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Resumo

Neste trabalho provamos que os atratores de sistemas de equagdes
parabdlicas, fracamente acopladas, com condi¢ao de fronteira nao lin-
ear, estao proximos, para difusibilidade grande, dos atratores de uma
equagao diferencial ordindria. A equacao diferencial ordindria limite
¢ dada explicitamente em termos da reacao, do fluxo na fronteira, da
medida (n — 1)-dimensional da fronteira e da medida n-dimensional do
dominic. As ferramentas utilizadas sao a teoria de variedades invari-
antes e resultados de comparagao.



Spatial Homogeneity in Parabolic

Problems With Nonlinear Boundary
Conditions

Alexandre N. Carvalho' and Marcos R. T. Primo?

'Departamento de Matemética,

Instituto de Ciéncias Matemaéticas e de Computagao,
Universidade de Sao Paulo - Campus de Sao Carlos,
Caixa postal 668,

13560-970 Sao Carlos SP, Brasil
?Departamento de Matematica,
Universidade Estadual de Maringa,
87020-900 Maringa PR, Brasil

Abstract

In this work we prove that global attractors of systems of weakly coupled
parabolic equations with nonlinear boundary conditions and large diffusivity
are close to attractors of an ordinary differential equation. The limiting ordi-
nary differential equation is given explicitly in terms of the reaction, boundary
flux, the n- dimensional Lebesgue measure of the domain and the n—1- Hausdorff
measure of its boundary. The tools are invariant manifold theory and compar-
ison results.

1 Introduction

Let @ ¢ R¥, N € N, be a bounded domain with smooth boundary I' := 9.
Consider the following problem

{ ui(t, z) = DAu(t,z) + F(u(t,z)) t>0, z€Q, (1)

D%(t,x) = G(u(t,z)) t>0, z€T,

(S]
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where u = (uy, ug, -+ ,up) ", n > 1, % = ((Vuy, @), - (Vu,, )", 7 is the outward
normal vector and D is the matrix
[ d, 0 0 0 |
0 do 0 - 0
Di=|0 0 dy - 0 (1.2)
o 0 0 - d,
L 4 nXn

with d; > 0, 4 = 1,---,n. The nonlinearities F' = (Fy,--- , F,),G = (G, ,Gy) :
R™—R" are locally Lipschitz functions.

Our aim is to show that, for suitably chosen matrix D, the asymptotic behavior
of (1.1) is essentially the same as the asymptotic behavior of the following system of
ordinary differential equations:

0(t) = F(u(t)) + [TIG(v(t)). (1.3)

More precisely, we show, under some hypothesis on the nonlinearities /' and G, that
the problem (1.1) has a global attractor and that this attractor is contained in a
small neighborhood of the global attractor of the ordinary differential problem (1.3),
for matrices D with suitably large diagonal entries. This is saying that for large times
the solutions of (1.1) are almost independent of the space variable. This is what we
are calling homogeneity.

These results are seen in [8] for the case G = 0 and later in [9] for the case G
linear. The results that we obtain here generalize, partially, these results and offer a
unified approach to these kind of problems.

We will obtain the existence of an invariant manifold for the solutions of (1.1).
We note that in the problem treated in [8], the space of constant functions is already
an invariant manifold for (1.1) with G = 0, fact that does not happen when G # 0
(in this case we show that there is an invariant manifold which is close to the space
of constant functions).

This work is organized as follows: In Section 2 we state the needed hypotheses,
introduce some notation and state the main results of this work; in Section 3 we
extend some results on positivity and comparison of solutions obtained in [4] and [5],
that can be used for systems even more general than (1.1); in Section 4 we obtain the
global existence of solutions and the existence of global attractors for (1.1), as well as
some uniform bounds relatively to the matrix D for this attractor; finally in Section
5 we prove the main results.

