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Polar multiplicities, equisingularity and Euler
obstruction of map germs from C" to C"

V. H. Jorge Pérez, D. Levcovitz and M. J. Saia*

Resumo

Neste trabalho é estudada a questao de se determinar o menor nimero de
invariantes suficientes para a Whitney equisingularidade de uma deformacéao a
um parametro de um germe f : (C*,0) — (C",0) de corank um e finitamente
determinado. De acordo com um resultado de Gaffney, estes sao os invariantes
O-estaveis e as multiplicidades polares que aparecem em uma deformacao estavel
do germe f. Inicialmente sao determinados os tipos estaveis na fonte e na meta
e sao determinadas as relagoes entre os invariantes. Com isto é possivel diminuir
o numero de invariantes que garantem a Whitney equisingularidade. Além disto
¢ determinada um férmula algébrica para a obstrugao local de Euler para os
tipos estaveis das multiplicidades polares. Como consequéncia é mostrado que a
obstrucao de Euler é um invariante para a Whitney equisingularidade.

Abstract

We study how to determine the minimal number of invariants that garantee
the Whitney equisingularidade of a one parameter deformation of corank one
finitely determined holomorphic germ f : (C",0) — (C",0). According to a
result of Gaffney, these are the 0-stable invariants and all polar multiplicities
which appear in the stable types of a stable deformation of the germ. First we
describe all stable types, then we show how the invariants in the source and
the target are related and reduce the number using these relations. We also
investigate the relationship between the local Euler obstruction for nonsingular
varieties and the polar multiplicities of the stable types. We show an algebraic
formula for the local Euler obstruction in terms of the polar multiplicities and
show that the Euler obstruction is an invariant for the Whitney equisingularity

*Work partially supported by CNPq - Grant 300556 /92-6



1 Introduction

Gaflney describes in [3] the following problem: “Given a l-parameter family of
map germs F'(z,t): (C"*xC,0) — (CP x C,0), find analytic invariants whose con-
stancy in the family implies the family is Whitney equisingular.” He shows that
for the class of finitely determined map germs of discrete stable type, the Whitney
equisingularity (hence the topological triviality) of such a family is guaranted by
the zero stable invariants and the polar multiplicities of the polar varieties asso-
ciated to all the stable types.

The number of invariants depends on the dimensions (n,p) and this number
can be very big according to n and p are big. Then a natural question arises:

“For a fixed pair of dimensions (n, p), what is the minimum number of invari-
ants in Gaffney’s theorem that are necessary to guarantee the Whitney equisigu-
larity of the family?”

When p = 1, Teissier showed that the invariants for the Whitney equisin-
gularity are the sequence of invariants p* = (u°ut,...,u""?), where p? de-
notes the Milnor number of the intersection of F~1(0) with a generic j-plane,
= T T

The known cases for map germs germs of corank one, are n = p = 2, and
n = 2, p = 3 studied by Gaffney in [3]. More recently, the first named author
dealt with the cases m = p =3 in [21] and n = 3, p = 4 in [22], Vohra in [23] also
used Gaffney’s approach to study map germs from n-space (n > 3) to the plane.

In particular, the number of invariants required for Whitney equisingularity
in each of these situations was shown to be smaller than the a priori number given
by the general result of Gaffney (3].

In this paper we deal with the case n = p and consider germs of corank one.
We reduce the number of invariants neeeded finding relations among then and
using the fact that these are upper semi-continuous.

Another invariant that is associated to the polar invariants is the local Euler
obstruction for nonsingular varieties, introduced by R. MacPherson in [16] in a
purely obstructional way. Gonzales-Sprinberg gave in (7] an algebraic interpreta-
tion of the local Euler obstruction and Lé and Teissier used this to show that the
local Euler obstruction is an alternate sum of the polar multiplicities of the local
polar variety, see [11].

Here we apply these results to obtain explicit and algebraic formulae for the
Euler obstruction in the stable type of mappings from C" to C".

In section 2 we recall the basic definitions and results needed to prove our



main result, which is shown in section 3, in the section 4 we show the formulae
for the local Euler obstruction and in section 5 we show an algorithm that allow
us to compute the ideals that define the stable types in the source.

