@ Insbluto de Cignicias Molemdlicas de S3ou Carlos

1SSKN = 0103-2577

On bifurcation and symmetry of solutiomns

of nonlinear Dpg-equivariant equations

L. F. GALANTE
H. M. RODRIGUES

N2 005

NOTAS DO ICMSC

Serie Matematica

Sao Carlos

maio / 1993 sYsNo_1182) so)

MATA



ON BIFURCATION AND SYMMETRY OF
SOLUTIONS OF NONLINEAR D, -EQUIVARIANT
EQUATIONS *

L. F. GALANTE
Universidade Estadual de S. Paulo, FCT, P. Prudente, SP, Brazil

H. M. RODRIGUES
Universidade de S. Paulo, ICMSC, S. Carlos, SP, Brazil
Georgia Tech, CDSNS, Atlanta, Ga., USA

ABSTRACT. Theobject of this work is to study existence, bifurcation and
symmetries of small solutions of the nonlinear equation: Lz = N(z,p,e)+puf,
which is supposed to be equivariant under the action of the group D,,. We
assume that L is a linear operator, N(-,p,€) is a nonlinear operator, both
defined in a Banach space X, with values in a Banach space Z, p, € and p
are small real parameters and f is a fixed element of Z. We show that the

symmetries of the equation imply the existence of symmetric solutions. We
also prove that under a generic condition the symmetricsolutions are the only

feasible ones. Some examples of nonlinear ordinary and partial differential
equations are analized.
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1. INTRODUCTION
Let X, Z be Banach spaces. Consider the equation,
Lz = N(z,p,e) + pf (1.1)
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where L : X — Z is a continuous linear operator, N(,p,e) : X — Z is
a nonlinear operator, f is a fixed element in Z and p,e, u are small real
parameters.

If I, T are representations of D,,, m > 2,over X and Z, respectively, and
if equation (1.1) is ( Dy, I‘,f)-equivariant, our main results state that, under
certain conditions, there exist small symmetric solutions. We also analyze
the variation of the number of such solutions as (p, u,€) varies in a small
neighborhood of the origin. Under certain generic conditions we show that
the symmetric solutions are the only fcasible ones.

Previous works have been developed by many authors to Duffing’s Equa-
tion and more generally to equations of the form

Z+z=g9(z,p)+nf (1.2)

where f is 27 /m-periodic, m > 1 is an integer, g is nonlinear, p and u are
small parameters.
Hale and Rodrigues (4] studied Dufling’s Equation

t+z=pz+z+uf, (1.3)

where f is an even, 27-periodic real function, such that [@™ f(s)cossds #
0. Besides describing the bifurcations they proved that the only small 27-
periodic solutions of (1.3) are even functions of t. Using these results they
studied in [5], the damped Duffing’s Equation:

T4+z=pr+z° 46+ pcost.

Rodrigues and Vanderbauwhede [6] generalized these results to abstract
nonlinear equations in a Banach space, and more applications were given,
including to nonlinear partial differential equations.

Furkotter and Rodrigues [1],[2] considered the case where f is 27 /m-pe-
riodic, with m > 2. Under a certain generic conditions, they proved that
the small 2x-periodic solutions of (1.2) maintain some symmetry properties
of the forcing term f, when g # 0. Vanderbauwhede (8] also presents some
related results, for systems of ordinary differential equations.

In §2, using the equivariant Liapunov-Schmidt method, the implicit func-
tion theorem, we reduce equation (1.1) to an equivalent symmetric complex
equation.

In §3 we present the normal form of complex D,,-equivariant functions
and using these results we find a set of solutions of (1.1) which are either “har-
monic” or “subharmonic”. Under our assumptions, if f is (D, ')-invariant
the equation Lz = f has a unique solution, say K f, that is (D, I')-invariant.



We show that each solution of (1.1), determined above, has at least one sym-
metry of K f. We also find the bifurcation surfaces in the (p, u, £)-parameter
space.

In §4 we discuss the special case of equation (1.1), where the operators L

and N(-,p,€)are (0(2),1',1')-equivariant and fis (D,,,I')-invariant. We show
that, under a specific condition, the small solulions of (1.1) must nccessarily
inherit some symmetryof K f. We also study the genericity of such condition.

In §5 we present some applications of our results to nonlinear ordinary
and partial differential equations. We point out that in some respects our
examples are more general than the ones presented in the cited carlier papers.

