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1 Introduction

Unitary groups over local rings in which 2 is invertible have been studied by
James in [5]. In this paper, we extend some of the results of James on the
generators and commutator subgroups to strongly semilocal rings, without
assuming 2 invertible, and in the setting of parameter forms as introduced by
Bak in [1] (Theorems 4.6, 4.7, 4.9 and 4.12). These results also generalize
results of Ishibashi ([4]) in the strongly semilocal case. A ring (not necessarily
commutative) is called strongly semilocal if modulo its Jacobson radical it is
a finite product of division rings (see 2.4). In section 2 we give some results
on the structure of strongly semilocal rings and in section 3, some results on
orthogonal decompositions of unitary spaces over strongly semilocal rings.
The mains results are in section 4.

2 Strongly Semilocal Rings

Let A be a (not necessarily commutative) ring with the identity 1. A is
called a strongly semilocal ring if there exist finitely many two-sided ideals
{P;} such that each proper right ideal is contained in at least one P; and
each proper left ideal is contained in at least one P;.

We may assume that all {P;} are maximal two-sided ideals by dropping
nonmaximal ones. Then each P; is maximal as a right ideal and also as a left
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ideal. Further the {P;} are pairwise comaximal, i.e. P; +P; = Aif i # j.
Therefore the Chinese Remainder Theorem holds for the set {?;}. From now
on, by a maximal ideal we mean a maximal two-sided ideal.

Strongly semilocal rings are called semilocal rings in [4]. The usual ter-
minology (see [7]) is to call a ring semilocal if modulo its Jacobson radical it
is a semisimple ring.

Proposition 2.1 Let A be a strongly semilocal ring. Then
(i) if A is commutative, then A is semilocal;

(i) radA = NP;, where rad means the Jacobson radical;

(iii) A is semilocal;

(iv) for any two-sided ideal I of A, A/I is strongly semilocal.

Proof - (i) follows from the definition. For (ii), the inclusion rad A C NP;
is clear. Let z be an element of NP; — radA . There exists a maximal left
ideal M of A such that z ¢ M, so Az + M = A. Since M C P; for some
t, and z € NP;, we have A = Az + M C P,, a contradiction. Hence we
have, as claimed, radA = NP;. We prove (iii). Suppose that there exists a
maximal ideal P of A containing two distinct maximal left ideals M; and
M,. Without loss of generality we can assume that exists y € M; — M,.
Then we have A = Ay + M; C P. So, if A is a strongly semilocal ring, then
A has a finite number of maximal left ideals and (iii) follows from Proposition
(20.1) in [7]. Finally, (iv) follows of the definition and the fact that if M is
a proper left (or right) ideal of A/I, then M + I is a proper left (or right)
ideal of A. @

Remark 2.2 Semilocal does not imply strongly semilocal. For example, a
matrix algebra over a field is semilocal and clearly not strongly semilocal. In
particular a finite algebra over a commutative semilocal ring is not necessarily
strongly semilocal.

The following converse of (iv) holds:

Proposition 2.3 Let A be a ring and I be a two-sided ideal of A contained
in radA. Then A/l strongly semilocal implies A strongly semilocal.

Proof - Let ¢ : A — A/I be the natural projection. Let {P;} be a finite
set of maximal ideals of A/I satisfing the conditions for A/J to be strongly
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semilocal. Clearly {¢~!(P;)} is a set of maximal ideals of A. Let M be
a proper left (or right) ideal of A. Then p(M) is a left (or right) ideal of
A/I. If p(M) is proper, then p(M) C P; for some i, and M C ¢~(P;) for
some ¢. If (M) =0in A/I, we have M C I in A. Suppose p(M) = A/I.
Then M+ 1 = A. So, there exist £ € M and y € I such that 1 = z + y.
Since I C radA, it follows that z is a unit in A and M is not proper. Thus
(M) cannot be the full ring A/1. It follows that the set of two sided ideals
{¢~1(P:), I} satisfies the conditions for A to be strongly semilocal. ®

A ring A is semilocal if and only if A/radA = M, (D) x --- x M, (D,),
where the D; are division rings for 1 < ¢ < r. For strongly semilocal rings
we get:

Theorem 2.4 Let A be a ring and radA the Jacobson radical of A. Then A
is strongly semilocal if and only if A/radA = D, x --- x D, for some integer
r and division rings D;, 1<:1<r,

Proof - One sees easily that the ring D; x --- x D, is strongly semilocal if
the D; are division rings. Thus a ring A such that A/radA= D; x --- x D,,
is strongly semilocal by 2.3.

