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Abstract. We classify up to homeomorphisms closed curves and eights
of saddle points on orientable closed surfaces. This classification is ap-
plied to Morse Bott foliations and Morse Bott integrable systems defin-
ing a complete invariant. We state also a realization Theorem based in
two transformations and one generator (the foliation of the sphere with
two centers).
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1. Introduction

The research on topological invariants of flows X(Σ) and foliations F(Σ)
on surfaces Σ has a long history. Some basic references are: [3], [11] and [15].
At present a lot of efforts are devoted to singular foliations on manifolds of
larger dimensions. Nevertheless, as we try to show, the two dimensional case
is surprisingly incomplete. To introduce the subject we refer to the book
[13], the paper [14] and the references cited in these papers. For other recent
results see [7] and for symplectic invariants see [18].

Recall that two systems X1(Σ) and X2(Σ) are topologically equivalent
if there exists a homeomorphism h : Σ → Σ that sends orbits of X1(Σ)
into orbits of X1(Σ) preserving the sense of the orbits. To describe the
equivalence classes it is useful to define a set of topological invariant.

We try to sketch the usual method of construction of invariants. The
strategy lies on several initial reductions of the system. The first one consists
of the construction of the space of orbits Σ/X (or Σ/F in case of a foliation),
that is to say: two points belong to the same class if and only if they lie on
the same orbit (leaf). If some orbits can be related, for instance their union
is a one dimensional manifold, a reduced space of orbits, (Σ/X,∼) could be
defined. Usually (Σ/X,∼) is a singular foliation. In a second step, a finite
number of open regions in (Σ/X,∼) are defined. In each region the orbits has
a homogeneous kind of behavior. They have the same asymptotic properties

2010 Mathematics Subject Classification:34C40, 58K05, 37B35.
The first author is supported by Grant MTM2012-33073 MEC and Fonds Feder. The sec-
ond author is partially supported by Programa Estudantes-Convênio de Pós-Graduacão-
PEC-PG, da CAPES-Brasil Grant number 470611-0. The third author is partially sup-
ported by CNPq grant ”Projeto Universal” 472796/2013-5. The second and third authors
want to acknowledge the support of the project FP7-PEOPLE-2012-IRSES-316338.

1
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or define a parallel flow. Some kind of graph Γ whose vertices or edges are
the homogeneous regions encodes the relation between these regions. To
recover the structure of the initial system additional information is added
to the graph, basically specifications of local flows or order. The graph and
the additional information define the invariant.

If the additional information it is not enough to reconstruct the flow one
gets an invariant that is not complete. A consideration usually overlooked is
that if two systems are equivalent the topological type of two corresponding
invariant sets must be the same. In Example 1, Figures 6, 7 we have two
foliations with equivalent orbit space, but the foliations are not topologically
equivalent because some singularities are not equivalent.

Following the described guidelines, in section two we classify the basic
leaves, closed curves and saddles with their separatrices according to their
topological type. In this case, the topological equivalence is similar to the
equivalence used to define knots on S3. The particular case of closed curves
in the torus is analyzed in [16], page 25. This classification can be applied
to almost all flows and foliations on a surface and in fact is an independent
part of the paper. This classification closes a remarkable gap in the study
of two-dimensional systems.

If Γ determines the surface Σ, for instance by the number of cycles, the
topological type of the basic leaves can be implicitly included in the invari-
ant. This is particularly true for Morse Bott foliations (see section 2) and
Morse Bott integrable systems. But this is not always the case:

Example 1. The orbit space Σ/X of the system defined on the 2-sphere and
represented in Figure 1 contains four cycles. The sphere is not contractible
to Σ/X.

Figure 1. System with one center and its orbit space.

The last two sections of the paper are devoted to Morse Bott systems.
They are a natural generalization of Hamiltonian systems and Morse sys-
tems, see [3], and are present in many practical situations. In [6] all contin-
uous flows without wandering points are classified, Morse Bott systems are
systems without wandering points, without quasiminimal recurrence regions
and with simple saddles.
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Recall that for a vector field X on a manifold W , a first integral f is a
real Cr, r ≥ 1 function: W → R that is constant on orbits of X but not
identically constant on open sets of W . Given a vector field if it has a first
integrable f all function functionally related with f are also first integrals;
therefore, if needed we will denote by (X, f) the pair of a vector field and a
particular first integral.

A vector fields with a first integral that is a Morse Bott function has cen-
ter equilibrium points associated to extreme values of f and saddle points
associated to singularities of index 1 of f . Moreover it can have other equi-
librium points. We restrict this possibility to a finite number of regular level
sets filled by equilibrium points. The set of these systems will be denoted
by ψMB(W ).