The results of this paper indicate that when one truncates the Taylor
series of the nonlinearity, it is important to consider terms up to a sufficient
large order. Otherwise the informations of our theorems may be lost. For
example if one intends to apply our results to the pendulum equation v +

2 sinv = p(1 + cosmuwt) for w close to wo = y/g/L, one should use all the

terms of the Taylor expansion of sinv, around v = 0, up to the order v™ if

m+1

m 1s odd and up to the order v if m is even.

2. HYPOTHESES AND LIAPUNOV-SCHMIDT REDUCTION
In this work we will be concerned with the abstract equation:
Lz = N(z,p,e) + puf (2.1)

where f belongs to the Banach space Z. Let X be a Banach space and
L:X+—Z be a continuous linear operator. We assume that A = (p, p,€) varies
in an open neighborhood A of originin R*and z € B, = {z € X : |z| < r}.
We indicate by BC*(B, x Q, Z) the space of all functions defined on B, x §
with values in Z, which have bounded and continuous derivatives up to the
order k in B, x (2, where §1 is an open neighborhood of the origin in IR?.

Throughout this paper we suppose that m > 2 and s € {0,1} are fixed
integers.

As a basic reference for notations and for some general results that will
be mentioned in this chapter, we indicate Vanderbauwhede [7] and also

Golubitsky [3].
Consider the following hypotheses:

(H)) L: X —Z is a Fredholm operator with zero index and
ker L = span {u;,us}.

(H,) There exist representations I', T' of the group O(2) over X and Z, re-
spectively, and continuous projections P, Q over X and Z, respectively,



such that the followings conditions are satisfied:

PX =kerL, QZ = span {w;,w,},
(1-Q)Z = R(L),

I'(¢)us = cos ¢us + sin dus,

T(¢)u; = — sin du; + cos pus,

Fruy = uy, Tyup; = —u,,

I'(¢)w; = cos pw, + sin pw,,
['($)w; = — sin ¢pw, + cos uw;,
f‘,wl =w, and f‘,w; = —w;.

(Hs) i) [ (&) Lz =L (%)2), (-1)'T.Lz = LT,z ;

i) [(2n/m)f = f and (=1)'T.f=f;

iiil) N € BC™3(B, x Q, Z), is an odd function of z for each fixed
A= (p,e)in Q,N(z,p,e) = [pA+eB]z + Qsz*+ R(z,p, ), where
A Be L|X,2), Qs € L3X,Z), R(z,p,e) = o|pz| + |ez| + |z|*)
as (z,p,€) — (0,0,0), and T (%’) Niz,p,e} = N(T (2;') z,p,€),
(-1)'T,N(z,p,e) = N(T,z,p,€).

iv) I'(¢)A = Al'(¢) Vo € R and QAu; = wyy, .

It follows from (H,) that P and @ can be chosen in such a way that
they are respectively (O(2),T) and (O(2),T) equivariant. Also from (ii), one
obtains Qf=0. Hypotheses (H;) implies that L restricted to (I — P)X has
a continuous inverse K : R(L) — (I —P)X, satisfying KLz = (] — P)z and
LK(I-Q)z=(1-Q)z,Vz € X,Vz € Z.

Let D,, be the subgroup of O(2) generated by the matrices Ra= (rotation)

and 7 = diag(1l, —1) (reflection). We will indicate by T; the representation
of D,, over Z defined by: I‘,-(R::-) =TI'(¥) and Tj(r) = (-1yYT,, 7 =0,1.

It follows from (H;) that equation (1.1) is (D, T, T,)-equivariant. By
application of the equivariant Liapunov-Schmidt reduction method, writing
2% u+v, uekerL, ve (I —P)X, the equation (1.1) is reduced to the

systems:

v=K(I - Q)[N(u+v,pe)+pf] (2.2.2)



0=QN(u+v,pe). (2.2.b)

From the implicit function theorem it follows that (2.2.2) has a unique
solution v*(u,]), in a neighborhood V C (I = P)X, for (u,]) in a small
neighborhood U x Ay C ker L x A of (0,0), such that v*(0,0) = 0. Moreover
v*(u, A) is a smooth function of (u,A) in U x A,.

The neighborhoods U and V can be chosen in such a way that I'(g)U = U
and I'(g)V = V, Vg € D,.. The function v*(u, A) is (D,,,T')-equivariant with
respect to u.

If we substitute v* in (2.2.b) we obtain the following (D, ', f‘,)-equivariant
equation,

M(u,)) € QN(u+v*(u,A),p,e) = 0. (2.3)

ldentifying the subspaces ker L and Q Z with the set of complex numbers
C, by the isomorphisms:

A (au, + bu,) e + b

O’(aw,-{-bwz)défa-i-bi

where a,b € IR, we obtain the equivalent complex equation:
M(z, ) ¥ oMXz,)) =0, (2.4)
where A e A; and z € X(U).

