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Transformacoes de intercambio de intervalos
autoinduzidas e aplicacoes , lineares por partes,
do intervalo

Carlos Gutierrez e Milton Edwin Cobo Cortez

Resumo

Dada uma transformagdo de intercdmbio de intervalos autoinduzida 7' (ou
seja, um ponto periddico do operador de Rauzy-Zorich) consideramos o con-
junto C(T') das aplicagdes bijetivas, lineares por partes, do intervalo, que sao
conjugadas a 7. Provamos que a classe de diferenciabilidade da conjugacao
depende do vetor de derivadas de F' € C(T'). Veremos que, para quase todo
F, a conjugagao nao é absolutamente continua, o que implica que a (unica)
medida invariante de F' é singular com respeito a medida de Lebesgue.



Self-induced interval exchanges and piecewise
linear maps of the interval

Carlos Gutierrez?
Departamento de Matematica
ICMC/USP - Sao Carlos
Caixa Postal 668
13560-970, Sao Carlos, SP, Brazil
e-mail: gutp@icmc.sc.usp.br

Milton Edwin Cobo Cortez |
IMECC-Unicamp
Caixa Postal 6065
13081-970 Campinas, SP., Brazil.
e-mail: milton@ime.unicamp.br

Abstract

Given a self-induced interval exchange T (i.e, a periodic points of the Rauzy-Zorich
operator) we consider the set C(T') of bijective piecewise-linear maps of the interval that
are conjugate with 7. We proved that the class of differenciability of the conjugation
depend on the vector of derivaties of F' € C(T"). We will also see that for most F' €
C(T) the conjugation is never absolutely continuous, which implies that the (unique)
invariant measure of F' is singular with respect to the Lebesgue one.

1 Affine interval exchanges

We will say that a map F' is an affine interval exchange, if it is a bijective piecewise linear
map of an interval I. Along this work we will always assume I = [0,b),b > 0 and consider
only the case in which the derivatives of F' are positive. In this way, associated to each affine
interval exchange there are vectors w € R*,d € R™ and a sequence of points ag = 0 < a; <
-++ < @y = b such that
Fz = w;x + d;, :ce[ai_l,a,-).
We will usually denote X;(F') := [ai—1,a;). Clearly if p; = a; — a;—1, a necessary condition
for bijectivity of F' is that (u,w) = b (where (-,-) is the usual inner product of R™). An
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interval exchange transformation is an affine one for which w = (1,1,...,1).
We say that an affine interval exchange (or an interval exchange) is normalized if it is defined
in the interval [0, 1).

Let us introduce standard notation for interval exchanges. Let R be the positive cone of
R™. &, will denote the group of irreducible permutations of {1,2,...,m}, i.e, those without
invariant subsets of the form {1,2,...,k},k < m. Let | -| denote, from now on, the L'-norm
of R™. Given A € R* and m € &, let A™ be the vector of entries AT = \;-1;, 1 < i < m.
Associated to the pair (A, 7) is the interval exchange T' = T'(A, ) : [0, |A]) = [0, |A]),

mi—1 i—-1

(1.1) Tz:=z+ Y A=Y M\, 7€ [ai-1,0)
k=1 k=1

where a; = ) 1, Ak, 1 <i<m.
In general, to define an affine interval exchange we need a permutation 7 € ®,, and two
vectors p,w € R such that (u,w) = |u|. Then we define F' = F(u, 7, w) : [0, |u]) = [0, |u|)
by
mi—1 i
Fz =w;z + Z wi U — w; Z”’“ T € [aj—1,a;)
k=1 k=1
where a; = E;::l uk,1 <1 < m. The vector w will be called the vector of derivaties of F.
Let T and F be piecewise continuous maps of the interval [a,b). We say that F is semi-
conjugate to T if there is a continuous, surjective and non-decreasing map h : [a,b) — [a, b)
such that T o h(z) = ho F(z), z € [a,b).
If v € R™ we denote by exp(y) the vector (exp(m),...,exp(ym)). We denote by C,(T)
(resp. S,(T)) the set of affine maps F' which are conjugate (resp. semi-conjugate) to T' and
have vector of derivaties w = exp(y).
We will show in this work how the differenciabity of the conjugation between F' € C. (T')
and T depend on the vector 7.
This work has been inspired in the work of W. Veech (see [Vee, Veel, Vee2, Vee3]). Also,
some of our results complement those ones of [Cob].