Now assume that A is strongly semilocal and let {P;}, 1 <t < r, be
a corresponding set of maximal ideals of A. Since the Chinese Remainder
Theorem holds for {P} and radA = nN_,P;, we have
A/radA = A/Py x --- x A/P,. We claim that A/P; is a division ring for
each: = 1,...,r. Take z € A/P; such that z # 0. If z is not invertible
in A/P;, then (A/P;)z is a proper left ideal of A/P;. Choose y € A with
y = z mod P;. Then Ay + P; is a proper left ideal of A. As A is strongly
semilocal, there exists j € {1,...,r} such that Ay + P; C P;. This is an
absurd, since P; C Ay + P; and P;, P; are maximal. Hence z is invertible in
A/P; and A/P; is a division ring, as required. @

Let A" the group of units of A. As an immediate consequence of 2.4 we
have:

Corollary 2.5 (i) If A is a strongly semilocal ring with mazimal ideals {P;},
then A* = A— UP,.

(i1) A finite direct product of strongly semilocal rings is strongly semilocal.



Proof - (i) is immediate and (ii) follows from the fact that the radical of
a direct product is a direct product of the radicals (see Exerc. 12, § 4 in

[7)). ®

The following result, about matrices over strongly semilocal rings, will be
used later.

Proposition 2.6 Let A be a strongly semilocal ring with mazimal ideals
Pi,...,P.. If B € My(A) is such that B = B; mod My(P;), with
B; € GLy(A/P;), foralli =1,...,r, then B € GL,(A).

Proof - By 2.4 we have A AfradA = ,_,(A[P ; with A/P; divi-
sion rings. So M,(A) = [Ii, Ma(A/P;) and GL,(A) & [T, GL,(A/P;).
Since B = B; mod My(P;) with B; € GL,(A/P;), 1 < i < r, we have
B = (B,...,B,) € GLy(A). By Exercise 21, § 4 of [7], there exists
B’ € GL,y(A) such that B’ = B,i.e., B' = B; mod M(P;)foralli =1,.

As B € GLy(A) if and only if BB"] € GLy(A), we can assume B = 1 in
GL,(A ) Put B = (bj), 1 < 4,7 < 2. We have b;; € radA, 1 # j, and
b;; = 1 mod radA. It follows that b;; € A* and 1-b;;z € A*,1 # 5,1 < 4,5 <2
for all z € A. For C = (¢;;) € My(A), with ¢;; = b“b b7, i # j and
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ci = b7', 1=1,2, we have
BC = 1+ byzen 0
B 0 1+bha, )’
with (1 + b;;jc;;) € A™, 1 # j, and B € GL,(A), as required. E

3 Unitary Spaces and Orthogonal Decom-
positions

A unitary ring (A,\,T) is a triple consisting of a ring A (not necessarily
commutative) with identity 1 and an involution ~, a central unit A of A with
AX =1 and an additive subgroup T of A such that:
(i) S-x(A)={a—)a; a€ A} CT C{a€A4; a+)ra=0}=S5*A)
(1) aza €T forallz €T and a € A.



For a finitely generated projective right A-module M, let Sesq(M) be the
set of sesquilinear forms on M,

Sesq™*(M) = {k € Sesq(M); k+ Ak =0},
where k(z,y) = k(y,z), z,y € M, and let
Sesqr*(M) = {k € Sesq™*(M); k(z,z) € T for all z € M}.