2 Statement of the Results

In this section we introduce some notation and state the main results of this paper.
Throughout this work, X = LI(Q,R*) or X = WH4(Q,R"). To properly state our
results we first need to introduce some notation and basic results.
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Following [3], consider the operator Ap = diag(A;,---,A,), where A;, for ¢ =
1,--+,n, is defined as follows: let A; : D(A;) C LY(Q)—L7(R2), with

D(A;) = {p € W29(); 22 =0, em T} = W2'();

o (2.1)
A = —d; Ao,

Let (E;); := D(4;),i=1,2,--- ,n and E := (E)) := L(Q), 1 < ¢ < oo. Taking
[-,-]o as the complex interpolation functor of exponent 0, A;, i = 1,2,---,n has a
scale of Banach spaces Ef, 0 < a < 1 satisfying

(E)2 = (B}, (B:)day, 1< g<o0.

q qe q
Define, EY := (E1)g x (E2)g x -+ % (E,)g, for a € [0,1], 1 < ¢ < co. We have that,
for & > f and 1 < ¢ < oo, the embedding E¢ C Ef is compact, Ef = Wh(Q,R")
and we obtain from [2] that

E2 == W (Q,RY), LY(Q,R")], = H*(Q,R"), (2.2)

where a € (0,1), We!(Q,R") = ], We'(Q) and H?*(Q,R*) are the Bessel po-
tential spaces (see [2, 6] for details). We can extend this scale of Banach Spaces to
negative exponents by E;* := (E7)’, for a > 0. The operator Ap can be extended to
these spaces in such a way that its realization, A,_1, in El‘]"‘1 satisfy Ay_; : E(‘;‘—>E,‘;“1
and is a sectorial operator, for 0 < a < 1.

We then consider problems of the form

u(t) = —Apu(t) + H(u(t)), t > 0;

w0 — 0 (2.3)

where Ap is the operator defined above and the function H is defined by H := Fqo+Gr,
acting in suitable test functions, ¢, in the following way:

(H(u), d) = (Fa(u), d) + (Gr(u), 9) =/(F(U($))-¢(z))d$+/(G(U($)) - ¢(z))dz.

Q r

To obtain the local existence and uniqueness for the problem (1.1), we need to impose
some growth conditions on F and G in (1.1), these conditions are the same obtained
in [3]. Next we describe the restrictions.

(C1) Suppose that F;, G;, i =1,2,...,n satisfy
|h(u) — h(v)| < clu —v|(Jul’ + v~ + 1), u,veR", (2.4)

with exponents p; and p;, @ = 1,2,...,n respectively, such that, with N > 2
2q _ q .
plsple-'—ﬁ and pigpg::1+N7Z:172>

with the second inequality being strict when N = 1.
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(C2) Suppose that the following conditions are satisfied

1. g> N,

2. ¢ = N and for all n > 0, there is a constant ¢, > 0 such that F; and G,
1=1,2,...,n satisty

N N
|h(w) — h(v)] < cplu — ] 4+ ™™ ) uveRY, (2.5)

3. 1< q< N, F; and G;, i = 1,2,...,n satisfy (2.4) with exponents p; and
0, t =1,2,...,n respectively, such that,

2q _
PiSPf3:1+NT(‘1 and p; < py =1+

The proof of the following theorem can be found in [3].

Theorem 2.1 Suppose that F; and G; satisfy the growth conditions (C1), for every
i=1,2,...,n. Then, for all uy € LY(Q2,R"), there is a unique local solution, u( . ;ug),
to (1.1), satisfying u(0;up) = uo, and depending continuously on ug € LI(Q,R™).
Furthermore, this solutions is classic for every t > 0.

If for i=1,2,...,n, F; and G; satisfy (C2), then for ug € WHI(Q,R"), there is
a unique local solution, u(.;ug), to (1.1), satisfying u(0;ug) = ug, and depending
continuously on ug € WH4(Q2, R"). Furthermore, this solution is classic for t > 0.