2 Rauzy’s induction

Rauzy’s induction process is defined as follows. Given m € &,, and A € R}* a vector such
that A # Ar-1(m), define v(A, 7) := min(Am, Az-1(m))- Let T(x ) and denote by T(T) the
Poincaré induced map of T on the interval I(T) := [0,1 — v(A,7)). According to [Rau],
’7’(T) is again an interval exchange transformation of m subintervals corresponding to a
pair (X', 7'). There is a matrix A(T) whose entries are non-negative integers and a bijective
transformation ¢(7T') : &,, — &, (both A(T) and ¢(T") depending only on the pair (A, 7))
such that

(2.2) N=A"YT)X and 7' =c(T)n.

Let A™! denote the standard simplex of R™, i,e, the set {\ € R : |A| = 1}. The Rauzy’s
induction map is the transformation

T A™ L % By 3 A™ L x By



such that 7(7') is the normalization of '7'(T). Notice that 7 is not defined on the set of null
measure {A € A™ 7! Ay = Ap-1(m), T € G ).

2.1 The self-induced situation and the main theorem

Suppose that T' = T'(A, ) is a periodic point for the Rauzy operator T, this is, 7?(T) = T,
for some fixed p > 1. This implies that ’7"’(T) is an interval exchange corresponding to
a pair (XN, ') satisfying the relations 7 = 7’ and A = p )’ for some p > 1. We will say
that T is a self-induced interval exchange transformation. Let B denote the matrix B =
A(T)A(TX(T)) ... A(TP(T)). Using recursibly (2.2) we get that X is a positive eigenvector
of the matrix B™!,i.e, B™!A =X = (1/p)\,p > 1.

In the following section we will introduce a matrix L™ with the property that the
eigenspace of B associated to the eigenvalue 1 contains the kernel of L™. We will sup-
pose that outside the kernel of L™, B has only real and different eigenvalues, and all this
eigenvalues are different from 1. The kernel of L™ will be denote by N(7) and its orthogonal
complement will be denote by H ().

Given v € R™ we denote 6(7) := limg—,o0 3 l0g || ‘B¥v]|. Clearly 6(v) is the logarithm of
one of the eigenvalues of B.

It will be prove in Lemma 3.1 that if (A, ) is a uniquely ergodic interval exchange then
S,(T) # 0 implies that v is orthogonal to A. In view of this, we only consider vectors of
inclination « in the orthogonal complement of A, which will be denoted by H.

Let us denote by C.’,V (T) (resp. S’.’YV (T)) the set of normalized affine interval exchanges
in Cy(T) (resp. S,’;’(T)).

Theorem 1. Let vy € H. Then S,(T) # 0 and

(a) if (y) < O then there is a unique map F € SN(T). If y = L™\, F is analitically
conjugate to T. In the other cases F is at least C*-conjugate to T. In particular, F
has an invariant measure which is equivalent to Lebesgue.

(b) if 6(y) = 0O then there is a unique F € S.’YV(T). If F is conjugate to T then this
conjugation is never absolutely continuous. In particular, F' has an invariant measure
which is singular with respect to Lebesgue.

(c) let 6(y) > 0 and suppose that F € C,(T'). Then the conjugation is never absolutely
continuous. In particular, F has an invariant measure which is singular with respect
to Lebesgue.