A unitary moduleis a pair (M, [k]) where M is a finitely generated projec-
tive right A-module and [k] is the class of k € Sesq(M) (modulo Sesqr*(M)).
The associated even A-hermitian form k + Ak will be denoted by <, >, i.e.,
<z,y> = k(z,y) + Mk(y,z) for all z,y € M. Thus <z,y> = A<y,z > for
all z,y € M. The pair (M, [k]) is a unitary space if <,> is nonsingular.

Let (M,[k]) be a unitary module. We define a "quadratic function”
l[g] : M — AJT by [¢)(z) = k(z,z) + T, z € M. Let [a] be the class of
a € AmoduloT. Since @za € T for all z € T and a € A, we can define
@[z]a = [aza] and we have

g)(za) = a[g)(z)a

for all z € M and a € A. The quadratic function [g] and the even form <, >
are related through the formula

lg)(z + y) — [g)(=) — [g)(¥) = [<z,y>].
This means that
<z, y>=k(z+y,z+y)— k(z,z) — k(y,y) mod T,

for all z,y € M.

A morphism of unitary modules ¢ : (M, [ki]) — (Ma[ks]) is an
A-homomorphism of right A-modules ¢ : M; — M; preserving the quadratic
functions and the even A-hermitian forms. A morphism of unitary modules
is said to be an isometry if ¢ is an isomorphism. The unitary group of all
isometries of a unitary module (M, [k]) onto itself is denoted by U(M, [k]) or
simply U(M).

From now on in this section, and in the following one, we will assume
that (A,A,T') is a unitary ring with A strongly semilocal. All A-modules
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considered will be free right A-modules. Since a strongly semilocal ring is
semilocal, each left (or right) unit in A is a unit and the rank of a finitely
generated free A-module is well defined.

Let P be a maximal ideal of A with P # P. Take A’ = A/P x A[P. The
involution of A’, induced by the involution of A, is given by (a,b) = (3,3),
for all (a,b) € A’ and we have A/P = (A/P)°, hence A' & D x D*?, D
a division ring with the involution (a, %) — (b,a°). We call a ring D x D°P
with the involution (a,b°) — (b,a°) a double division ring. Furthermore,
since (1,0) is a central element of A’ such that (1,0) + (1,0) = (1,1), we
have S_»(A’) = TI'(A') = S~*(A’), where A = (A, ;) is the image of ) in
A’ and T'(A’) is the image of I'. By (6.7), I in [6], any unitary space over A’
has an orthogonal basis {e;,...,e,} such that [g](e;) = (1,0) mod S_,(A') =
S=MA).

Let (A,A\,I') be a unitary ring with A strongly semilocal and
{Pi;, i =1,...,r} be the maximal ideals of A. Let A = A/radA. By
2.4, (A, A\, T) has a decomposition, as a product of unitary rings, of the form

(A,X,T) = (A1, M1,T1) x -+ x (A4, \,T),
where each A; is a division ring or a double division ring.

Proposition 3.1 Let (M,[k]) be a unitary space over (A,\,T) with
ra,nkAM =n.

(i) If n = 2m, then (M,[k]) ~ L7, (N;,[k:]), where rank4N; = 2 and N;
has a basis {z;y,Tin} with <z;1,2:0> =1 foreachi=1,...,m.

(1)) If n = 2m + 1, then (M,[k]) ~ L7, (Nilk]) L (Na,[ka]), where
(N;,[ki]), 1 <i<mareasin(i) and N, = z,A vith <z,,z,> € A".

Proof - Let A = A/radA and suppose n = 2. If M=M/M radA) has a
basis {7;,7,} with <77,7;> = TinA then, lifting 7;,7; to z;,z9 € M, we
have M = 2 A@®z2A and < z,,2,> € A”. Thus (M, [k]) has a basis {zl,zz}
with < z{,z, > = 1. By the Redution Theorem (4.6.1), II, [6] and 2.4, we
may assume that A = A; x--- x A, with A; division rings or double division
rings. We have a corresponding decomposition

(M, [k]) = (My, [ky]) x - - - x (M, [k,]).



