebra of X"(M) generated by
those vector fields.
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Definition 2.1. An action ¢ € A" (R*, M) is said to immerse (immerse properly)
in A"(R™, M), k < n, if thereexist ¢ € A"(R™, M) such that ¢(v) is a subalgebra
(proper subalgebra) of ¥(p). We shall write ¢ — ¢ to indicate that ¢ realizes
the immersion of . If ¢ € AL(R*. A7) immerses properly in A7 (R™, M) one shall
say that 1) embedds in A7 (R", M).

Let ¢ € A"(R¥, M) and X,,.... Xy a set of infinitesimal generators. v can
allways be immersed in A"(R" Af). In fact, put Xy = Z;::la]‘in, 1 =9 <
n — k, where each aj; : M — R is a first integral, perhaps constant, of each

Xj, j=1,...,k. The action ¢ generated by X,,..., Xk, Xg41,...,X, realizes
the immersion of 1. Note that the immersion is proper if at least one aj; is non-
constant. On the other hand ¢ & A,'C(Rk,]\f[), in general, does not embedds in
Al (R™, M).

The notions of topological equivalence and C* structural stability that we use
here for actions are the standard one’s. The following two lemmas extend to actions
of R™ classical lemmas in the theory of flows, see [1]. Let D™ = {(z1,...,Zm) €
R™; |z;| <€}, € >0, and % =(0,...,0,1,0,...,0) the constant vector field.

Lemma 2.2 (k-flow box). Let ¢ € A™(RF, M) with infinitesimal generators X, ..., Xk,
and O, a k-dimensional orbit. There exists a CT- diffeomorphism h:V, — D",
where V, 1is a neighborhood of p, such that h.X; = —a—z— in DI*, for each i =

Tse 2 50s 1G5

Remark 2.3. Note that the diffeomorphism h = h(p) : V,, — D" depends contin-
uously on ¢ in the following sense: given n > 0, there exists § > 0 such that if
@ € A"(RF, M) is & Cl-close to ¢, then h(@):V, — D™ 4s n C'-close to h(yp)
m VN \7,, ;

A pair (Vp, h) asin Lemma 2.2 will be called a k-flow boz at p. By using Lemma
2.2 one can also prove:

Lemma 2.4 (Long k-flow box). Let ¢ € A"(R*¥, M), O, a k-dimensional orbit
of ¢ and v C O, homeomorphic to [0,1]. Then, there exists k-flow bozx (V4,h),
where V is a neighborhood of ~.

Infinitesimal generators adapted to a singular orbit. Let O, be asingular k-
dimensional orbit of ¢ € A"(R™, M) and G, its isotropy group. O, isa T¢*xRk £
orbit with 0 < ¢ < k < n. Call Gg the connected component of G, that contains
the origin and let H be a k-dimensional subspace of R™ such that R* = H @
Gg. Let {wy,...,wn} be a base of R™ such that {w;,...,w} is a base of H,

{Wk+1,...,wn} is a base of Gg and {w,...,we} generate the subgroup G, N H.
{Xi; = Xu,;i = 1,...,n} is a set of infinitesimal generators of ¢. Note that
Xk+1(q) = -+ = Xn(q) =0 for every q € Op. We shall say that X;,...,X, isa

set of infinitesimal generators adapted to O .

Applying Lemma 2.2 to the action ¢ restricted to H, we obtain a chart h :
V, — D™ of M such that if (6,z) € D" = D¥* x D™=k then the vector fields
X, in this chart can be writen

5}
X‘i(oa I) —3_0_13
(2.1) . 8, < o .
Xk+i(9,I) = Za]l(r)%ﬂ- Z aji(z)%, l=1,...,n—k

=1 j=k+1 J

i=1,....k

Il

L
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A chart like the one above is called adapted to O, at p. The vector fields

)?i: z a]i(:c)—a—, i=1,...,n—-k,

0z ;
j=k+1 J

define a local action ¢, of R*™% on D™~* having 0 € D% as a fixed point.
When p is a fixed point of ¢, then a chart adapted to O, at p will be any

chart of M which contains p. In this case )?i = X =Ly

Remark 2.5. Note that {Xl,...Xk,)?l,...,)?n_k} define a local R™-action @
on DI* and that Og,z)(P) = O(g,zy(howoh™!) for each (0,z) € D™.