2 Notation and preliminaries

We follow the notation used by Gaffney in [3] and denote by O(n,p) the set of
origin preserving germs of holomorphic mappings from C" to C?, O,(n, p) denotes
the set of germs at the origin but not necessarily origin preserving.

For a germ f € O.(n,p), J(f) denotes the ideal generated by the set of p X p
minors of the derivative of f. The critical set of f, denoted by ¥(f) is the set
of points x € C" such that J(f)(z) = 0. The discriminant of f is the image
of the critical set by f, A(f) = f(X(f)). The determinant of the derivative of
f € O¢(n,n) is denoted by J[f].

Our interest is primarily in corank one A-finitely determined map-germs (A
is the Mather group) f: (C*,0) — (C",0). We denote by F' a versal unfolding of
such an f.

Definition 2.1. We say that a stable type Q appears in F' if for any representa-
tive F' = (id, f.(z)) of F, there ezists a point (s,y) € C° x CP such that the germ
fu: C"S — CP,y is a stable germ of type Q where S = f~1(y) N S(fu). The
points (s,y) and (s,z) with x € S are called points of stable type Q in the target
and in the source, respectively.

If f is stable, we denote the set of points in C* x CP of type Q by Q(f) and
the set Qs(f) = f71(Q(f)) — Q=(f), where Qz(f) denotes f~1(Q(f)) N L(f).

If f is finitely determined, we denote by Q(f) = ({0} x C?) N Q(F') and

Qs(f) = ({0} x C*) N Qs(F), Qs(f) = ({0} x C*) N Qs (F'), here the bar over a

set means the closure of this set.

Definition 2.2. We say that Q is a zero-dimensional stable type for the pair
(n,p) if Q(f) has dimension 0 where f is a representative of the stable type Q.

We observe that the set Q(F) = NF(j®*V)F~1(Az)) is closed and analytic,
where z; is the p + 1 jet of the stable type Q and Az; is the A-orbit of z;.

A finitely determined germ f has discrete stable type if there exist a versal
unfolding F' of f in which appears only a finite number of stable types. If (n,p)
is in the nice dimensions, any finitely determined germ f has a discrete stable
type ( see [17]).



It is shown in [3] p. 208, that the stable types in the source and in the target
form a regular stratification, i.e. satisfy the Whitney conditions, and therefore
the family F'is Whitney equisingular.

Suppose that Q(F') = {p1,---,p,} is the set of points of zero-dimensional
type, where F' is a versal unfolding of f. The 0-stable invariant of type Q of f,
denoted by m(f; Q) is the multiplicity of the ideal ms%,(o,o) in O@W,(o,o)'

We consider now F' = (u, f(u,z)) be a 1-parameter unfolding of a finitely
determined germ f, such that f(u, —) preserves the origin for all u. We say that
F is a good unfolding of f if there exist neighborhoods U, W of the origin in
C x C™ and C x C? respectively such that F~'(W) = U, F maps UNY(F)—T to
W — T and if (to,y0) € W — T where S = F~}(to,y) N 2(F) and T = C x {0},
then the germ f;, : C", S — CP, vy is stable.

A good unfolding is said to be ezcellent if all the O-stable invariants are con-

stant in the unfolding and f is of discrete type. In the equidimensional case

(n = p), it is also assumed that the degree of f, §(f) = dim¢ Mﬁ?ﬁ,

in the unfolding. Using the polar multiplicities of the polar varieties of the stable
types (defined by Teissier in [20] )and Thom'’s isotopy lemmas, Gaffney showed

1s constant

the following principal result.

Theorem 2.3. ([3], p. 207) Suppose that F : C x C*,(0,0) — C x C?,(0,0) s
an ezcellent unfolding of a finitely determined germ f € O(n,p). Also suppose
that the polar invariants of all the stable types defined in:

1. the discriminant A(f,) = fi(Z(f)),

2. the singular set 3(f;) and also in the set
3. X(ft) = (ft_l(A(ft)) - Z(ft)):

are constant at the origin for all t. Then the unfolding is Whitney equisingular.