Since it suffices to prove 3.1 for each (M;, [k;]), we can assume that A
is a division ring or a double division ring. If A is a division ring, the
Proposition follows from (6.5.3), I, [6]. If A is a double division ring and
n = 2, then by (6.7), I in [6], (M, [k]) bas an orthogonal basis {e;,e;} such
that k(e;,e;) = (1,0) mod S~*(A). Since (1,0) = (0,);) mod S~*(A), we
can assume that k(e;,e;) = (1,0) and k(ez,e;) = (0,1). Now, {e; + €;,€;} is
a basis of (M, [k]) with <e; + €3,e2> =(1,1) =1 in A and the Proposition
follows from this and (6.7), I, [6]. B

Remark 3.2 Replacing division rings or double division rings by simple
rings in the proof of 3.1 and using (9.5), I, [6], one can obtain similar or-
thogonal decompositions for unitary spaces over semilocal rings.

We now discuss the existence of an orthogonal basis for a unitary space.
By the Reduction Theorem, a unitary space (M, [k]) over A has an orthogonal
basis if and only if (M, [k]) has an orthogonal basis over A. Let (D, ,T') be
a unitary ring with D a division ring and (M, [k]) a unitary space over D.
The space (M, [k]) has an orthogonal basis if (M, <,>), the even A-hermitian
space associated to [k], has an orthogonal basis.

Proposition 3.3 With the above notations, (M, [k]) has an orthogonal basis
if and only if D satisfies one of the following conditions:

(1) The involution of D is not trivial.

(2) The involution of D is trivial (D is a field), A =1 and 2 # 0 in D.

Proof - The part "if” is immediate from (6.2.4), 1, [6]. Now, assume that
D does not satisfy the conditions (1) and (2). Then the involution of D is
trivial (D is a field), A = —1 or 2 = 0 in D. Since (M, [k]) is a unitary space
over D, from (3.1.1), I, [6], we have <z,z> € S,(D) = {a + X@; a € D}
for all z € M. But S,(D) = (1 4+ A)D and ) is a central element of D with
M=2=1,ie,A==1. A= —1then S)(D)=0and <z,7> = 0 for
alzre M. If A\=1and 2=0in D, we also have S\(D) = 0. Thus in both
cases, (M, [k]) does not have an orthogonal basis. E

The next proposition is now immediate.

Proposition 3.4 Let (A,A,T) be a unitary ring with A strongly semilocal
and (A, \,T) = (A1, 21,T1) x --+ x (A,, A, T,), where each A; is a division
ring or a double division ring. A unitary space over A has an orthogonal
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basis if and only if A; satisfies (1) or (2) in 8.8 for all A; which are division
rings.

Let (M, [k]) be an unitary space over A with rank,M = 2. By 8.1 the
space M has a basis {z;,7;} with <z;,2,> = 1. So <,> is represented by

the matrix ( 0;1 al , where a;; = <z;,z;>, 1=1,2. Since
22

1 —ay; an 1 _ 0 l—a_ﬁagg
0 1 A Qg2 - A a7 A

we have 1 — @37a5; € A® and A — a;;a5; = A(1 — @g7a2,) € A°.
- We may assume that [g](z;) N A® # 0: the fact that [g](z,) N A* # 0 is
equivalent with the existence of B = (b;;) € GL2(A) such that

@) = byykyybyy + birbya + biokaoby; € A

and

@z = biiaiiby + biibyy + Abiobay + biaazby € A°,
where a;; = < z;,z; > and k; = k(z;,z;), since z} = z:b; + 720y, and
zy = z1by + Z2by, will be a new basis of M, with a; € [g](z}) N A° and
<8, 2> € A"

Lemma 3.5 Let (M, [k]) be an unitary space over A withrank,M = 2. Let
P be a mazimal ideal of A. There ezists B = (b;;) € My(A), B invertible
modulo M,(P) and M,(P), such that aya; € PUP (a;,a; as above).