Lemma 2.6. In a closed connected real analytic manifold M the following decom-
position holds:

A¥(R™, M) = A5 (R™, M) U AY(R™, M) U - -- U A%(R™, M).

Moreover, if ¢ € A%(R™ N), then there is only a finite number of n-dimensional
orbits, all of them homeomorphic.

Proof. Let Xi,..., X, be aset of infinitesimal generators of ¢ and O, an orbit of
maximal dimension £, 0 < & < n. Fix a finite number of charts (U;,z;), 0 <1 < ¢,
of M such that M = Uf=1U1— and assume that X;,..., X are linearly independent
in U; . This last property propagates along the charts to an open and dense subset
of M using the fact that a real analytic function defined on an open set U C R™
is zero either on U or on the complement of an open dense subset of U, see [7]. Let
0,1, O3z be two different n-dimensional orbits of ¢ € A“(R™, N) and G,,G> their
respective isotropy groups. If u € G,, then X!|o, =id. Since X} is an analytic
diffeomorphism, it follows that X! = id on N. Thus, u € Gy ie., G; C G,.
By the same argument Gy C G; and therefore G; = G,. Finally, using charts
adapted to the singular orbits one shows that every ¢ € A¥%(R™ N) has a finite
number of n-dimensional orbits. a

Let O, be a T"~2-orbit of ¢ € A"(R"~!, N). It can be verified that X1 has
the following two properties:

(1) Although X i depends on the chart (V,,h) which in turn depends on
H, the fact that 0 € D2 be a center (saddle, node, focus) of D)?n_l(O) does not
depend on the chart.

(2) If ¢ € Op and q # p, there exists a chart (V,,h) adapted to Op such that
qgeVp.

It follows from the two properties above that the following concept is well defined.

Definition 2.7. Let O, be a T"~2-orbit of 1 € A"(R"~!, N). O, is said to be
transversally simple if there exists a chart adapted to O, at p such that 0 € D? isa
simple singularity of )?n_l . When 0 is a center (saddle, node, focus) of D)?n_l (0)
we will say that O, is transversally a center (saddle, node, focus).

Separatrices of a 7" 2-orbit that is transversally a saddle. Let O, be a
T~ 2-orbit of 1) € A"(R"~!, N) that is transversally a saddle, Xi,..., Xn-2, Xn_1
infinitesimal generators adapted to O, and h:V,, — D=2 x D? a chart adapted
to O, at p. Let £° (£*) be the stable (unstable) submanifold of X, 18t 0 e
¥ = h~Y(D?) and n°* = h71(€°) (n° = h™1(€°)). We know that X}(p) =p, i =
1,...,n — 2. Let m; : V, — ¥ be the projection along the orbits of the action
generated by Xy,...,X;-1,Xiy1...,Xn—2 and w; : U C £ — ¥ be the local
diffeomorphism defined by w; = m; o X Since [X;, X,1 1]=0, i=1,...,n—2,
it follows that w; takes orbits of X,1 1 in U into orbits of Xn 1 in E and in
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particular w,((n*Un")NU) C n*Un*. Therefore, the four connected components of
n°Un*\{p} give rise to at most four @-orbits and each of them is a 7"~ 2 x R-orbit.
This orbits will be called separatrices of O, .

Lemma 2.8. Let O, be a transversally simple T"*-orbit of ¢ € A"_ (R", N).
There exists a neighborhood V' of Op and , € AT(R*™1, N) such that Oy(¥y,) =
Oq(p) for each q € V. In particular, if 1 = w, then Og(1,) = O4(p) for each
geN.

Proof. Let Xi,...,Xn—2, X5-1,X, infinitesimal generators adapted to O,. We
know that Xi,..., X, 2 are linearly independent in a neighborhood Vi of O,.
Let h :V, — D" be a chart adapted to O, at p. Since O, is transversally
simple, we can assume that 0 € D? is a simple singularity of )?n_l . Thus, there
is a neighborhood U of p such that if ¢ € U\ O,, then X, _1(q) # 0. It is
clear that X, _; has no singularities on the saturated set sat(U NVy) of UN W,
under the action defined by {X1,..., X,_2} and also that sat(U N V;) contains a
neighborhood V' of O,. Call v, the action of R*~! on N whose infinitesimal
generators are {X,...,Xn_2,Xn_1}. Since ¢ € Al_;(R™ N), it follows that
Xn = Z?:—]l fiXi in V, where X;f; =0 for 4,5 = 1,...,n — 1. Note that when
r=w, V=N. O

Definition 2.9. A T" 2-orbit O, of ¢ € A7_,(R",N) is transversally simple
(center, saddle, node, focus) if and only if it has the same attribute as an orbit of
Y, € AT(R* ! N), where 9, is given by Lemma 2.8.