In the following lemma we show that equation (2.4) inherits the symme-
tries of the original equation.

LEMMA 2.1 If hypotheses (H;), (H,), and (H3), are satisfied, then for
(z,A) € X(U) x Ay we have:

em M(z,)) = M(e'=z,}) (2.5.2)
(=1)"M(z,2) = M(z, ) . (2.5.b)

The proof of the above lemma follows in a natural way from the relations:
[XT($)X )z = [OT(¢)0 ')z = €%z, and [AT, X7 Yz=[0],07]z =z,
Vz e C.

3. THE BIFURCATION EQUATIONS

In this chapter, we show that the symmetry assumptions of the original
equation, imply that the complex form of the bifurcation equation can be
written in a convenient normal form, that will be very helpful to obtain our
main results.

In the sequel we will denote by B* the open ball of radius r, centered in
the origin in R*.



LEMMA 3.1 Let0 < ¢ < r, H € BC*B™" IR) and { € C'(Br,IR™)
with f(0) = 0 and such that:

Gr(f) ={(z,/(z))/= € B]} Cc H7'({0}) .
Then, there ezists H : B™*™ — L(IR™, R) of class C?, satisfying:
H(z,y) = H(z,y)(y - f(2)), Y(z,y) € B} .

PROOF. The statements of the lemma follow essentially from the following
equalities:

Hzy) = [ H (= J(z)+ oy ~ J(=)do
= [ S G s oy - S @y - s

COROLLARY 3.2 If H € BC*(B?,IR) and v : R’ = IR is a nontrivial
linear functional such that ker wNB? C H'({0}), then, there ezist0 < e < r
and H € BC'(B2,R), such that:

H(z,y) = H(z,y) v(z,v), ¥(z,v) € B! .

THEOREM 3.3 Let m > 2, s € {0,1} and ¢ > 1 be fized integers and
B? ¢ C. If M belongs to space BC™9(B? C) and satisfies the relations
(2.5.a) and (2.5.b), then, there ezist a real number €, 0 < € < r, and real
functions f = fm,, § = gm,, defined in B2'C C, of class C? and C9!
respectively, such that:

(—i)'M(2) = f(z)z + g(z)(2)" ", (3.1)

where
fz-e=) = f(z) = f(z) and (3.2.a)
g9(z- e‘%) =02]=§lz), V.z € B? . (3.2.b)

PROOF. Let H(z) ¥ Im [(—i)*M(z)] : B? =~ R. Following the ideas of
[8] our assumptions imply that H(ze'= ) = H(z) and H(z) = —H(z). Thus
H(z) vanishes on the zeros of p;(z,y) & sin(j X )z — cos(5 X )y.

A successive application of Corollary 3.1, gives for z in B? :

H(z) = H()"iI (o)



where H is a C? function.
The above remarks, applied to w(z) Lef Im(z)™, instead to H(z), imply
that there exists a function w(z) such that

) =z HSOJ

Since the functions w(z) and []71y ¢,(z) are homogeneous polynomials
of the same degree, it follows that there exists a nonzero constant ¢ such that

H pi(z) = cw(z) E g(z),

and so
H(z) = g(z)Im(z)™ ,
for z € B2, where € > 0 is sufficiently small.

Let W(z) ¥ (=1)'M(z) — g(2)(2)™" & Wi(2) + iWa(z), where Wy, W,
are real functions. From the definition of H and from H(z) = g(z)Im(z)™ it
follows that

0=Imw(z)- z] = Wy(z)z — Wy(2)y,
where z = z + 1y. Therefore, W3(z) = 0 if y = 0. Using Corollary 3.1 we sce
that there exists a C?7! function f such that W(z) = f(z)y. The relationship
between W; and W, implies that Wy(z) = f(z)z and so W(z) = f(z)z .
Therefore,
(=)' M(2) = f(2)z + 9(2)(2)" 7",

for z in a sufficiently small neighborhood of origin and this completes the
proof of (3.1).

Since the function w(z) = Im(z)™ has the same symmetry properties of
the function H(z) it follows that (3.2.b) holds.
From (3.1) and (2.5.b), respectively, we obtain:

f(2)- |2l = (=i)'M(2) - Z — g(z)(2)"
and
(=) M(2)z) = (—)'M(2) - 2,
which imply (3.2.2).

COROLLARY 3.4 Suppose hypotheses (H,), (Hz) and (H3) are satisfied.