In section three we define the invariants for Morse Bott foliations, see
Theorem 23 and Definition 25 and prove that the invariant is complete,
Theorem 26. In order to describe the invariant, we remind that in a saddle
singularity, a family of pairs of regular circles, J1, J2 intersect and define an
eight that is surrounded by other regular level sets J3. These J3 branch out
in J1, J2. Roughly speaking, the invariant is Σ/F with the information of the
sense of branch out. See again, Example 1 and Figures 6, 7. Consider the
two systems obtained given a sense to the leaves, the invariant defined in
[11] do not distinguish between them. On the other hand, the foliation in
Figure 7 is not a Morse foliation.

The last section is devoted to a realization Theorem. The basic foliation
will be the foliation on the sphere with only two center singularities. We
define two transformations that allow us to construct all the systems from
the basic foliation.

2. Background

We consider a compact manifold W with the Riemannian metric induced
by its standard immersion in Rk.

Definition 1. Let f : W → R be with f ∈ Ck and k ≥ 2.

• The point p ∈W is called a singular point of f if the rank(df(p)) is
less than the maximum possible value. Otherwise is a regular point.

• The point b ∈ R is called a singular value of f if the f−1(b) contains
a singular point of f . Otherwise b ∈ R is called a regular value.

The collection of all singular points of f is called the singular set of f and
is denoted by S(f).

A fiber of f on W is each connected component of the level sets of f . A
connected component of the level set that contains a singular point of f is
called a singular fiber. Recall that given a continuous function f : W → R

the space obtained from W by contracting each fiber to a point is called the
Reeb graph of f , RG(f).
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Definition 2. Suppose f : W → R with f ∈ Ck and k ≥ 2. A smooth
submanifold S ⊂ Crit(f) is said to be a nondegenerate critical submanifold
of f if the following hold.

• S is compact and connected
• ∀s ∈ S, we have TsS = ker Hesssf .

The function f is called a Morse Bott function (MB function from now
on) if the set S(f) consists of nondegenerate critical submanifolds. See [2],
[4], [12].

Let p ∈ S ⊂ S(f), then the Morse Bott Lemma says that there is a
local chart of W around p and a local splitting of the normal bundle of S,
Nq(S) = N+

q (S) ⊕ N−
q (S) so that if p = (s, x, y), s ∈ S, x ∈ N+

p (S), y ∈

N−
p (S):

Tp(Σ) = Tp(S)⊕N+
p (S)⊕N−

p (S)

f(p) = f(s) + |x|2 − |y|2.

The dimension of N−
p (S) is the index of S.

A MB foliation is a foliation defined by the level sets of a MB function g.
We will denote such foliation as F(g) on the understanding that g is a MB
function. In all the paper we will consider that F(g) is simple in the sense
that there are not separatrix going from a saddle to another saddle point.

A singular leaf of a foliation of codimension n is a leaf of dimension lower
than n or a leaf that is not a manifold. In the case of a simple MB foliation
the singularities are center points or eights. A circle can be a singular fiber
for the MB function but not a singular leaf of the foliation.

We will say that two foliations on Σ are topologically equivalent if it exists
a homeomorphism on Σ that sends the leaves of one foliation to the leaves
of the other.

3. Classification of periodic orbit and separatrix eights

In this section we give the topological classification of curves that can
be singular levels of a MB function. This classification differs from the
homotopic or isotopic one. Σ(g,m) will be a compact connected orientable
surface of genus g (g ≥ 0) and m holes. Since it is orientable we can assume
that Σ(g,m) is a subset of R3. The boundary of Σ(g,m) is a collection
of m disjoint Jordan curves (J1, . . . , Jm). Recall that the one dimensional
homology groups are:

H1 (Σ(g, 0)) = 2gZ,

H1 (Σ(g,m)) = (2g +m− 1)Z.

Definition 3 ([17]). A concordant orientation of (J1, . . . , Jm) consists of
an orientation on each Jordan curve, J1, . . . , Jm, such that the orientation
induced on Σ(g,m) by the orientation on Ji is independent of i = 1, . . . ,m.
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Theorem 4 ([17]). A homeomorphism h : (J1
1 , . . . , J

1
m) → (J2

1 , . . . , J
2
m) can

be extended to a homeomorphism between Σ1(g,m) and Σ2(g,m) if, and
only if, h carries a concordant orientation of (J1

1 , . . . , J
1
m) into a concordant

orientation of (J2
1 , . . . , J

2
m).

3.1. Classification of periodic orbits on Σ.

Definition 5. An embedded circle on Σ will be the image of an embedding
φ : S1 → Σ. An oriented embedded circle, or shortly, an oriented circle, will
be an embedded circle with one of the two possible orientations. A periodic
orbit of a flow on Σ is an embedded circle with the orientation induced by
the flow.

Definition 6. Two embeddings φi, i = 1, 2 of S1 into Σ are topologically
equivalent if there is a homeomorphism h : Σ → Σ, such that
h
(

φ1(S
1)
)

= φ2(S
1).

Two embedded circles are equivalent if they can be defined by equivalent
embeddings φi.