Proposition 2.10. If ¢ € A"(R™, N) has an orbit O homeomorphic to T" ' xR,
then Front(O) is the union of at most two T*-orbits with k € {n —2,n — 1}.

For each n > 2 let H, be the family of all analytic closed connected and
orientable manifolds that can be obtained by glueing two copies of T2 x D2
Note that H, has only one element, which is S?. Note also that Hj consists of
3-manifolds that admit a Heegaard splitting of genus one.

Theorem 2.11. Let N be a real analytic closed connected and orientable n-
manifold, n > 2. Assume that o € A“(R™, N) has at least one T""! x R-orbit,
then every n-dimensional orbit is a T"~1 x R-orbit and ¢ € A¥(R™, N). Further-
more,

(1) of Sings_o(p) =0, then N is homeomorphic to T",

(2) if SingS_o(p) # 0, then Singi_,(p) is the union of two T™ 2-orbits and

N € Hy, -

Corollary 2.12. Let N be a real analytic closed connected and orientable n-
manifold and ¥ € AY_,(R""!, N) that has a T -orbit O(¢). If ¥ embedds in
A?(R™,N), then N is either homeomorphic to T" or N € H,. Moreover, in
both cases O(v)) has a neighborhood V that is a union of T™!-orbits.

Definition 2.13. Let €° be the set of actions ¢ € A%_,(R™, N) such that there
is at least one 7" 2-orbit @, which is transversally a center and one T™~2-orbit
which is transversally a saddle. Let ¥, € A“(R"~!, N) be the action constructed
in Lemma 2.8 from ¢ and O,. Now define the subset %, = %,(N) C €° by
saying that ¢ € %, if and only if

1) Sing;(p) =0, i=0,...,n—3, and Sing,_,(p) = Sing;,_,(»),

2) every 1"~ 2-orbit is transversally simple,

3) v, +— @ is a proper immersion,
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4) If O, is a T" %-orbit of ¢ that is transversally a saddle, then its separa-
trices are not separatrices of any other 77~ 2-orbit that is also transversally
a saddle.

Note that if O is a T 2-orbit of ¢ € €, then from condition 3) one obtains
that O is transversally a center or a saddle. The following statement is a corollary
of Proposition 2.10.

Corollary 2.14. Let ¢ € €°(N) and 1, as in Definition 2.13. Then P, can
not be embedded in A% (R™, N).

Theorem 2.15. Let N be a real analytic closed orientable n-manifold and ¢ €
Cn C AY_(R™ N). Then ¢ is structurally stable and consequently €, is an open
set in A¥(R™, N).

3. PROPERTIES OF ACTIONS IN %,

In this section we prove some properties of actions ¢ € %, that are needed for
the proof of Theorem 2.15. For the sake of clarity some of them are given first for
n = 2 and then for n > 2.

Lemma 3.1 (Persistency of transversally simple 7"~ 2-orbits). Let Qg be a transver-
sally simple T™2-orbit of ¥ € A"(R™™, N). Given a neighborhood V of Oy there
exist a neighborhood Vy of ¥ in AT(R"™! N) such that each £ € V,, has only one
singular orbit Og(§) CV and Og(€) is also a transversally simple T™~2-orbit.

Proof. The proof is obtained using Remark 2.3. O

Remark 3.2. Lemma 3.1 is also valid for actions ¢ € Al _;(R™, N).

For each ¢ € €, let K, be the set of points p € N such that O,(y) is
not a T" l-orbit and c;,...,ck (S1,...,8¢) be the T"%-orbits of ¢ that are
transversally a center (saddle).

Proposition 3.3. %, C AY(R?, N) is an open set in A*(R%, N).