Then, there ezist C?! real functions f &f fm.e and g = g,., defined in B?x A,,
such that the bifurcation equation (2.4) is reduced to:

(=i)'M(z,}) = f(2,2)z + 9(2,2)(2)"" (3.3)



where
2w

f(ze':)’\) = f(i,/\) = f(z»A)

and
2w

g(ze'=,A) = g(z,)) = g(z,)) .

If we let z &' re', r € R, ¢ € [0,7) in equation (3.3) we obtain the real
equations:

F(r,¢,X) ey 1/(z,A) + 9(z,A)r™ 2 cosmng) = 0 (3.4.a)

G(r,$,2) def prm-1 sin(me)g(z,A) =0 (3.4.b)

For each fixed A , to each solution (7, ¢) of the above system there corre-
sponds the solution:

z(r, ¢, ) = X7'(re®)+ v (A 're'?,))
= rI(¢)u; +v°(r, ¢, )

of the original equation (1.1), where v*(r, ¢, A) %ef v*(rI(¢)ur, A).
Let J(r,¢,2) ! f(z,A)+r™ 2 cosm¢g(z,)) .

LEMMA 3.5 Suppose hypotheses (H,), (H;) and (Ha) are satisfied. Then,
for each fized ¢ in [0,7), the function J(r, ¢, ) has the following represen-
tation in a neighborhood of (r,A) = (0,0):

J(r,$,2) = pH+n(d)e+X(d)s* + a,(¢)’ (3.5)

+ &(d)rp + o(lpl + lel + p* +77)
¥ Re|-ire*0QBN(@) |
a,(4) ¥ Re |(=i)e 0 QQs((N(¢)w)*)] ,
A(#) ¥ 3Re [(—i)e T QQs(T(¢)m, (K 1))
and

0 of m#3,

&() = {
3Re [(—i)'UQQ3((F(¢)u1)2, Kf)] if m=3.

The proof follows by using Taylor’s expansion.



REMARK 3.6 For m > 2 the coefficients 7,(¢) and A,(¢) are independent
of ¢ and they are given by:

, £ Re|(-1)'0QBu) ,

X, ¥ 3R [(=1)'0QQs(uy, (K f)?)] .

For m = 3, the coefficients o,(33) 7 = 0,1,2 are independent of ; and
they are given by:

d_cr Re [(—i)'O’QQ;;(u,J)} )

If the homogeneous polynomial Q3(z? given in (Hj-iii) satisfies ['(¢)Q3(z)=
Q3((T'(¢)z)?) for any ¢ in IR then a,(¢) is independent of ¢ and it is given

as above.

Now, let us analyze the bifurcation equations (3.4.a) and (3.4.b).

We remark that r = 0 solves both equations. The corresponding solution
z(0,¢,A) = v°(0, ¢, A) does not depend on ¢ and it is I'(2%)-invariant. This
solutions will be called “harmonic”.

Since G(r,¢;,A) =0if ¢, = 3% 7 =0,...,m -1, in this casc we only
have to solve J(r,¢;,A) = 0. 1f r # 0 solves this equation then the corre-
sponding solution z(r, ¢;, A) of (2.1) is I'(27)-invariant and it will be called
a “subharmonic” solution with phase ¢;.

To find the points where bifurcation occurs we have to solve the systemn:

Jréi ) = pHm(di)e+ M(d)u? +au(g,)r?
(3.6.2)
+ &(d)rp 4 olel + |pl +p* +77) =0,

Jo(r, 65,2) = 20,(¢;)r + &(d;)n + o(lel + lpl + |7 + ) =0 .
(3.6.b)

A simple calculation shows that det {—-(Jﬁ)} =20 (@5). Il a,(¢,)#0,

it follows from the implicit function theorem {Bat the above systern has a
unique solution r = r(u,£,4,) and p = p(p,€,¢;), in a small neighborhood
ol r=0,41=0.

From definition of J(r, ¢, A) and (3.3) one obtains:

J(r,¢;,2) = f(re‘d”,)\) + r'"-zg(rc“’, A)

and

Jlre @i+ =), ) = [(re®)



These equalities imply that J,(0,¢,,A) =0, =0,...,m—1and m # 3.
The substitution of r = 0 in the first equation gives

e AT ’\0(¢J')l‘2 +o(le| + “2) .

Then the unique solution of the system is given by r = r(y, ¢;,€) = 0
and p = p(p,€,¢;) = —1(8;)e - Al(¢))/‘2 + of[e] + u?).

For m = 3 the functions r = r(u,¢,4,) and p = p(y, e, $,) salisly p =
p(u,€,0) = p(p, €, 3) and r(#,C,U) —r(p,€,5)-

;From (3.6.b) one obtains r = 20.;; + o(le| + |p| + p?), where 5 & —¢,(0),
and the substitution in (3.6.2) gives

2

s

P=—TET (477 _)‘o) P2+0(|E}+#2) .