An important remark is that in any of the cases of the Theorem 2.1, the solution
satisfies the variation of constants formula given by

t
u(t; ug) = e~ 4Ptyg +/ e A=) (u(s; ug))ds, (2.6)
0

To show global existence, following the ideas in [4], we need to assume some
restrictions on the sign of the nonlinearities in (1.1). Suppose that there are constants
By, Cy € R and By, C; > 0 such that for u € R",

’U,iFi(’U,) S —COU? + Cllui|:

uGi(u) < —Bouf + Biluil, (2.7)

i =1,2,...,n. Furthermore, with the same reasoning as in [4] and [12], to obtain the
existence of global attractors for (1.1), suppose that the first eigenvalue, A\;(D), of
the problem
2
Da—l_‘.—i—Bou:O em [, (2.8)
n

be positive, where By, Cy are given in (2.7).

Under these conditions we prove the following result:

{ —DAu+Cou=Au em £,
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Theorem 2.2 Under the above conditons,the solutions found in Theorem 2.1 are
globally defined. Furthermore, the problem (1.1) has a global attractor Ax (D), in
X =LIQR) or X = qu(Q R™), such that

sup ||v||zee(ary) < Ko,
vEAx (D)

where Koy = Ko(Q,T, A\ (D), Co, Cy, By, B1). If d > 1, where
d :=min{dy, ds, - ,d,}, (2.9)
then Kq can be taken uniform with respect to D given in (1.2).

In order to prove the properties about the global attractors for (1.1), we need to in-
troduce the limiting ordinary differential equation (1.3). To do this, for: =1,2,--- ,n
let \;(d;) be the first eigenvalue of the operator A4;, defined in (2.1). We know that
Ai(d;) = 0,4 =1,2,---,n. Consider ¢;(d;), i = 1,2,---,n, the corresponding nor-
malized eigenfunction. In this case, ;(d;) = |2]"%, i = 1,--- ,n. We can, without
loss of generality, suppose that || = 1, then ¢;(d;) =1,i=1 2, e

Now, with the above notation, fix ¢ € (1,00) and EO‘ = E,‘l’, a € [—2,2]. Consider
the following decomposition of £ :

E*=Ue U], (2.10)
where U = R" and Uy = {p € E*; (¢, p) = 0,9 € U} with (¢, 0) = [, o(z) " ¥(z)dz,
for 9 € U and ¢ € E*. Observe that if ¢ € U, then ¥ € L*(2, R*) and, therefore,
the above integral is well defined for ¢ € E®. Also note that U can be viewed as a

n—dimensional subspace of E%, containing only constant functions.
Let u(t, - ), be a solution of (1.1) in X. We can write

u(t,z) =v(t) +w(t,z), z€Q, (2.11)
where v(t) € U = R" and w(t, -) € US, t > 0. Integrating (2.11) we obtain that

/Qu(t, z)dz = v(t) + /Q w(t, z)dx = v(t),

since 1 € U. Hence, v(t) = [,u(t,z)dz and w(t,z) = u(t,z) — v(t), for £ > 0 and
x € . Thus,

Lo () :%(/Qu(t,x)da:) :ADAu(t,x)dx+[lF(u(t,m))dm

/F(v(t) +w(t,z))dz + /G(v(t) +w(t,z))dz = P(v(t),w(t, -)),
0 T
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where, for v € R* and w € U}
Plo,w)= /Q F(v+w(z))dz + /1“ G(v+ w(z))dz.
In addition, for ¢ > 0 and z € €2, we have
Fw(t,z) = Z(ult,z) - v(t) = DAult,z) + Flu(t,)) — (P(u(t), w(t, -))
= DAw(t,z) + F(u(t,z)) — (P(v(¢), w(t, )).

Also, for z € " and ¢t > 0,

o 0
Dozu(t,z) = Dozult, 2) = G(u(t) + w(t,2)).

Therefore, using the decomposition (2.10), we can write every solution of (1.1) as
a solution of the problem

Lo(t) = Pu(t),wt, -), >0,
z) = DAw(t,z) + Q(v(t), w(t,z)), t>0, z€Q, (2.12)

(t
Dg—gza( (1) +w(t,z)) t>0, zeT,
with P: U+ Ut—U and Q : U + UF— L%, R"), defined, for v € R* and w € UZ,
by
B, ) = /F(v & s+ /G(v .
Q r
(Q(v,w))(z) = (Fa(v+ w))(z) — P(v,w), z € Q.

