130A567

UNIVERSIDADE DE SÃO PAULO

Instituto de Ciências Matemáticas e de Computação ISSN 0103-2577

 C^1 – Generic Pesin's Entropy Formula

Ali Tahzibi

 N^{0} 156

NOTAS

Série Matemática

São Carlos – SP Out./2002

Class.	- Notas - SMA	m2156
	-T.128c	
	e.L	
Tombo	26,999	

A fórmula de entropia de pesin em topologia C^1

Ali Tahzibi

RESUMO

A entropia métrica de um difeomorfismo C^2 com respeito a uma medida invariante μ absolutamente continua com respeito de medida de Lebesgue é igual à média da soma dos exponents de Lyapunov positivos de μ . Essa é a famosa fórmula de entropia do Pesin, $h_{\mu}(f) = \int_{M} \sum_{\lambda_{i}>0} \lambda_{i} d\mu$. A regularidade C^2 (ou $C^{1+\alpha}$) do difeomorfismo foi essencial para a prova desta igualdade. Mostramos que pelo menos em dimensão dois esta igualdade é satisfeita para difeomorfismos C^1 —genérico e também mostramos que $\mathrm{Diff}_m^{1+}(M) := \cup_{\alpha>0} \mathrm{Diff}_m^{1+\alpha}(M)$ (união de difeomorfismos $C^{1+\alpha}$ e conservativos) não é genérico em $\mathrm{Diff}_m^1(M)$. Então, nós ganhamos um conjunto maior do que $\mathrm{Diff}_m^{1+}(M)$, dos difeomorfismos que satisfazem a fórmula do Pesin.

C^1 —generic Pesin's entropy formula

ALI TAHZIBI
Departamento de Matemática
ICMC-USP São Carlos
Caixa Postal 668
13560-970, São Carlos, SP
(e-mail: tahzibi@icmsc.sc.usp.br)

October 14, 2002

Abstract

The metric entropy of a C^2 -diffeomorphism with respect to an invariant smooth measure μ is equal to the average of sum of the positive Lyapunov exponents of μ . This is the celebrated Pesin's entropy formula, $h_{\mu}(f) = \int_{M} \sum_{\lambda_{i}>0} \lambda_{i}$. The C^2 regularity (or $C^{1+\alpha}$) of diffeomorphism is essential to the proof of this equality. We show that at least in two dimensional case this equality is satisfied for a C^1 -generic diffeomorphisms and in particular we gain a larger than $C^{1+\alpha}$ volume preserving diffeomorphisms such that satisfy Pesin's formula.

Version français abrégée

Les exposants de Lyapunov d'une application différentiable de M (une variété compacte) dans M sont définis par le théorème d'Oseledets. Soit μ une mesure de probabilité invariante pour f; pour presque tout point x il existe des nombres $\lambda_1(x) > \lambda_2(x) > \cdots > \lambda_{k(x)}(x)$ (les exposants) et une unique décomposition $T_xM = E_1(x) \oplus \cdots E_{k(x)}(x)$ tels que

$$\lim_{n \to \infty} \frac{1}{n} \log ||Df_x^n(v)|| = \lambda_i(x)$$

pour tout $0 \neq v \in E_i(x), 1 \leq i \leq l$. $(\dim(M) = l)$ Les exposants caractéristiques définis comme ci-dessus sont en relation avec l'entropie de f.

Par exemple pour une mesure invariante ν et $f \in C^1$, soit $\chi(x) := \sum_{\lambda_i > 0} \lambda_i$; alors par un résultat de Ruelle:

$$h_{\nu}(f) \le \int_{M} \chi dm$$

Le résultat est en général une inégalité stricte. Mais si m est absolument continue por rapport à la mesure de Lebesgue sur M, et $f \in \mathrm{Diff}_m^{1+\alpha}(M), \alpha > 0$, alors

$$h_{m}(f) = \int_{M} \chi dm$$

En fait, on peut obtenir cette formule pour une plus grande classe de mesures. (voir [3]) Mais la régularité de f est une condition nécessaire pour la preuve d'une telle égalité.