Observe that if F is semi-conjugate to 7" but not conjugate, this is, if h is not injective,
then there is an interval W C [0, 1) such that h(W) is reduced to a point zo and also by the
semi-conjugacy h(FJ(W)) = T¥(zo),j € Z. This implies that the iterates of W never reach
the discontinuity points of F, i.e, F7(W) is an interval for each j € Z. If we suppose that T
is minimal then F' has no periodic point and we will say that W is a wandering interval for
F. In [Cob)] there have been constructed examples where C,(T') = 0 for every < such that
6(y) > 0. Then we ask whether this situation is typical or not,

Question 1. In the self-induced situation if v € H(w) and 6(y) > 0 then C,(T) = 0?



3 Some preliminary results

In [cam-gut] it is proved that, modulus redefining T at the discontinuities (in case 6(y) > 0),
S,(T) is always non-empty for v € H.
Observe that if F' is semi-conjugate to 7" then we have

h(y) =z implies F*(y) € Xi(F) < T*(z) € Xi(T).
We recall the following easy result:

Lemma 3.1. Let T() ) be a uniquely ergodic interval exchange transformation and F €
S,(T). Then the vector +y is orthogonal to A. In particular,

lim (DF™(y))* = 1,Vy € [0,1).

n—oo

Proof. Clearly T and F have null topological entropy and thus zero Lyapunov exponent. If
h(y) = z then

m

DF™(y) = exp(z xi(y,n)v:)

i=1
m

=exp()_ xi(z,n) 1)

i=1

where x;(y,n) := card{0 < j < m: Fi(y) € X;(F)} = card{0 < j < m : TI(z) € Xi(T)}.
Observe finally that the Lyapunov exponent of F,

. 1 n 1 = Xi (:Z:, n) _
Ji o DFG) = ligy ) =20
is also equal to )., A; 7: because the unique ergodicity of T implies that X(%l converges
to A; when n — oo. O

Let us denote 7™(T) = T(A™,x(™) n > 1. Then there is a sequence I(T™(T)) =
[0,]A™]), n > 1 of nested intervals shrinking to zero such that 7"(T) is the induced map
of T on the interval I(7™(T)). Observe also that (2.2) implies that

(3.3) A= ADATHT)) ... AT H(T))A™

Let F € S.’,V (T). Observe that necessarily F' has the same associated permutation 7 as T.
Let h : [0,1) — [0,1) be a semi-conjugation between F and T and let I = I(T'). It is not
difficult to see that the induced map of F on the interval K = h~!(I) is again an affine
interval exchange F' associated to the triple (u',7’,v') where 7' = ¢(T)7 and we can easily
compute that

(@) ~' = A(T)-v, (*A(T) is the traspose of A(T))

L 6) W= A7 (D



and the matrix A,(T) is equal to A; if Ay < Az-1() and equal to A, if A, > Ax-1(m); the
matrices A; and A, are given in (3.6).

Define the vector 4(") as the traspose of the matrix A(T)A(TY(T))... A(T™~ (T)) apply
to the vector v,n > 1. Then using recursively (3.4(b)) we can easily see that

(3.5) pe () AT A@(T(T))... Ay (T HT)) R
n>0
00 0
Ir=1(m) : ;
10 0
0 1 0 ... 0
Ay 0 0 1 0 0
0
(3.6) . :
0 0 . 0 1
e(y,m) 0 . 0
0
A2 = Im—l
0
0 ... e(vm ... 0 | 1

Here e(y, ) is the number exp(v,-1(m)) and appears at the (7~!(m)) position.

3.1 The matrix L™

When studing the suspension of interval exchanges to flows on boundaryless compact sur-
faces, Veech ([Vee]) introduced the skew-symmetric matrix L™, 7 € &,
+1 if i<j and w() > 7w(j)
(3.7) Li=¢-1 if ¢>j5 and 7(i) < 7(j)
0 otherwise.

Then proceeding as in [Vee3] we may easily see that (L™)); = :_’___11 AR — ;;__11 Ak and
then the (A, 7)-interval exchange T is given by
(3.8) Tz=z+ (L™A);, =z € Xi(T).