With all of this we can prove the main result of this work:

(2.13)

Theorem 2.3 Let Ay be the global attractor for the ODE (1.3) and V C R" be a
neighborhood of Ay such that w(V) C Ao. Then, for all neighborhood, W, of Ay
such that W C V, there exists a dy > 0 and a function o4 : W—UZL, d > dy,
such that o4(v)—=0, as d—oo, uniformly for v € W, d as in (2.9). The set My =
{u=v+04(v),v € W} is an exponentially attracting invariant manifold for (1.1).
Furthermore, the flow on this manifold is given by

u(t, z) = v(t) + oa(v(?))(2),

where $u(t) = P(u(t), ca(v(t))-
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3 Comparison and Positivity Results

In this section we extend the results of [4] on comparison and positivity of solutions
to problems including (1.1). These results will be useful to show global well posedness
and asymptotic properties of solutions to (1.1). The abstract comparison results in
this section can be found in [4].

Definition 3.1 An ordered Banach space is a par (X, <), where X is a Banach space
and < 1s an order relation in X such that

o z <y impliesx+z<y+z forallz,y,ze X;
o z <y implies \x < \y for A\ € R" and z,y € X
o The "positive cone” C = {z € X;0 < z} is closed in X.

Definition 3.2 Let (X, <) be an ordered Banach space. We say that the map T :
X—X is increasing T(xz) < T'(y), whenever z < y, z,y € X and we say that it is
positive if 0 < T'(z), whenever 0 < z € X.

Definition 3.3 A sectorial operator A in an ordered Banach space (X, <) has posi-
tive resolvent in X, if there is \g € R such that (A+ \)~! is an increasing map in X,
for all X > Ay.

Let (X, <) be an ordered Banach space and A : D(A) C X—X be a sectorial
operator. Consider \g € R such that Re(c(A + \g)) > 0. Additionally, suppose that
A has positive resolvent.

We consider now problems of the form

{ ug + Au = f(u), t > to,

'lL(t()) = 1Ug € AX, (31)

where A and X satisfy the above conditions. Suppose that we have constructed, as
in Section 2, a scale of interpolation spaces, which we denote by X% « > 0, with
X% = X and X! = D(A). In each X*, consider the order induced by X, and suppose
that the scale X® a > 0 is an ordered scale of spaces in the sense of the definition
below.

Definition 3.4 A scale of Banach spaces X®, a > 0 is an Ordered Scale of Spaces
if the inclusions X® — XP « > B are positive, the a-realization of A in X, A, :
Xotl s X o > 0, have positive resolvent and the positive cone of X* is dense in the
positive cone of XP for all a > B > 0.

Assume that the nonlinearity f in (3.1), is subcritical in a certain space X'*¢,
€ > 0, that is, there exists ¥ > 0 with 0 < 1+ — v < 1 such that f : X' —X7 is
locally lipschitzian. Furthermore, suppose that the problem (3.1) is locally well posed
in X!. Therefore, we have the following result whose proof can be found in [4].
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Theorem 3.1 Let A and X be as above and suppose that the nonlinearities f, g and
h satisfy the conditions described above for f.

(i) Suppose that for all T > 0 there exists a constant § = B(r) > 0 such that f(-)+B1
is positive when restricted to the ball of radius r in X'*¢. If 0 < ug € X! then,
the solution, u( - ;ug, f), of (3.1) is positive for as long as it exists.

(ii) Suppose that for all v > 0 there is a constant B = (r) > 0 such that f(-)+ I
is increasing in the ball or radius r of X'*¢. If ug,uy € X, with ug < u, then
u( -5 ug, f) <u(-;uy, f) for as long as both solutions exist.