Nous allons montrer que si $\dim(M) = 2$, il existe un sous-ensemble générique dans $\operatorname{Diff}_m^1(M)$ où la formule d'entropie de Pesin est satisfaite.

Theorem 1. Il existe un sous-ensemble générique $\mathcal{G} \in \mathrm{Diff}^1_m(M)$, tel que toute $f \in \mathcal{G}$ satisfait la formule d'entropie de Pesin et \mathcal{G} contient strictement $\bigcup_{\alpha>0} \mathrm{Diff}^{1+\alpha}_m$.

L'étape clef de la démonstration sera de prouver que les points de continuité des deux fonctions suivantes $h_m(.), L(.)$ forment une partie résiduelle dans la C^1 topologie.

Comme nous considérons des difféomorphismes conservatifs en dimension deux, il existe tout au plus un exposant de Lyapunov positif. Définissons

- $L(f) = \int_M \lambda_1 dm$ pour $f \in \text{Diff}_m^1(M)$ et
- $h_m(f) =$ l'entropie métrique de f pour $f \in \text{Diff}_m^1(M)$.

Maintenant nous procédons en utilisant la formule d'entropie pour les difféomorphismes dans $\cup \operatorname{Diff}_m^{1+\alpha}(M)$. Soit f un point de continuité pour L(.) et $h_m(.)$. Par la densité de $\operatorname{Diff}_m^{1+\alpha}(M)$ dans $\operatorname{Diff}_m^1(M)$ prouvée dans [4], il y a une suite $f_n \in \operatorname{Diff}_m^{1+\alpha}(M)$ telle que f_n converge vers f dans la C^1 topologie. Par la formule de Pesin, $h_m(f_n) = L(f_n)$ et par la continuité en $f, h_m(f) = L(f)$.

The Lyapunov exponents of a diffeomorphism f of a compact manifold M are defined by Oseledecs theorem which states that, for any invariant

probability measure μ , for almost all points $x \in M$ there exist numbers $\lambda_1(x) > \lambda_2(x) > \cdots > \lambda_{k(x)}(x)$ (Lyapunov exponents) and a unique splitting $T_x M = E_1(x) \oplus \cdots \oplus E_{k(x)}(x)$ such that

$$\lim_{n \to \infty} \frac{1}{n} \log \|Df^n(x)v\| = \lambda_i(x)$$

for all $0 \neq v \in E_i(x), 1 \leq i \leq m$. The characteristic exponents defined as above are related to the entropy of f. For example for any invariant measure ν and $f \in C^1$, let $\chi(x) := \sum_{\lambda_i > 0} \lambda_i$, then by a result of Ruelle:

$$h_{\nu}(f) \leq \int_{M} \chi d\nu.$$

An estimation from below in terms of positive Lyapunov exponents is not true for general invariant measures, but if the measure m is absolutely continuous with respect to the Lebesgue measure of M, Pesin's formula states that for m-preserving diffeomorphisms with Hölder continuous derivative, $f \in \mathrm{Diff}_m^{1+\alpha}(M)$

$$h_m(f) = \int_M \chi dm.$$

In fact this entropy formula holds for a larger class of measures [3]. But the regularity of f is always used strongly to get results of lower bounds for entropy.

We are going to show that if $\dim(M) = 2$ then there exists a residual subset in $\mathrm{Diff}^1_m(M)$ such that the diffeomorphisms in this subset satisfy the Pesin's entropy formula.

Theorem 2. There exists a C^1 -residual subset $\mathcal{G} \subset \operatorname{Diff}^1_m(M)$ such that any $f \in \mathcal{G}$ satisfy the Pesin's entropy formula and \mathcal{G} strictly contains $\bigcup_{\alpha>0} \operatorname{Diff}^{1+\alpha}_m$.

The key idea is to prove that the set of the continuity points of the following two functions, L(.) and $h_m(.)$ is residual in C^1 topology. As we are considering volume preserving diffeomorphisms in dimension two, there exists at most one positive Lyapunov exponent. Define

- $L(f) = \int_M \sum_{\lambda_i > 0} \lambda_i(x) dm$ for $f \in \text{Diff}_m^1(M)$ and
- $h_m(f)$ = the metric entropy of f for any $f \in \text{Diff}_m^1(M)$.