The matrix L™ plays an important role in the ergodic properties of interval exchanges (see
[Veed]). It is proved that L™ satisfies the equation

(3.9) YA(T)L™ = L™ A(T)™", ('A(T) is the traspose of A(T))



Hereafter we will suppose that T = T'(A,7) is a periodic point of the Rauzy’s operator
with period p, this is, 7P(T) = T. This implies that T”(T) =T(N,w) with X' = p~1 ), for
some p > 1. In particular T is self-induced on the interval J = [0, p~}).

Let B denote the matrix B = A(T)A(T*(T))...A(TP?(T)). We may suppose (by in-
creasing the period p) that B is a positive matrix. Using recursibly (2.2) we get that \ is a
positive eigenvector of the matrix B!, i.e, B™'A =X = (1/p)\,p > 1.

Observe that T is also self-induced on each subinterval J, := [0, p™"),n > 1 with induc-
tion matrix B",i.e , B™"\ = p~"\. T,, will also denote the induced map of T in the interval
JIn.

From equation (3.9) we obtain that ‘BL™ = L"B~! then if  # 1 is an eigenvalue of B
associated to the eigenvector w then 1/7 is an eigenvalue of ‘B associated to the eigenvector
L™w.

As B is a positive matrix we know that p is the largest eigenvalue of B and then 1/p is
the smaller eigenvalue of B and it is associated to the eigenvector L™\ # 0.

Remember that N(7) denote the kernel of L™. In Section 5 we will see that N(m) has
a basis of eigenvectors of B associated to the eigenvalue 1. We will suppose that N () is
generated by all the eigenvectors of B associated to the eigenvalue 1. Denote by /() the
dimension of N(w) and let g := %(m —I(m)). Then the the eigenvalues of B are of the form

=T < <ty < 1= = = i)+ = 1 < ey <00 < = .

We denote by
A*={y€ H:0(y) <0}
A®={y€ H:6(y) =0}
A* = {y € H :6(y) > 0}.
4 The stable case A°
From the equation ‘BL™B = L™ and the fact that BA = pA, we get

B(L™)) = %(L”,\),

this is, L™\ is the eigenvector of !B associated to the minimum eigenvalue 1/p. From the
relation Tz = z + (L™));,z € X;(T), we can see that ¢(z) = e® satisfies the relation

(4.10) o(T(z)) =eE"Mip(z), =z € Xi(T).

Consider now the (absolutely continuous) measure u = [ ¢(z)dz, and let

L ] T

T ouf0,1] T e-1"
Then we can easily see that F' = ho T o h™! is the following affine interval exchange
. L™V _ 1
F(z) = ell™Nig 4 e z € X;(F) := h(X;).



Let v € A® and let x;(z,n) be the number card{0 < j <n:TJ(z) € X;(T)}. We define

(4.11) I(z,n) 1= exp(z xi(z,n)v;).

i=1

In particular denote I'(z) := I'(z,0) = exp(v;), z € X;(T).
W. Veech proved in [Veel] that the equation

(4.12) ¢(Tz) =T (z) - p(x)

has a continuous non-negative solution for v € R™, provided that
o0
Z lvB*|| < oo
k=0

which is our case when v € A°. Let us assume that ¢ : [0,1] — [0, 1] is a solution for equation
(4.12) and consider the probability p := d~! [ ¢ds, where d = fol ©(s)ds. Then p satisfies
the relation fT A dp = / 4 I'ds, where A is any Borel set of [0, 1). Observe that the function
h(z) = p[0,z) is a bijective C'-map of [0,1) such that F = hoT o h™! € CN(T). To see
this, let X;(F') := h(X;(T)). Then if B C X;(F) is an interval and h(A) = B we have

|F(B)| = |MT(h™"(B))| = w(TA)
= e" p(A) = e"[h(A)| = e |B|

which implies that DF(y) = e for all y € X;(F). Hence we have proved that for v € A°
there is F € C,(T) which is C'-conjugate to T.