(iii) Suppose that f and g satisfy f(-) < g(-). Then, for all ug € X, u(-;uq, f) <
u( - ;ug, g) for as long as both solutions exist.

(iv) Suppose that f,g are such that for all r > 0, there is a constant § = B(r) > 0
and an increasing function, h, such that f(-)+pBI < h(-) < g(-)+BI in the ball
of radius r in X', If ug,u; € X' with ug < uy then, u(-;ug, f) < u(-;uo,g)
for as long as both solutions exist.

Now the idea is to apply this result to the problem (1.1). In fact, we will obtain
results on comparison and positivity for problems a little more general then (1.1).
First, we define an order, <,in LI(Q,R*),n € N, 1 < g < oco. Let f = (f1, fa, -+, fn)s
9= 1(91,92,""",9n) € L1(Q,R"), we will say that f < gif f; < g;, 1 =1,2,-- ,n,
where < is the usual order in L9(Q2). Clearly (L?(2, R"), <) is an ordered Banach

space.
The next two results are adapted from [7], and will be used to show that the linear

operators associated to problems like (1.1) have positive resolvent in L9(€2, R"), in the
sense of Definition 3.3.

Lemma 3.1 Let H be a Hilbert space and f € H. If there ezists f € H such that
Il < IIFI and (f, £) > [(f, I

where (-, -) denotes the inner product in H, then f=f

Theorem 3.2 Let (H,<) be an ordered Hilbert space, C its positive cone and A :
D(A) C H—H be a positive self adjoint operator; that is, (Au,u) > 0, for all u €
D(A). Suppose that there ezists a dense subset D C H such that:

1. (A+a)™'D C D, for all a > 0;

2. for each d € D, we can define |d| € DNC such that ||d|| = || |d] ||. Furthermore,
if d € D, then d € C if and only iof d = |d|;

3. forallde D and g € C, (|d|, g,) > |{d, 9)|;
4. if u € D(AY?), then |u| € D(AY?) and (AV?|u|, AV?|ul) < (AY2u, AV2y).
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Then, A has positive resolvent in H.

Proof: Consider in D(A%) the inner product given by

(f, )1 = (A2 f, AZg) + a(f, 9),

for f,g € D(A%) and for all @ > 0. Let X7 be the Hilbert space defined by X3 =
(D(Ai)’ ( )" )1)

Let g € D be such that g € C and ¢ = (A4 + a)~g. Then, since A? is self adjoint,
we have that

(lel, ehr = ((A+ a)le], (A+a)"g) = [{c, 9)I.

Additionally, 1 1
Helll} = (Azlel, Az[el) + [llell]* < flellt-

Using Lemma 3.1 with f = c and f = lc|, we conclude that if g € DN C, then
(A+a) gl =lcf=c=(A+a)'yg

and, therefore (A + a)~'g € C.
Now, the density of D in H and the continuity of (A + «)~!, implies that (A +
a)~lg € C, for all g € C. This shows that A has positive resolvent in H. [ |

Forn > 1 and 1 < ¢ < oo, consider the operator B defined by

B: D(B) C LYQ,R")—=LI(Q,R"),
with
D(B) = {¢ € W29(Q,R") ; D
B¢ = —DA¢ + co,

Q>|Q3
SUIS-

=-K,¢ em T}, (3.2)

for $ € D(B), where K,, := {kij}nxn, hereafter called coupling matrix, is a symmetric
matrix of order n, such that for all u € R",

Kyu-u >0, (3.3)

Kplul - |u| < Kyu - u, (3.4)

where |(uy, -+ ,un)| = (Jua], -+, |ua]), © -7 is the usual inner product in R*, D is an
n X m matrix given by (1.2), with d; > 0 for i = 1,2,--- ,n and ¢ > 0 is a constant

taken such that the first eigenvalue, u,(K), associated to the operator B be positive.
We have the following result:

Proposition 3.1 The operator B defined in (3.2) is a sectorial operator and has
positive resolvent in L1(Q2, R"™), for alln > 1.