Proof - lf ky; € PUP (or ky; & 'PU?), we take b; = land b;; =0, 7 # j (or
bi;=0and b;; =1, 1 #j),1 < 1,7 <2. So we can assume k;, ks € PUP.
If kyq, k2o € PNP, then by; = byy = byy = 1 and by; = 0 are as required. In
the case that ky; € P NP or kyy € P NP, changing the index if necessary,
we may assume k;; € P NP and, without loss of generality we can assume
ki € P — P. We claim that there exists b € P — P such that 1 + baz, ¢ P
and, in this case b; = by, = 1, by; = 0 and by, = b are as required. The
claim is equivalent with the existence of b € P — P such that 1+ bay, ¢ P. If
1+bay, € Plorallbe P—P wetakebe A—P. If b€ P, then 1+ ba,, € P.
Ifb ¢ P,since P+P = A, wehave b = b; +b, with b, € P-Pandb, € P-P
and 1+ b(122 =1+ b1022 lI]Od.’}—D Thus 1 +b¢122 € 5 for all b €A —75. As
ky1 € P—P, we have b= —a;; € A—P and 1 —@yja2; € P a contradiction,
since 1 — @37ay; is a unit. ]



Proposition 8.8 Let (M, [k]) be a unitary space over A with rank,M = 2,
Then (M, [k]) has a basis {z},25} such that <z},z7> =1, [g](z}) N A" # 0
and (A\- <z},2]><25,2;>) € A",

Proof - By the remark before Lemma 8.5, it suffices to find B € GL;(A)
such that aya; € A". Let {P;; i € J} be the maximal ideals of A. We define
a permutation * on J by i* = j if and only if P; = P;. Let J' be a set of
representatives of J modulo the action of *. By Lemma 8.5 there exists, for
every 1 € J', B; = ((b);1) € M3(A) such that B; is invertible modulo M,(P;)
and Mz(ﬁ),

Q= mkn(b-‘)n +(E)1—1(b.-)n + (bi)12k22(b:)12 € Pi UP;

and

iz = (b;)11811(bi)21 + (b:)11(bi)2z + A(b:)12(bi)2n + (b)12a22(bi)22 & P U P

We take, for each ¢ € J', §; € A such that ¢ = 1 mod (P;) and (P;), and
& = 0mod (P;), j # 1,4 Putting by = Tiepr &i(bi)un, bz = e &i(bi)ra,
by = Ties&i(bi)n and bn = Ty &i(hi)s: it is easy to see that
a0, = a0 mod (P;) and (P;), and B = B; mod My(P;) and M,(P;)
for all i € J'. Thus aqa; € A —U;eyP; = A* and B € GL,(A) by 2.6. m

Let (M,[k]) be a unitary space over A with ranky,M = 1. Assume
|A/P| > 3 for every maximal ideal P of A suchthat P # P. By3.1, M = zA
with <z,z> € A*. Let (Z,X,I:) = (A5, A1, Ty) x---x(A,,,,T,), where each
A; is a division ring or a double division ring, and k= k(z,7) = (k1,...,ks),
with k; € A;, i1 =1,...,s. If A, is a division ring, then A; = A/P for some
maximal ideal P of A with P = P and k; = k mod P. Since <z,z> = k+ Ak
and P = P, we have k; # 0in A;,i.e. k; € A;. If A;is a double division ring,
then A; = A/P x A/P, for some maximal ideal P of A with P # P, and
k; = (a;,az) where a; = kmod P and a; = kmod P. If a; # 0 fori = 1,2,
then k; € A}. Since <z,z> € A”, we have a,, a; are not both zero. If one
of them is zero, changing P by P if necessary, we may assume a; = 0 and
a; # 0,ie. k € P—P. Since |A/P| > 3 and P # P, there exists a € A
such that a(k — @) € P UP. For such element a and b = A\(k — @) we have
k; = (b,a) mod I'; and (b,a) € A;. Thus, there exists & € (A)* such that



k = @ mod I'. Now, it is easy to see that k(z,z) = u mod I for some u € A°,
ie. [gl(z)NA"#0.

