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A férmula de entropia de pesin em topologia
Cl
Ali Tahzibi

RESUMO

A entropia métrica de um difeomorfismo C? com respeito a uma
medida invariante g absolutamente continua com respeito de me-
dida de Lebesgue é igual & média da soma dos exponents de Lya-
punov positivos de p. Essa é a famosa férmula de entropia do Pesin,
hu(f) = [y x50 Aidp. A regularidade C? (ou C***) do difeomor-
fismo foi essencial para a prova desta igualdade. Mostramos que pelo
menos em dimensao dois esta igualdade é satisfeita para difeomorfis-
mos C'! —genérico e também mostramos que Diff} (M) := Ugso Diff2+e (M)
(unidio de difeomorfismos C'** e conservativos) ndo é genérico em
Diff} (M). Entdo, nés ganhamos um conjunto maior do que Diff -+ (M),
dos difeomorfismos que satisfazem a férmula do Pesin.



C'!—generic Pesin’s entropy formula

ALl TAHZIBI
Departamento de Matematica
ICMC-USP Sao Carlos
Caixa Postal 668
13560-970, Sao Carlos, SP
(e-mail: tahzibi@icmsc.sc.usp.br )

October 14, 2002

Abstract

The metric entropy of a C?—diffeomorphism with respect to an
invariant smooth measure y is equal to the average of sum of the pos-
itive Lyapunov exponents of p. This is the celebrated Pesin’s entropy
formula, A, (f) = [5; Xa,50 Ai- The C? regularity (or C'+<) of diffeo-
morphism is essential to the proof of this equality. We show that at
least in two dimensional case this equality is satisfied for a C* —generic
diffeomorphisms and in particular we gain a larger than C1+2 volume
preserving diffeomorphisms such that satisfy Pesin’s formula.

Version francais abrégée

Les exposants de Lyapunov d’une application différentiable de M (une
variété compacte) dans M sont définis par le théoreme d’Oseledets. Soit u
une mesure de probabilité invariante pour f; pour presque tout point z il
existe des nombres A;(z) > Ao(z) > -+ > Agr)(z) (les exposants) et une
unique décomposition T, M = Ey(z) @ - - - Exg)(z) tels que

lim ~ log | Df2(0)] = \i(@)

n—oo

pour tout 0 # v € FEi(z),l < ¢ < [. (dim(M) = l) Les exposants car-
actéristiques définis comme ci-dessus sont en relation avec I’entropie de f.
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Par exemple pour une mesure invariante v et f € C*, soit x(z) := >, 5o Ai
: alors par un résultat de Ruelle:

h(f) < /M xdm

Le résultat est en général une inégalité stricte. Mais si m est absolument
continue por rapport & la mesure de Lebesgue sur M, et f € Diff:¥*(M), a >
0, alors

() = /M xdm

En fait, on peut obtenir cette formule pour une plus grande classe de
mesures. (voir [3]) Mais la régularité de f est une condition nécessaire pour
la preuve d’une telle égalité.

Nous allons montrer que si dim(M) = 2, il existe un sous-ensemble
générique dans Diff} (M) ot la formule d’entropie de Pesin est satisfaite.

Theorem 1. Il eziste un sous-ensemble générique G € Diff} (M) , tel que
toute f € G satisfait la formule d’entropie de Pesin et G contient strictement

Uaso Diff1+e,

L’étape clef de la démonstration sera de prouver que les points de con-
tinuité des deux fonctions suivantes h,,(.), L(.) forment une partie résiduelle
dans la C? topologie.

Comme nous considérons des difféomorphismes conservatifs en dimension
deux, il existe tout au plus un exposant de Lyapunov positif. Définissons

o L(f)= [, idm pour f € Diff} (M) et
e hn(f) = lentropie métrique de f pour f € Diff} (M).

Maintenant nous procédons en utilisant la formule d’entropie pour les
diffSomorphismes dans U Diff:t*(M). Soit f un point de continuité pour
L(.) et hm(.). Par la densité de Diff"*(M) dans Diff} (M) prouvée dans
[4], il y a une suite f, € Diff .+*(M) telle que f, converge vers f dans la C"
topologie. Par la formule de Pesin, h,(f.) = L(fn) et par la continuité en

> b (f) = L(f)-

The Lyapunov exponents of a diffeomorphism f of a compact manifold
M are defined by Oseledecs theorem which states that, for any invariant
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probability measure p, for almost all points z € M there exist numbers
A1(z) > Aa(®) > -+ > Ag(z)(z) (Lyapunov exponents) and a unique splitting
T,M = E;(z) ® - - - ® Eyz)(z) such that

1
lim ~log || Df*(z)vll = Ai(z)

for all 0 # v € Ei(z),1 <7 < m. The characteristic exponents defined as
above are related to the entropy of f. For example for any invariant measure
vand f € C, let x(2) := Y ,.50 Ai, then by a result of Ruelle:

h(f) < /M Y.

An estimation from below in terms of positive Lyapunov exponents is not true
for general invariant measures, but if the measure m is absolutely continuous
with respect to the Lebesgue measure of M, Pesin’s formula states that
for m-preserving diffeomorphisms with Holder continuous derivative, f €
Diff (M)

() = /M xdm.