Now we proceed by using the entropy formula for diffeomorphisms in $\bigcup \operatorname{Diff}_{m}^{1+\alpha}(M)$. Let f be a continuity point for L(.) and $h_{m}(.)$. By density of $\operatorname{Diff}_{m}^{1+\alpha}(M)$ in $\operatorname{Diff}_{m}^{1}(M)$ proved in [4], there is a sequence $f_{n} \in \operatorname{Diff}_{m}^{1+\alpha}(M)$ such that f_{n} converges to f in C^{1} topology. By Pesin's formula, $h_{m}(f_{n}) = L(f_{n})$ and by continuity at f, $h_{m}(f) = L(f)$.

1 Continuity points of L(f) and $h_m(f)$

The continuous dependence of Lyapunov exponents on diffeomorphism is an important problem. In fact let $\lambda_1(x,f) \geq \lambda_2(x,f) \geq \cdots \geq \lambda_d(x,f)$ denotes all Lyapunov exponents of f and $\Lambda_i(f) = \int_M \sum_{j=1}^i \lambda_j$ (average of sum of the i-greatest exponents) then it is well known that $f \rightarrow \Lambda_i(f)$ is an upper semi-continuous function.

Lemma 1. The application $f \rightarrow \Lambda_i(f)$ is upper semi-continuous for $f \in \operatorname{Diff}^1_m(M)$

Proof. By an standard argument we see that

$$\Lambda_i(f) = \inf_{n \ge 1} \frac{1}{n} \int_M \log \| \wedge^i (Df^n(x)) \| dm(x).$$

In fact to see why the limit is substituted by infimum, observe that the sequence

$$a_n = \int_M \log \| \wedge^i (Df^n(x)) \| dm(x)$$

is subadditive, i.e $(a_{n+m} \leq a_n + a_m)$ and consequently $\lim \frac{a_n}{n} = \inf \frac{a_n}{n}$. Now, as $a_n(f)$ varies continuously with f in C^1 topology and the infimum of continuous functions is upper semi-continuous, the proof of the lemma is complete.

Let us show that L(f) is an upper semi-continuous function in $\operatorname{Diff}_m^1(M)$ independent of the dimension of M.

Lemma 2. Let $L(x, f) = \sum_{\lambda_i \geq 0} \lambda_i(x, f)$ then $f \rightarrow L(f) = \int_M L(x, f) dm(x)$ is upper semi-continuous.

Proof. Observe that the proof of this lemma for two dimensional case is the direct consequence of the Lemma 1. In fact for any $x \in M$,

$$\lim_{n \to \infty} \frac{1}{n} \log \| \wedge^p Df^n(x) \|$$

exists and is equal to $\lambda_1 + \lambda_2(x) + \cdots + \lambda_p(x)$. This functions varies upper semi-continuously with respect to f. From this we claim that for any x the function $f \to \sum_{\lambda_i \ge 0} \lambda_i(f, x)$ is upper semi-continuous. Because let $f \in \operatorname{Diff}^1_m(M)$ and for $x \in M$, $\lambda_1(x) \ge \cdots \ge \lambda_p(x) \ge 0 \ge \lambda_{p+1}(x) \ge \cdots \ge \lambda_d(x)$. Take U_{ϵ} a neighborhood of f such that for all $1 \le k \le d$ and any $g \in U_{\epsilon}$

$$\sum_{i=1}^{k} \lambda_i(x,g) \le \sum_{i=1}^{k} \lambda_i(x,g) + \epsilon \tag{1}$$

This is possible by means of Lemma 1. Now take any such g and let $\lambda_1(x) \ge \cdots \ge \lambda'_p(x) \ge 0 \ge \lambda_{p'+1} \ge \cdots \ge \lambda_d(x)$ for some 1 < p' < d. Using (1) we see that $\sum_{i=1}^{p'} \lambda_i(x,g) \le \sum_{i=1}^p \lambda_i(x,f) + \epsilon$ (consider the three cases p' < p, p = p', p < p') and the claim is proved.