Proposition 8.1 and the above discussion show that, for every unitary
space of rank n over (A,A,T), one has a decomposition

(M, [k]) ~ L7, (zaA +zA) if n=2m
and
(M, [k]) >~ L2, (z0A+2z2A) Lz, A if n=2m+1,
with <z;5,2> =1, (A= <Z;,2H0><Zip2,Zi2>) € A, [¢)(zi) N A" # 0 for
alli=1,...,mand <z,,z,> € A". Further, if n is odd and |A/P| > 3, for

every maximal ideal P of A such that P # P, then [g](z,) N A* # 0. We call
the corresponding basis of M a special basis of M.

4 Generators for the Unitary Group

Throughout this section we will assume that A is a strongly semilocal ring
with |A/P| 2 3, for all maximal ideals P, and that (M, [k]) is a unitary
space over (A, I'), with hyperbolic rank > 1 and ranks;M > 3. We fix a
splitting M = H L N where H is a hyperbolic plane with basis {u,v}, i.e.
<u,v> =1 and [g)(u) = [¢](v) = 0, and (N,[k]) is a unitary subspace of
(M, [k]) with rank4 N > 1.

We now introduce special elements of the unitary group. We define
A € U(M) by A(u) = v, A(v) = uX and A(z) = 2 for all z € N. For
each unit € in A, we define ¢(c) € U(M) by ¢(e)(u) = ue, ¢(e)(v) = ve™!
and ¢(e)(z) = z for all z € N. For ¢ € T' we define the transvection T,(u) in
UM) by B

T.(u)(z) = z+ucA<u,z>, z€ M.

For z € N and a € A with a = k(z,z) mod I, the Eichler transvection
E,.. in U(M) is defined by
Eyor (2) = z+u<z,2>—2A<u,z> —ula<u,z>, z € M.
We have T.(v) = AT.(u)A™! and E,,, = AE,,.A™" and the following

identities can be easily verified.
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(1) [#(e), A] = ¢(e)Ad(e) A" = §(eT), ¢(e)™" = ¢(e7")
(2) To(u)Ty(u) = Tepd(u), Te(u)™? = Tx(u)

(3) T.(ua) = T,z(u), a€ A

(4) (e)Te(u)g(e™") = Tocz(u)

(5) ¢(e)Ta(v)d(e™") = Te-1ce-1(v)

(6) $Euoz¢™ = Epu)apiz)y ¥ ¢ €UM)

(7) T(u)EyooTe(u)™ = Eyope

(8) Eu.ﬂJEu.a’.v = Luata'+<z o z4y = Eu.k(=+y.z+y).:+yTC(u)’
c=k(y,z) — Ak(y,z) €T

(9) (Euor) ! = Euczo-o-2 = Evo-2Te(u), c=a—-XaeTl
(10) [Euaz) Euary] =Te(u), c=<y,2>—<z,y>€T
(11) Euror = Eyrarer, TEA
(12) ¢(€)Eueed(e™") = Eueaz,ze
(13) ¢(e)Evazd(e7") = Eyz-14e-1 e

Let z be an unimodular element of (M,[k]) , ie. <M,z > — A We
can write z = ua' + vf' + 2’ with o', f/ € A and 2/ € N such that
Aad' + Af'+ <N,z'> = A. For every w € N and a € [g](w) we have

Eyow(z)=ua+vp + 2z,

with a = o'+ <w,2'> —Xaf’ and z = 2/ — wAf".

From now on, we fix a special basis {z1,...,z,} for N. We put
a;; = <Z;,z;> and k;; = k(z;,z;) forall 1 <i,j < n,s04a;; = k;; +/\Tc; and
a;jz/\a_j,-, 1<¢3%5 %

For w = 31, z;w; € N we have

k(w,w) = ZW,-k;,-wg + 2 W;a;;w; mod I'.

i=1 1<i<j<n
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