Proof. Let ¢ € %5. Denote by cy,...,cr the centers and by s;,...,s, the saddles
of ¢. Since ¢ € %>, it follow that £ > 1 and £ > 1. Let X;, X» be infinitesimal
generators of ¢ such that the flow ¥, of X, has the same orbits as ¢ and
Xo = fX;, with f non-constant. Given a neighborhood of each singular point of
X1, by Lemma 3.5, there exists a neighborhood U = {/(X;) such that any X; €
has only one singularity in each of these neighborhoods and of the same type -center
or saddle- as those of X, . Assume now that V' is a neighborhood of ¢ such that
if €V, then X, € U. @ can not belong to A% (R2, N). If this were the case,
then @ would have an S! x R-orbit intersecting any neighborhood of ¢; and also
an R-orbit intersecting any neighborhood of 51, but this contradicts Proposition
2.10. Thus @ € AY(R2%,N) and X, = fX1. Moreover, if V is sufficiently small,
then f can not be constant. O

Theorem 3.4. If @ € %5, then there exists a neighborhood V of ¢ such that for
each ¢ € V

Kz ={&,...,&} U {51,...,8¢} U{UL,Si1 U Sin}

where, for each i = 1,...,¢, §1~1 and S;» are R-orbits satisfying FYont(gﬂ) =

3; = Front(S;2).
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Proof. By Proposition 3.3, it is enough to prove the theorem for a fixed ¢ € %, .
[t Oy isa R-orbit of ¢, then a(q) =w(q) =s; for some i € {1,... k}. In fact,
assume that p € w(q) is a regular point of 1), . Take a transversal section ¥ to
the flow 9, by p. There is a sequence g, € ¥, with g, = ¥,(tn, ), converging to
p. Let f be the real analytic first integral of 1, given by Definition 2.13 condition
3). flz is constant on {gn}. This gives a contradiction and proves that w(q) = s;
for some i € {1,...,k}. It follows from condition 4) that a(q) = s;, too. Since
each saddle has two self-connections, the theorem is proved. a

To each fixed point p of ¢ € A"(R"*, M), 1 <r < w, there is a linear action
0 : R™ — Aut(T,M) associated, given by o(v) = Dy,(p) where ¢,(-) = ¢(v, -).
Recall that if ¢ € AT(R?,N?), 1 < r < w, has a fixed point p € N? that is a
center, then the phase portrait of the induced linear action p is like Figure 1, (i).

FIGURE 1.

The following lemma gives a sufficient condition for the topological equivalence
between ¢ and p in the neighborhood of p.

Lemma 3.5. Assume that ¢ € A7(R? N?) has a first integral that is not constant
on any open set. If p € Fix(y) is a center, then ¢ 1is topologically equivalent to o
in a neighborhood of p.

Proof. Let X;, X2 be infinitesimal generators of ¢ such that p is a center of X,
and 1, € A"(R, N?) is the flow of X;. Let h:V, — Uy be a chart of N such that
Sing(X1) NV, = {p}, h(p) =0 and D(h.X,)(0) = (g “;), B # 0. There exists a
neighborhood 0 € U C Up such that if z € U, then h.X;(z) is transversal to the
ray Oz. It follows that any orbit of X; by q € h=}(U) is either closed or a spiral
that accumulates in p or in a closed orbit contained in h~!(U), see Figure 1 (ii).
Let C = {q € h™Y(U); Oy(X1) is closed}. If A='(U)\ C has non-empty interior,
then the first integral would be constant in some open set. Thus C' = h=!}(U) and
this proves the lemma. O

Proposition 3.6. 4, C AY_,(R™, N) s an open set in A“(R", N).

Proof. Denote by ci,...,ck and by si,...,s¢ the T" 2-orbits of ¢ that are
transversally a center and a saddle, respectively. Since ¢ € €,, k> 1 and ¢ > 1.