Remark 2.4. 1. The theorem also implies that such unfolding is topologically
trivial; for the proof of this result Gaffney uses Thom’s second isotopy lemma for
complex analytic mappings, see [3] page 204.

2. The theorem remains valid if we replace the term “an excellent unfolding” in
the hypothesis by “a 1-parameter unfolding which, when stratified by stable types
and by the parameter axis 7', has only the parameter axis 7" as 1-dimensional
stratum at the origin” ([23]). We shall apply this version of the Theorem in
order to give sufficient conditions for the Whitney equisingularity of 1-parameter
unfolding.



In the next section we shall need the following definition and results.

Theorem 2.5. (Lé-Greuel, [10], page 47) Let X, be an I.C.I.S., with a singular-
ity at 0 € C*. Let X be an I.C.I.S. defined in X, by fr =0, and let fy, ..., fr_1
be the generators of the ideal that defines X, at 0 in C"™. Then

On
(fla -'-)fk—la '](fla ,fk))

In the case of a zero-dimensional I.C.I.S. we can use the following simpler
formula. Let f : C*,0 — C*,0 be a germ such that X = f~!(0) is an I.C.LS.
Then pu(X,0) =6(f) — 1; see [12] p. 78.

Another elementary result that we use here is the following. Let f : C* 0 —
C™,0 be a finitely determined germ. Then f : 3(f) € C*,0 — A(f) Cc C*,0 is
bimeromorphic; see (2] p.154.

u(X1,0) + (X, 0) = dime

3 Equisingularity of map germs in O(n,n)

3.1 The stable types in O(n,n)

As heiglighted in the introduction, our aim is to minimize the number of invariants
defined in the stable types of f whose constancy in the family f; implies the family
is Whitney equisingular.

The strategy is to apply Theorem 2.3 and the techniques used by Gaffney in
[3], that is, stratify the source and the target by the stable types and establish
relations among the invariants on the strata. As these invariants are upper semi-
continuous, the relations will allow us to reduce the number of invariants required
in Gaffney’s theorem.

We show here an explicity description of all the stable types in the source
and target for corank one germs from (C",0) to (C™,0). This description is done
in terms of subschemes of multiple points of a germ f. The description of the
0-stable types is shown in [14], we generalise here this description for all r-stable
types, with 0 <r <n —1.

For this we first give the following preliminary definition. Given a continuous
mapping f : X — Y on analytic spaces, we define the £ multiple point space of

f as

BE{f1= closure{(zl,mg,...,zk) € X*: f(z1) = ... = f(zi) forz; # z,i # j}.



Let f € O(n,n) be a finitely determined germ of corank 1, we write f(z, z) =
(z1,...,Zn-1,9(z,2)), with z = (z1,...,2,-1) € C" ! and 2 € C. For each
partition P = (ry,--- ,74) of anm < n, i. e, r; +--- + 1, = m we consider the
subscheme D*(f,P) of C"~! x C¢, with ¢ = length(P), defined by

Zi 7é 25,

f(z,2:) = f(z,2;) and

f has a singularity of type
Ay, at (z,y;)

Dz(fa P) =clos{ (z,21, - ,2) € C™! x C:

)

where ‘clos
m = n, the subschemes D"(f,P) are called zero-schemes and are related to the

means the analytic closure in C*™! x C¢. We remark that when

0-stable types.

Nearby the (A4, +--- + A,,) = A, ... », multi-germs, there are points in the
target with (74 + 1) + (rg + 1) + -+ - + (r¢41) preimages (i.e. m + ¢ preimages).
We define an (m + £)—tuple scheme in C*! x C™"¢, which on the appropriate
diagonal specializes to the ideal defining A, ... ,, multi-germs, see Lemma 3.1.