Finally observe that if v € A° then (™ goes to zero when n — co. Therefore Ao (T™(T))
converges to A(7™(T)). Now if F(u,m,7v),y € A° is an affine interval exchange semi-
conjugate to 7" then by (3.5),

p€ [ Av(T) Ay (T(T))... Ay (T H(T)) R

n>0

Arguing as in [Vee3, Lemma 3.28] we obtain that this intersection is one-dimensional and
so there is a unique F' € C'f;’ (7).

We remark that R. Barreto proved in ([Barr]) that for every z € [0, 1), sup,,cz I'(z,n) <
oo. Then it is easy to see that the function ¢(z) := sup,¢z r(_zln_) satisfles equation (4.12).
In fact, R. Barreto proved that this ¢ is a Lipschitz function.

Proposition 4.1. Associated to every vector v € A° there is a unique affine interval ez-
change F € S,’YV(T) which is C'-conjugate to T. If v = L™\ then F is even analitically
conjugate to T.

5 The central space A°

We will introduce now results from ([Vee]) where it is exhibited an explicit basis for N (=),
the kernel of L™. In particular this basis is formed by eigenvectors of B associated to the
eigenvalue 1.



Define 7(0) := 0 and 7(m + 1) := m + 1 and consider the new permutation ¢ = o(7) on
the set {0,1,2,...,m} given by

o(j) :=7"'((j)+1)-1,0<j <m.

Let X(m) denote the ciclic sets of o, i.e, the periodic orbits of ¢. For each S € £(7) assign
the vector bs € R™ whose components are given by (see 2.9 in [Vee]),

(5.13) bs(j) =xs(j—1)—xs(),1<j<m

where xs : {0,1,...,m} — {0,1} is the characteristic function of S. It has been shown in
[Vee] that this vectors form a basis for the kernel of the matrix L™ defined in (3.7). It is
proved that associated to transformation ¢(T) : &,, = &, there is a map &(T) : (7)) —
X(m) such that

bs = A(T') bg(T)s, S € T(m).

Even more if c(T*(T))e(T*(T))...c(T)m = = then &T*(T))&(T*~(T))...&(T) is the
identity map on (7). This implies that if 7%(T") has the same associated permutation 7 as
T then

bs = A(T*(T)A(T*Y(T)) ... A(T) bs, S € S(x)

i.e, the bs are eigenvectors of the matrix A(7*(T))A(T*~Y(T))... A(T) associated to the
eigenvalue 1. In particular, if T is a periodic point of 7", with associated matrix B, we obtain
that N () is contained in the eigenspace of B associated to the eigenvalue 1.

Lemma 5.1. Let v € R™ such that vB = v. Then there is a unique F € SN (T'). Let h be a
semi-conjugation between F and T and define K = h=(J). Then F is self-induced on K.

Proof. Let F € SN(T). From (3.5) we know that

pe () [B)"RT.
n>0

As B, is a positive matrix, this intersection is one-dimensional and so F' is unique (remember
that u € A™1).

Now by our hypotheses T is self-induced on J = [0,p™!). Let F = F(p,m,v) be the
induced map of F' on K. Write 6§ = |;1|_1 > 1. Re-escaling we obtain that F(fp,,v) is
clearly semi-conjugate to T, hence 6 = p. This implies that (B,,)_1 uw= =601y, and
therefore F' is also self-induced on the interval K. O

Lemma 5.2. Let ej, 1 < j < m be the canonical basis of R™. Then there are constants
C1 > p and Cy > 0 such that

|Be;| > C1p* and |B*e;| < Cap*

foreachk>1and1<j<m.



Proof. Define 9(B™) = max; j x %‘f. We may suppose that 9(B) > 1. Then if bf = |B*e; =
Yz, Bf; we get that
(5.14) bf < 9(BM)bf < 9(B)YY, 1<j,i<m,

where in the last inequality we have used the fact that J(B*) < 9(B) ([Veel]). Finally from
Y, Aje; = A and the fact that B¥X = p*\ we obtain that

m
(5.15) |BEA| = p* = S Al Breyl.

i=1
This implies that there exists jo and K¢ such that e, satisfies
|B¥ejo| > 1/20%, k > Ko.
Using (5.14) we conclude that (for k > Kp)
|B¥e;| > 1/20(B)p*, 1< j < m.