Then we have proved the following:

THEOREM 3.7 If hypotheses (H,), (H,), and (H;), are satisfied, ¢; =
JZ, 7=0,...,m—1 and o,(¢,) # 0, then in a small neighborhood of A = 0,
the bifurca.tzon surfaces (of subharmonic solutions with phases ¢; = jZ ) are

given by:

K K i .
p=—7.(J§)E—A.(J— B to(lel +4%), =01 if m=2,

5)

p=—7e—Ap*+o(le|+4%), if m>3

and

p=—"E+ ( 1 —A.)#’+O(|EI+#2), if m=3.

4a,

The total number of harmonic and subharmonic solutions with phase ¢;,
varies with X , according to Fig. 8.1, Fig. 8.2 and Fig. 8.8 form =2, m =3
and m > 3 respectively, for ,(3) < 0 < 7,(0), 0 < A,(3) < A(0),
(an_ A ) < 0 and 7, < 0 < A,. Furthermore the solutions z(r, ¢;,A) of the
original equation (2.1) inherit some symmetry of K f, that is, I'(—¢;)z(r, ¢;, A)
and I'(—¢;)K f are I'y-invariant for j =0,...,m — 1.



FIGURE 3.1

FIGURE 3.3



Gulante and Rodrigues

PROOF. It remains to prove the last statament of the theorem.

JFrom our symmetry assumptions it follows that the function K(I1-Q)N
B, x QC X x R? = X is I'(2)-equivariant.
Therefore,

I(¢,;)K(I — Q)N(I(-¢,)z,p,€) = T(-4,)K(I - Q)N(I'(¢,)z,p,€). (3.7)
for ¢, =%, j=0,...,m—1.

i From I‘(%:")f = f one obtains

N(-j—)Kf=TG)KS (3.8)

forj=0,...,m—1.

It follows from the implicit functions theorem and from the identities
(3.7) and (3.8) that T'(~¢,)v*(r, ¢,,A) is I';-invariant, where ¢; = j X, j =
0,...,m — 1. Therefore the solution z(r,¢;,A) = rI'(¢;)p1 + v*(r, ¢;, ),
with phase ¢; of (1.1), is such that I'(—¢;)z(r, ¢;,A) is I';-invariant, like
I(-¢;)K .

4. GENERICITY FOR “AUTONOMOUS” NONLINEARITIES

In the sequel we consider the special case of equation (1.1) by taking
€ = 0. The operators L and N should present an (O(2),T,T,)-equivariance
and f is (Dm,f‘,)-invariant. Here I',, s = 0,1 indicate representations of
the group O(2) over Z which are extensions of the ones defined in §2 for the

subgroup D,,. We still assume that m > 2 and s € {0, 1} are fixed integers.
We will be concerned with the equation:

Lz + N(z,p) + uf , (4.1)

with the assumptions (H,), (H;), and with the following additional hypothe-
ses:

(Hy) (i) N(z,p) = pA:c+N(:c)+o(|pz|) B, xA C XxIR — Z,where A €
C(X Z), N € BC™t3(B,, Z) is odd function in z thh N.(0)=0

(ii) T(¢)Lz = L(T(¢)z), (-1)'T,Lz = LT,z , V¢ € R ;

)
(iii) T(¢)N(z,p) = N(T(¢)z,p) ,
(-1) (I»P) N(T,z,p), V6 € R ;

(iv) D(&E)f =f and (-1)T.f=f;



V) QAu; = wyy, .

Since (Hy) implies (H3) it follows from §3 that equations (4.1) has a set
of small solutions which are either harmonic or subharmonic solutions with
phases ¢; =32 ,7=0,...,m-1.

Under certain conditions, we will prove that those are the only feasible
solutions of equation (4.1). We also analyze the genericity of such condition.

LEMMA 4.1 Under hypotheses (H,), (Hz2) and (Hy), the function G(r, ¢, )
defined by (3.4.b) with A = (p, p) satisfies:

G(r,¢,p,0)=0. (4.2)

If, in addition m is even then

G(r,¢,p,—p) = G(r, é,p,1) - (4.3)

PROOF. The first statement follows from the fact that for g = 0 the func-
tion (—1)'e™**M(z,A) is real, where z = re'®. The second is consequence of
the identity: '

‘U.(U,p, #) = '—‘U.(—‘U.,p, —“) )

which follows from the implicit function theorem and (2.2.a).