We denote the coordinates of C*~1 x C™* by

(‘T7Z) :(1"726"" azilazga"' ’21?27". azéa"' 1z£¢)

and define the sheaf of ideals J(f,P) = (h1, ho, -+, Amie—1) C Ocn-1ycn+e, With

R i I A
Lo e (@) gl (AT e (d)me
=V |1 @ : : : :
14, e G g, @ (e
1 zf[ e (zﬁt)z_l gﬁg (zfl)1+1 e (z_’l:l)m"}_l—l
where V = V(2§, - ,zﬁl, e zhy e ,zft) is the Vandermonde determinant and

gF = g(z,2F). In C*! x C™* there is a diagonal of particular interest, namely,
A(’P) = {(I‘,Z) & (Cn—l X Cm+el2f = z;_c, V’L,] = 1)' 3Tk Vk = 17' o >£}

which can be parametrized by (z, 2%, -, 2):

(m,z):(x’z’...,z 22,0 ,z,...7z,...’zf) (3.1)



with z* repeated r; + 1 times. This corresponds to an embedding of C*~! x C¢ in
Ccr-1 Cm+l.

Let Zapy = (2F — 2§,Yk = 1,--- ,£) be the ideal defining A(P). A generic
point of Za(py is one of the form (3.1) with 2* # 27, for ¢ # j.

Let Ja(f,P) be the ideal in O¢n-14¢: defined by Ja(f,P) = T (f, P) +Zacp)-

We see in the next lemma that at a generic point of D*(f,P)=V(Ja(f,P)),
f has a singularity of type 4,, at (z,2?) and f(z,z') = --- = f(z,9").

Lemma 3.1. (/[/13], lemma 2.7]) At a generic point of A(P) we have,
jA(f)P) = <S_Z(xa Zl)a T, g;—lr?(l') zl)a T %(xaze); e 1%37‘?(1"7 Z£)>

+ (g(m)zi) _g(x721); 2<:i< E) +IA(P)

We remark that for the partition P = (1, ,1) of m with 14---4+1 =m = ¢,
we have D(f, P) = D*(f), where D*(f) denotes the set of £-multiple points of f.

For the partition P = (r;), then r; = m, £ = 1, and here D'(f,P) =
yLol(f), where L1 (f) is the set of singularities of type L1 of f with
1,--+,1 repeated r;-times, i.e, f has an singularity of type A,,. We know by
the Lemma 3.1, that the ideal that defines X% !(f) is generated by the system

g_g(xazl), TG g;_ir?(‘r’zl)}'

The structure of these sets is described below.

Proposition 3.2. Let j; : C""1xC! — C* 1 x C™* be the embedding with image
A(P). Then the surjection j; : Opn_14+m+e — On_14¢ satisfies j;(TIa(f,P)) =
Za(f,P) and consequently induces an isomorphism

P < S p— On-1+¢
s —_—

g P)  Talf,P)

Proof Since j; is a sujection, we show that it is also an immersion. Suppose
that it is not, hence there exists a non zero g € %’%’;—‘ such that j;(g9) = 0,
therefore gjpe(sp)) = 0; and j(D!(f,P)) is in the subvariety of V(Za(f,P)),
defined by the zero set of g. Then j(D*(f,P)) C V(Za(f,P)), and this implies
that j; (Ja(f,P)) C Za(f,P). A

Remark 3.3. Since from the Proposition 3.2 we know that D(f, P) is embedded
in C" ! x C¢, from now on we shall denote the ideal that defines this set in the
space C"~1 x C! also by Za(f, P).



Proposition 3.4. Let F = (u, f) be a versal unfolding of a finitely determined
map germ f of corank 1. Then, for any partition P = (ry,... ,7r¢) of each m < n,

1. The ideal Ja(f,P) is reduced, and the multiple point variety
V(Ja(f,P)) cC i xCfx C?
is smooth of dimension n —m + s (or empty);

2. for each partition P = (r1,--- ,7¢) of m satisfyingmn —m+s > 0, the germ
of D*(F,P) at 0 is either an ICIS of dimension n —m + s, or is empty;

8. m: DYF,P) — C"™ x C¢ is finite and 7~} (7(0)) = {0}

Proof Theitem 1. follows from the Lemma 3.1. To prove the item 2. we observe
that a system generators of the ideal J*(f,P) which defines D*(f,P) is given by

the equations

dg
1&(

x,zl),

\ ag Mg

lil 1 l i _ l .. 1 . ..