Now we prove the lemma. By definition $L(x, g) \leq C$ for some uniform C in a neighborhood of f. Define

$$A_n = \{ x \in M; d(f,g) \le \frac{1}{n} \Rightarrow L(x,g) - L(x,f) \le \frac{\epsilon}{2} \}$$

As $m(\cup A_n) = 1$ then for some large n we have $m(A_n) \geq 1 - \frac{\epsilon}{4C}$. So,

$$\int_{M} L(x,g) - L(x,f)dm = \int_{A_{n}} L(x,g) - L(x,f)dm + \int_{A_{n}^{c}} L(x,g) - L(x,f)dm$$

$$\leq \frac{\epsilon}{2} + 2C\frac{\epsilon}{4C} = \epsilon$$

and the proof of the lemma is complete.

The upper semi-continuity is the key for the proof of our main theorem, because by a classical theorem in Analysis we know that the continuity points of a semi-continuous function on a Baire space is always a residual subset of the space. (see e.g [2].)

The upper semi-continuity of $h_m(f)$ for f varying in $\mathrm{Diff}_m^1(M)$ is not known. In fact using Ruelles inequality and Pesin's equality we can show upper semi-continuity of $h_m(f)$ in the C^2 topology. (In this paper all C^2 statements can be replaced by $C^{1+\alpha}$). Let $g \in \mathrm{Diff}_m^2(M)$ be near enough to f, by semi-continuity of L(.) and Pesin's equality in C^2 topology:

$$h_m(g) \le L(g) \le L(f) + \epsilon = h_m(f) + \epsilon$$

So, we pose the following question:

Question 1. Is it true that $h_m(f)$ is an upper semi-continuous function with C^1 volume preserving diffeomorphisms as its domain.

However we are able to show that at least in two dimensional case the continuity points of $h_m(f)$ is generic in C^1 topology.

Proposition 1. The continuity points of the map h_m : $\mathrm{Diff}_m^1(M) \to \mathbb{R}$ is a residual set.

Proof. We use the result of Bochi [1] which gives a C^1 generic subset $\mathcal{G}' = A \cup Z$ such that any $g \in A$ is Anosov and for $g \in Z$ both Lyapunov exponents vanish almost everywhere. We show that \mathcal{G}' contains a generic subset \mathcal{G} and each diffeomorphism in \mathcal{G} is a continuity point of h_m . Firstly we state the following lemma:

Lemma 3. Any $f \in Z$ is a continuity point of h_m .

Proof. Let g be near enough to f by Ruelle's inequality and upper semi-continuity of L(.) we get

$$h_m(g) \le L(g) \le L(f) + \epsilon = \epsilon$$

Now we prove that $h_m: A \to \mathbb{R}$ is upper semi-continuous. As $A \subset \operatorname{Diff}_m^1(M)$ is open we conclude that the continuity points of $h_m|A$ is generic inside A.

Proposition 2. h_m restricted to C^1 Anosov diffeomorphisms is upper semi-continuous.

Proof. To prove the upper semi-continuity of $h_m|A$ we recall the definition of $h_m(f)$. By a theorem of Sinai we know that that if \mathcal{P} is a generating partition then

$$h_m(f) = h_m(f, \mathcal{P}) = \lim_{n \to \infty} \frac{1}{n} H_m(\mathcal{P} \vee f^{-1}(\mathcal{P}) \cdots \vee f^{-n+1}(\mathcal{P}))$$
(2)

If f is Anosov then there is $\epsilon > 0$ such that any g in a C^1 neighborhood of f is expansive with ϵ as expansivity constant. By the definition of generating partition any partition with diameter less than ϵ is generating and so we can

choose a unique generating partition for a neighborhood of f. As m is a smooth measure we see that the function

$$f \to \frac{1}{n} H_m(\mathcal{P} \vee f^{-1}(\mathcal{P}) \cdots \vee f^{-n+1}(\mathcal{P})) = \frac{1}{n} \sum_P m(P) \log(m(P))$$

is continuous, where the sum is over all elements of $\mathcal{P} \vee f^{-1}(\mathcal{P}) \cdots \vee f^{-n+1}(\mathcal{P})$. The limit in (2) can be replaced by infimum and we know that the infimum of continuous function is upper semi-continuous.