Let Xi,...,X, beinfinitesimal generators of ¢ such that the action v, generated
by Xi,...,Xn—1 has the same orbits than ¢ and X, = fiX;: 4+ + foo1Xn_1,
with f; non-constant for at least one i = 1,...,n — 1. By Lemma 3.1, given a

neighborhood of each 7"~ 2-orbit of 1, there exists a neighborhood U; = U;(X;)
of X;, i=1,...,n—1, such that any action generated by Y1,...,Y,_1, Yi € lf;
has only one T™ 2-orbit of the same type than 1, -transversally a center or
saddle- in each of these neighborhoods. Now, assume that V is a neighborhood
of ¢ such that if ¢ € V, then Y; € U;, i = 1,...,n—1. ¢ can not belong
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to AY(R™,N). If this were the case, then ¢ would have a 7" ! x R-orbit in-
tersecting any neighborhood of ¢; and also a T"~2 x R-orbit intersecting any
neighborhood of s, , which contradicts Proposition 2.10. Thus, ¢ € AY_(R",N)

and Y, = lel + o+ fn_lYn_l. Finally if V is sufficiently small, then ﬁ can
not be constant for every i =1,...,n — 1. O

Theorem 3.7. If p € €y, then there exists a neighborhood V C €, of ¢ such
that Kz = {¢1,...,ck} U{31,...,8¢} U (UE_,Si) for each & € V and for each
1=1,...,¢, S, satisfies one of the following statements:
(1) gl- is the union of two T™ 2 x R-orbits .5~’“ ,§i2 such that §1j Us; is
homeomorphic to T" 1, j =1,2.

(2) S; is a T" 2 x R-orbit such that Front(S;) =5; .

The structure of ¢ € A(R"~! N) in the neighborhood of a T™2-orbit that is
transversally a center is well determined when 1 has a non-constant first integral.
More precisely:

Proposition 3.8. Assume that ¢ € A"(R"™!, N) (p € AT _,(R",N)) hasa T""2-
orbit Qg that is transversally a center. If ¥ (@) has a first integral that is non-
constant on any open subset of N, then there exists a 1)-invariant (p-invariant)
neighborhood Vo of Oy such that Vo \ Og is a union of T™ !-orbits.

Proof. Let V' be a neighborhood of Oy in N such that V N Sing(p) = Og. Take
a chart h : V, — D! adapted to Op in p with h(p) = 0 and V, C V. The
infinitesimal generators of 1/ in these coordinates are like in (2.1). Since 0 € D? is
a center of D)?n_l(O) and 1 has a first integral that is not constant in V| so does
X, i By Lemma 3.5 there exists § € (0,¢) such that all orbits of Xn_1 within
Dg are closed. Let 1y be the action of R"~2 on N given by X1,..., Xn_2. Og
is also an orbit of 1y and ¥ = h‘l(Dg) is transversal at p to the orbits of g . If
q € Z\{p}, then C, = h“l(Oh(q)()?n_l)) is homeomorphic to S! and is contained

in Oy, see Figure 2. Let’s consider the holonomy of Oy as a leaf of the foliation
defined by g

(3.1) Hol : m1(Op) = ZF — Diff"(Z, p).

The orbit a; of X; by p, i =1,...,n—2, isclosed and {[a,],...,[en-2]} is a set

of generators of m(Op). Let m; : V, — £ be the projection along the orbits of the
action generated by Xi,...,Xi—1,Xit+1...,Xn—2. Then, w; = Hol(a;) = m; 0 X}.
Note that w;(Cq) = Cy,(q) for each ¢ € X. We state that w,(Cy) = C; for each
q € =\ {p} and each i € {1,...,n— 2}, which in turn implies that O, isa T""!-
orbit. In fact, if for some g € ¥\ {p} there exists 7 € {1,...,n — 2} such that
wi(q) ¢ C,, then either w;(Cy) or w'(C,) would be a circle Cy in the interior
of Cy. This would imply that all orbits of ¥ by points of the ring R C T whose
boundary is Cq U Cy would have a common orbit in its closure. Therefore, any
first integral of 1 would be constant on the saturated of R, which is an open set.
Finally, when ¢ € A7 _,(R™, N) it is enough to consider v, . O

With the same notation used in Proposition 3.8 and similar arguments we obtain:

Lemma 3.9. Assume that 1 € A"(R"™!, N) has a T""2-orbit Oq that is transver-
sally a saddle. If ¥ has a first integral that is not constant on any open set, then
for each i = 1,...,n — 2, either w; = id or w? = id in the space of orbits of
(h*Xn—l)IE .

Lemma 3.10. If O is a T" 2 x R-orbit of ¢ € €,, then O is a separatriz of
some T 2-orbit Qg that is transversally a saddle.