In fact this entropy formula holds for a larger class of measures [3]. But
the regularity of f is always used strongly to get results of lower bounds for

entropy.
We are going to show that if dim(M) = 2 then there exists a residual
subset in Diff} (M) such that the diffeomorphisms in this subset satisfy the

Pesin’s entropy formula.

Theorem 2. There ezists a C'-residual subset G C Diff} (M) such that any
f € G satisfy the Pesin’s entropy formula and G strictly contains Ugso Diff i+,

The key idea is to prove that the set of the continuity points of the
following two functions, L(.) and h,(.) is residual in C* topology. As we are
considering volume preserving diffeomorhisms in dimension two, there exists
at most one positive Lyapunov exponent. Define

o L(f) = [y X oas0Xi(z)dm for f e Diff} (M) and

e h.,(f) = the metric entropy of f for any f € Diff} (M).



Now we proceed by using the entropy formula for diffecomorphisms in
UDiff1F*(M). Let f be a continuity point for L(.) and h,,(.). By density of
Difft*(M) in Diff} (M) proved in [4], there is a sequence f, € Diff}+*(M)
such that f, converges to f in C' topology. By Pesin’s formula, A,(f,) =
L(f,) and by continuity at f, hn,(f) = L(f).

1 Continuity points of L(f) and h,,(f)

The continuous dependence of Lyapunov exponents on diffeomorphism is an
important problem. In fact let Aj(z, f) > Xo(z, f) > -+ > Ag(z, f) denotes
all Lyapunov exponents of f and Ay(f) = [}, >°._; A; (average of sum of
the i-greatest exponents) then it is well known that f—A;(f) is an upper
semi-continuous function.

Lemma 1. The application f—A;(f) is upper semi-continuous for f €
Diff} (M)

Proof. By an standard argument we see that

mm:géémwwwwmmm.

In fact to see why the limit is substituted by infimum, observe that the
sequence

=AwaWmemw

is subadditive, i.e (nym < @, + a,,) and consequently lim & — inf 22, Now,
as a,(f) varies continuously with f in C? topology and the infimum of con-
tinuous functions is upper semi-continuous, the proof of the lemma is com-
plete. O

Let us show that L(f) is an upper semi-continuous function in Diff} (M)
independent of the dimension of M.

Lemma 2. Let L(z, f) = Y0, 50 Ni(®, f) then f—L(f) = [}, L(z, f)dm(z)
1S upper Semi-Ccontinuous.

Proof. Observe that the proof of this lemma for two dimensional case is the
direct consequence of the Lemma 1. In fact for any z € M,

1
lim ﬁlog | AP Df™(z)||
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exists and is equal to A;+A2(z)+- - -+Ap(x). This functions varies upper semi-
continuously with respect to f. From this we claim that for any x the function
f= .50 Ailf,x) is upper semi-continuous. Because let f € Diff;,(M) and
forz € M, M(z) > -+ > \(x) 202> Apa(z) > -0 > M(z). Take U, a
neighborhood of f such that for all 1 < k < d and any g € U,

k k

D (@ 9) <D Nil@,g9) +e (1)

i=1 i=1
This is possible by means of Lemma 1. Now take any such g and let A;(z) >
e 2 A (x) 202> Apyr > -0 > Mg() for some 1 < pf < d. Using (1) we see
that >0, Ai(z,9) < D8, Ai(w, f) + € (consider the three cases p' < p,p =
7,p < p') and the claim is proved.

Now we prove the lemma. By definition L(z,g) < C for some uniform C
in a neighborhood of f. Define
1
An={z € M;d(f,9) < — = L(z,9) - L(z, f) < 5}

As m(UA,) = 1 then for some large n we have m(A,) > 1 - 5. So,

DN |

/ML(:E, g) — L(z, f)dm = / L(z,9) —L(m,f)dm—l—/ L(z,g)— L(z, f)dm

n Ag

6-—
ac ¢

and the proof of the lemma is complete. O

€
< — L 90
_2+

The upper semi-continuity is the key for the proof of our main theorem,
because by a classical theorem in Analysis we know that the continuity points
of a semi-continuous function on a Baire space is always a residual subset of
the space. (see e.g [2].)

The upper semi-continuity of h.,(f) for f varying in Diff} (M) is not
known. In fact using Ruelles inequality and Pesin’s equality we can show
upper semi-continuity of h,,(f) in the C? topology. (In this paper all C?
statements can be replaced by C'*%). Let g € Diff2,(M) be near enough to
f, by semi continuity of L(.) and Pesin’s equality in C? topology:

hm(g) < L(g) < L(f) + €= hm(f) + €

So, we pose the following question:



Question 1. Is it true that hy,(f) s an upper semi-continuous function with
C' wvolume preserving diffeomorphisms as its domain.

However we are able to show that at least in two dimensional case the
continuity points of h,,(f) is generic in C* topology.

Proposition 1. The continuity points of the map h,,: Diff: (M)—R is a
residual set.