Hence the existence of C;. Similarly, using equation (5.15) we obtain the constant Cy > 0
such that, for each k > 1 and 1 < j < m, |B¥e;| < Cap*. O

We will show now that the affine interval exchange that appear in the central case don’t
have absolutely continuous invariant measures. We will use the following easy lemma.

Lemma 5.3. Let T be a uniquely ergodic i.e.t and F € C,(T'). Then there ezxist an absolutely
continuous conjugation between F and T if and only if F' has an invariant measure which
is absolutely continuous with respect to Lebesgue.

Lemma 5.4. Let v € A® and F € Sy(T). Then the (unique) invariant measure of F' is
singular with respect to Lebesgue.

Proof. Suppose that h is an absolutely continuous conjugation between F' and T, i.e, ho
T = F o h. Let m be the Lebesgue measure. Then the measure m = m o h defined by
m(A) = m(h(A)) where A is a Borel set, is absolutely continuous with respect to Lebesgue,
say m = [ @dm. Observe that then ¢ satisfies the equation

(5.16) ¢(T(z)) =e"p(z), =€ Xi(T).
a.e in [0,1). In fact if A C X;(T) is such that h(A) = B C X;(F'), then

m(TA) = /TAcpdm= /Acponm

=m(h(T'A)) = m(F(B)) = e* m(B)

=e"" m(h(A)) = exp(vi)m(4) = / e’ pdm.
A

Veech had proved in [Veel] that (5.16) has a measurable solution only if (v, bs) is an integer
for all S € I(w). On the other hand, for any positive real number a, ¢ is a solution for

f(T(z)) =e* f(z), z€ Xi(T),



which implies that o - (v,bs) € Z for all @ € R, ie, (v,bs) = 0,VS € Z(x); in other
words, equation (5.16) has a measurable solution only if the vector v belongs to H (), the
orthogonal complement of N (7). It is easy to see that no eigenvector of ‘4 associated to
the eigenvalues 1 belong to H (). In fact if v € R™ satisfies vB = 6v, 6 # 1, then for each
S € X(m) we have

(vB*,bs) = 6% (v,bs) = (v, B~¥bs) = (v,bs), k > 1

which implies that (v,bg) = 0 for all S € (=), i.e, H(7) contain all the eigenvectors of
!B associated to eigenvalues different from 1, as we are assuming that the number of this

eigenvectors is exactly the dimension of H(7), then there are no vectors of A® in H(m).
O

6 The unstable case A"

We will prove that if (y) > 0 and if F' € C’.’YV (T') is an affine map conjugate to T then F
has an invariant measure which is singular with respect to Lebesgue. By Lemma 5.3, this is
equivalent to prove that no conjugation between F' and T can be an absolutely continuous
function. Suppose by contradiction that h is an absolutely continuous conjugation between
F and T, i.e, we have that h(F(y)) = T(h(y)), y € [0,1). Then the measure m = moh
defined by m(A) = m(h(A)), for any Borel set A is absolutely continuous. Write 7 = [ pdm.
We can easily see that  satisfies the relations (remember (4.11) and (5.16)),

o(T*z) = T(z,k)p(z), z € [0,1),k € Z.

Using the ergodic theorem of Birkhoff we get that
1 1 n-1
1 k — . 1 o
lim — E w(T"(z)) = () nlgn ~ kE_O [(z, k)

1
=/ pdm =1
0

and therefore,
— 1
(6.17) p(z)~! = lim =" T(z,k).

This implies in particular that for almost every point z the quotients I'(z,n)/n remain
bounded when n goes to infinity. We will prove now that this is impossible when 6(y) > 0
which implies that F' cannot have an absolutely continuous invariant measure.

Lemma 6.1. The invariant set

G={z€[0,1): limsupM = o0}
n—00 n

has Lebesgue measure one.
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