So, up to know we have proved that there exists a generic subset $A' \subset A$ such that the diffeomorphisms in $\mathcal{G} = A' \cup Z$ are continuity point of h_m . Now we claim that \mathcal{G} is C^1 generic in $\mathrm{Diff}^1_m(M)$. To prove the above claim we show a general fact about generic subsets.

Lemma 4. Let $A \cup Z$ be a generic subset of a topological space T where A is an open subset. If $A' \subset A$ is generic inside A then $A' \cup Z$ is also generic in T.

Proof. As a countable intersection of generic subsets is also generic, we may suppose that A' is open and dense in A. By hypothesis, $A \cup Z = \cap_n C_n$ where C_n are open and dense. So, we have

$$A' \cup Z = A' \cup (\cap C_n \cap A^c) = \cap_n (A' \cup C_n) \cap (A' \cup A^c)$$
(3)

First observe that each $A' \cup C_n$ is an open and dense subset and their intersection is generic. To complete the proof it is enough to show that $A' \cup (A^c)^{\circ} \subseteq A' \cup A^c$ is open and dense. Openness is obvious and denseness is left to reader as an easy exercise of general topology.

So, as the intersection of generic subsets is again a generic set we conclude that there is generic subset of $\operatorname{Diff}_m^1(M)$ where the diffeomorphisms in this generic subset are the continuity point of both L(.) and $h_m(.)$ and so for this generic subset the Pesin's entropy formula is satisfied.

To finish the proof of the Theorem 2 we have to show that $\bigcup_{\alpha>0} \operatorname{Diff}_m^{1+\alpha}(M)$ is not a generic subset and so the generic subset of Theorem 2 gives us some more diffeomorphisms satisfying Pesin's formula than $\bigcup_{\alpha>0} \operatorname{Diff}_m^{1+\alpha}(M)$.

Lemma 5. $\operatorname{Diff}_{n}^{1+}(M) := \bigcup_{\alpha>0} \operatorname{Diff}_{m}^{1+\alpha}(M)$ is not generic with C^{1} topology.

Proof. We show that the complement of $\operatorname{Diff}_m^{1+}(M)$ is a generic subset and this implies that $\operatorname{Diff}_m^{1+}(M)$ can not be generic.

As in what follows we are working locally, one may suppose that $M = \mathbb{R}^2$. Let's define

$$||f||_{\alpha} = Sup_{x \neq y \in M} \frac{d(Df(x), Df(y))}{d(x, y)^{\alpha}}$$

and denote

$$H_{n,k} = \{ f \in \text{Diff}_m^1(M), ||f||_{\frac{1}{n}} > k \}.$$

By the above definition we get $\operatorname{Diff}_m^1(M) \setminus \operatorname{Diff}_m^{1+}(M) = \bigcap_{n,m \in \mathbb{N}} H_{n,m}$. To prove the lemma We claim that for any n, each $H_{n,k}$ is an open dense subset.

1. Openness

Let $f \in H_{n,k}$, by definition there exist x, y and $\eta > 0$ such that $\frac{d(Df(x), Df(y))}{d(x, y)^{\alpha}} > k + \eta$. Take any g, ϵ -near to f in C^1 topology by the triangular inequality we get:

$$\|g\|_{\frac{1}{n}} > \frac{d(Dg(x), Dg(y))}{d(x, y)^{\frac{1}{n}}} > \frac{d(Df(x), Df(y))}{d(x, y)^{\frac{1}{n}}} - \frac{2\epsilon}{(d(x, y))^{\frac{1}{n}}}$$

Taking ϵ small enough the above inequality shows that $||g||_{\frac{1}{n}} > k$ and the openness is proved.