Proof. We use the result of Bochi [1] which gives a C! generic subset G’ =
AUZ such that any g € A is Anosov and for g € Z both Lyapunov exponents
vanish almost everywhere. We show that G’ contains a generic subset G and
each diffeomorphism in G is a continuity point of h,,. Firstly we state the
following lemma:

Lemma 3. Any f € Z is a continuity point of hy,.

Proof. Let g be near enough to f by Ruelle’s inequality and upper semi-
continuity of L(.) we get

hm(g) < L(g) S L(f)+e=¢
O

Now we prove that h,, : A—R is upper semi-continuous. As A C
Diff} (M) is open we conclude that the continuity points of h,|A is generic
inside A.

Proposition 2. h,, restricted to C' Anosov diffeomorphisms is upper semi-
conlinuous.

Proof. To prove the upper semi-continuity of h,,|A we recall the definition
of h,(f). By a theorem of Sinai we know that that if P is a generating

partition then

1
) = hn(/,P) = lim ZHo(PV [71(P)- v [™4(P))  (2)
If f is Anosov then there is € > 0 such that any g in a C! neighborhood of f
is expansive with € as expansivity constant. By the definition of generating
partition any partition with diameter less than € is generating and so we can



choose a unique generating partition for a neighborhood of f. As m is a
smooth measure we see that the function

o Gl P) v P = 1S m(P)logm(P)

is continuous, where the sum is over all elements of PV f=1(P) ---v f~"+(P).
The limit in (2) can be replaced by infimum and we know that the infimum
of continuous function is upper semi-continuous. O

So, up to know we have proved that there exists a generic subset A’ C A
such that the diffecomorphisms in G = A’U Z are continuity point of h,,. Now
we claim that G is C' generic in Diff} (M). To prove the above claim we
show a general fact about generic subsets.

Lemma 4. Let AU Z be a generic subset of a topological space T where A
is an open subset. If A" C A is generic inside A then AU Z is also generic
m T

Proof. As a countable intersection of generic subsets is also generic, we may
suppose that A’ is open and dense in A. By hypothesis, AUZ = N,C,, where
C, are open and dense. So, we have

AUZ=Au(nNC,NA%)=n,(AUC,) N (AU A (3)

First observe that each A’ U C,, is an open and dense subset and their
intersection is generic. To complete the proof it is enough to show that
AU (A€)° C A’ U A° is open and dense. Openness is obvious and denseness
is left to reader as an easy exercise of general topology. O

O

So, as the intersection of generic subsets is again a generic set we conclude
that there is generic subset of Diff. (M) where the diffeomorphisms in this
generic subset are the continuity point of both L(.) and h,,(.) and so for this
generic subset the Pesin’s entropy formula is satisfied.

To finish the proof of the Theorem 2 we have to show that Ugso Diff .F* (M)
is not a generic subset and so the generic subset of Theorem 2 gives us some
more diffeomorphisms satisfying Pesin’s formula than U,so Diffir*(M).

Lemma 5. Diff;" (M) := | ., Diff .7 (M) is not generic with C* topology.



Proof. We show that the complement of Diff.t (M) is a generic subset and
this implies that Diff:f(M) can not be generic.
As in what follows we are working locally, one may suppose that M = R2.

Let’s define
d(Df(z), Df(s
1Flle = Supasyers ™ 2((9;) y)af(y))

and denote
Hox = {f € DIt (M), | £l > k}.

By the above definition we get Diff,, (M) \ Diff,f (M) = N, ey Hum- To
prove the lemma We claim that for any n, each H,  is an open dense subset.

1. Openness
Let f € H,x, by definition there exist 2,y and 7 > 0 such that d(Dfd((?’yl))af ) >

k + n. Take any g, e-near to f in C! topology by the triangular inequality
we get:
gl > d(Dg(z), Dg(y)) _ d(Df(z), Df(y) __ 2

1 1 i 1

" d(z,y)~ d(z,y)* (d(z,y))m
Taking € small enough the above inequality shows that [|g||» > k£ and the
openness is proved.

2. Density

Let f € Diff! (M) we are going to find g € Diff} (M) \ Diff .} (M) such that ¢
is near enough to f. For this purpose we construct h € Diff} (M)\ Diff:F (M)
near enough to identity and then put g = ho f.
Considering local charts, it is enough to construct a C' volume preserving
diffeomorphism I from R? to R? such that:

1. [ is C" near to identity inside B(0,¢) for small € > 0

2. 1 is identity outside the ball B(0, 2¢)

3. I € Diff} (R?) \ Diff}+(R?)
Let us parameterize R? with polar (7, ) coordinates and £ : RZ—R be a C!
bump function which is equal to one inside the ball {r < ¢} and vanishes

outside the ball of radius 2¢. Consider the following C* but not C'* (for
any «) real diffeomorphism:

- 'r+l—é; ifr>0
77(7‘)—{ T ’ ifr <0



and define I(r,0) = (r,0 + £(r)n(r)f) for small 6y. The jacobian matrix of

[ is
p1=( gy 1)

and it is obvious that I is volume preserving and taking o and e, small

enough it is near enough to identity in C* topology.
g
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