( )(.’L‘,Z ey 2 )t) - (82(1‘72 vt)a aaz.,.l (.T,Z 7t)a
d"g

* az‘rg ($,ze,t)) g(szz,t) —g(l',z]"t)’_“’ g(:L.7 Z£7t) —g(l',zl,t)> ,

as Za(p)) is a submersion (see [13]) if we calculate Ta(py in Ja(f, P) we obtain that

each HZ(A)(:E’Zla"wzlat) = <_a£(x7zlat)7" 0 g(x’zl7t)7"' 7%(1‘) zlat)7

Oz 2 9zm

a™g

1%(1"22)1:)7 g(mvzzvt) —g(.'L',Zl,t),..., g(l‘, zl7t) —g(Z,Zl,t))

is a submersion, therefore (H*(A))~1(0) = D*(f;,P) C C*~! x C* x C?® is an ICIS
of dimension n —m+s. The proof of the item 3. is immediate from the definition
of the sets D(f,P). ]

Now we give an explicit description of the stable types in the source and the
target of any germ f with corank one in O(n,n) which is finitely determined.

For each partition P = (r1,... ,7¢) of an m < n, we denote by D!(f,P) the
projection of D!(f,P) to the (z,z)-space, we remember that each set D{(f,P) is
a subset of X(f).



Example 3.5. For finitely determined map germs f € O(2,2) of corank 1, the
possible partitions of 1 and 2 are (1), (1,1) and (2), then Di(f, (1)) = 2(f),
D%(f,(1,1)) = D?(f) is the set of double points of f and D}(f,(2)) = ZV(f) is
the cusp of f.

For finitely determined map germs f € O(3,3) of corank 1, the possible par-
titions of 1, 2 and 3 are (1), (1,1) (2), (2,1), (1,1,1) and (3), hence D}(f, (1)) =
Y(f) is the singular set of f, D?(f,(1,1)) = D*(f) is the curve of double points
of f, D}(f,(2)) = ZV1(f) is a cuspidal curve, D3(f,(1,1,1)) = D3(f) is the set
of triple points and D}(f, (3)) = LV11(f) is the Swallowtail of f.

For each P, we define the sets X{(f,P) in the set X(f) = (f~1(A(f)) — (f))

by,
X{(f,P) = fUA(DI(Sf,P)) — (DI(f, P)NE(S)) .

Theorem 3.6. Let f € O(n,n) be a finitely determined germ of corank 1.

a. The stables types in the source are Di(f,P) in S(f) and Xt(f,P) in
X(f), in the target the stable types are f(D(f,P)) C A(f) for all partitions
P =(r,...,m) of each m < n.

b. The dimension of X{(f,P) and of f(Di(f,P)) is n — m.

Proof of the Theorem 3.6 a. A stable map germ f € O(n,n) has an A;
singularity if it is A-equivalent to the germ

(T1y ooy Tn-1,2) = (T1, erry Tne1, 25T+ 202" L+ T3 2).

Moreover, any stable corank 1 map germ is an A, singularity for some natural
number &, hence the set of points in C"* where a stable map has an Aj singularity
is a smooth submanifold of codimension k. The image of this set by f is also a
smooth submanifold of codimension k. Since f is finitely determined, it follows
by the Geometric criterion of Mather-Gaffney [17] that there exist neighborhoods
U and V of 0 in C™ such that f~}(0)NU N X(f) = 0 and for each y € V,
y # 0, the germ f : (C",S) — C™,y is stable ( S = f~!(y) N U N X(f)), hence
for each z € S, the germ f : C*,z — C",y is an A for some k£ and these
submanifolds in the discriminant are in general position. But this occurs if and
only if r; + 79 + ..... +7; = m < n. We call such multigerm and Ap-singularity
and the result follows from the Lemma 3.1.

b. From the corollary given in the page 19 of [6], we know that there exist
neighbourhoods of the origin U; in C*! x C! and U, in C™ such that the map
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