2. Density

Let $f \in \operatorname{Diff}_m^1(M)$ we are going to find $g \in \operatorname{Diff}_m^1(M) \setminus \operatorname{Diff}_m^{1+}(M)$ such that g is near enough to f. For this purpose we construct $h \in \operatorname{Diff}_m^1(M) \setminus \operatorname{Diff}_m^{1+}(M)$ near enough to identity and then put $g = h \circ f$.

Considering local charts, it is enough to construct a C^1 volume preserving diffeomorphism \tilde{I} from \mathbb{R}^2 to \mathbb{R}^2 such that:

- 1. \tilde{I} is C^1 near to identity inside $B(0,\epsilon)$ for small $\epsilon > 0$
- 2. \tilde{I} is identity outside the ball $B(0, 2\epsilon)$
- 3. $\tilde{I} \in \mathrm{Diff}^1_m(\mathbb{R}^2) \setminus \mathrm{Diff}^{1+}_m(\mathbb{R}^2)$

Let us parameterize \mathbb{R}^2 with polar (r,θ) coordinates and $\xi: \mathbb{R}^2 \to \mathbb{R}$ be a C^1 bump function which is equal to one inside the ball $\{r < \epsilon\}$ and vanishes outside the ball of radius 2ϵ . Consider the following C^1 but not $C^{1+\alpha}$ (for any α) real diffeomorphism:

$$\eta(r) = \begin{cases} r + \frac{r}{\log \frac{1}{r}} & \text{if } r > 0\\ r & \text{if } r \le 0 \end{cases}$$

and define $\tilde{I}(r,\theta)=(r,\theta+\xi(r)\eta(r)\theta_0)$ for small θ_0 . The jacobian matrix of \tilde{I} is

$$D ilde{I} = \left(egin{array}{cc} 1 & 0 \ heta_0(\xi(r)\eta(r))' & 1 \end{array}
ight)$$

and it is obvious that \tilde{I} is volume preserving and taking θ_0 and ϵ , small enough it is near enough to identity in C^1 topology.

Acknowledgements: This work was supported by FAPESP, Brazil. I am grateful also to the discussions of C. Guttierez and A. Lopez at USP, São Carlos and Vanderlei Horita at Unesp de São Jose do Rio Preto.

References

- [1] J. Bochi. Genericity of zero lyapunov exponents. 2001. Preprint, IMPA.
- [2] K Kuratowski. Topology, Vol. 1. Academic Press, 1966.
- [3] F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms i. characterization of measures satisfying pesin's entropy formula. *Ann. of Math*, 122:509–539, 1985.
- [4] E. Zehnder. A note on smoothing symplectic and volume preserving diffeomorphims. volume 597 of *Lecture notes in Math*, pages 828–854. Springer Verlag, 1977.

NOTAS DO ICMC

SÉRIE MATEMÁTICA

- 155/2002 FERNANDES, A.; GUTIERREZ, C. On local diffeomorphisms of Rⁿ that are injective.
- 154/2002 BIASI, C.; GODOY, S.M.S. Generalized homogeneous functions and the two-body problem.
- 153/2002 LABOURIAU, I.S.; RUAS, M.A.S. Invariants for bifurcations.
- 152/2002 LICANIC, S. An upper bound for the total sum of the Baum-Bott indexes of a holomorphic foliation and the Poincaré's problem.
- 151/2002 OLIVEIRA, C.R.; GUTIERREZ, C.- Almost periodic Schrödinger operators along interval exchange transformations.
- 150/2002 CHAU, N.V.; GUTIERREZ, C.- A note on properness and the Jacobian conjecture in \mathbb{R}^2 .
- 149/2002 ARRIETA, J.M.; CARVALHO, A.N. Neumann boundary value problems: continuity of attractors relatively to domain perturbations.
- 148/2002 ABREU, E.A.M.; CARVALHO, A.N. Lower semicontinuity of attractors for parabolic problems with dirichlet boundary conditions in varying domains.
- 147/2002 TAHZIBI, A. Robust transitivity implies almost robust ergodicity.
- 146/2002 HERNÁNDEZ M. Existence results for second a order partial neutral functional differential equation.