Two oriented circles are equivalent if the homeomorphism that conjugates
the embedded circles preserves their orientations.

Given an embedding φ : S1 → Σ, φ(α) = β, and given an orientation to
S1 then φ induces an orientation on its image; the embedding −φ : S1 → Σ,
−φ(α) = −β, induces the opposite orientation.

If φ(S1) = J is the image of an embedding, then Σ(g, 0) \ J could have
one or two connected components. Let K, (Ki) be the compact surface with
holes that is the closure of these components. Recall J is homotopic to zero
if it bounds a disc in Σ, and we will say that J is of type l0; if not it is
essential. It is homologous to zero if Σ is divided by the curve into two
surfaces Ki so that K1 has genus g1 and K2 genus g2 where g = g1 + g2,
0 ≤ g1 ≤ g2. We will say that the curve is of type li if it is homologous to
zero but not homotopic to zero where the subscript i refers to the genus of
K1; of type lK if the curve is not homologous to zero (see Figure 2).

Finally, P(K), (P(Ki)) be the surface obtained by attaching discs to the
holes of K (Ki).

Theorem 7. Let Σ(g, 0) be an orientable closed surface. The number of
non-equivalent embedding of S1 on Σ is 1 if g = 0 and E

(

g
2

)

+ 2 with
representants l0, l1, . . . , lE( g

2
), lK if g > 0 (see Figure 2)

Proof. Let φi, i = 1, 2 be embeddings of S1 into Σ(g, 0) and let φi(S
1) = Ji

be their images. If there exists a homeomorphism h from Σ(g, 0) into Σ(g, 0)
such that h(J1) = J2 then the restriction of h to Σ(g, 0) \ J1 defines a
homeomorphism from it into Σ(g, 0) \ J2.

In order to count the number of non-equivalent embedding on Σ(g, 0)
we divide the set of all embeddings on Σ(g, 0) in classes such that two
embeddings J1 and J2 belong to the same class if and only if Σ(g, 0) \ J1



6 J. MARTÍNEZ-ALFARO, I.S. MEZA-SARMIENTO AND R. D. S. OLIVEIRA

l0

l1

l2

lK

Figure 2.

is homeomorphic to Σ(g, 0) \ J2. In a second step we will show that these
classes are unitary.

Step 1. (1a.) If Σ(g, 0) \ J is connected, it follows from [10] that J is
not a null-homologous curve on Σ. As we can reconstruct Σ(g, 0) by gluing
a handle to P(K), P(K) is a surface of genus g − 1 and K is Σ(g − 1, 2).
This construction is not possible on the sphere.

(1b.) If Σ(g, 0) \ J has two connected components Ki then J is a null-
homologous curve on Σ. Then Σ(g, 0) is the connected sum P(K1)#P(K2)
and

(1) H1 (Σ(g, 0)) = H1 (P(K1))⊕H1 (P(K2)) .

As the dimension of H1 (Σ(g, 0)) is 2g then there are (g + 1)-possibilities
for the pairs (H1 (P(K1)) ,H1 (P(K2))):

(0, 2g), (1, 2g − 1), (2, 2g − 2), . . . , (g, g).

Among these pairs we must eliminate those with odd values because they
correspond to surfaces with two or more closed boundary curves. So we have
E
(

g
2

)

+ 1-possibilities.

Step 2. Let J1 = φ1(S
1) and J2 = φ2(S

1) two embedding of S1 on
Σ(g, 0) that belong to the same class. Consider the map h : J1 → J2 given
by h = φ−1

1 ◦ φ2. We must proof that there is an extension of h to Σ(g, 0).
Suppose that Σ(g, 0) \ Ji has two components, each Ki

j , j = 1, 2 has only
one closed boundary curve where h is defined. Hence the concordance of the
orientation in the boundary curves is trivially verified, then we apply the
Theorem 4 to each Ki

j to obtain extensions of h to Ki
j , say f

i
j : Ki

j → Ki
j ,

i, j = 1, 2. As f i1 coincides with f i2 on J1 by the Pasting Lemma there is an
extension of h to Σ.

The case where Σ(g, 0) \ Ji has one component is analogous. In this case
we have two components on the boundary (Ji,1 = id(Ji), Ji,2 = id(Ji)) for
each Ki. The homeomorphism relating J1,1 with one curve J2,k and the
homeomorphism that relates J1,2 with the other curve J2,3−k are composi-
tions of h with the identity. The hypothesis about the concordance of the
orientation in Theorem 4 is again verified since the orientation of (Ji,1, Ji,2)
is equally preserved or reversed for the two components. We have an exten-
sion of h to Ki that we defines on the entire Σ(g, 0) identifying the curves
Ji,1 with Ji,2. �
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Corollary 8. Two oriented circles are equivalent if and only if they are
equivalent as embedded circles

Proof. Assume that the orientation of each circle is the orientation induced
by the embeddings φ1 and −φ2 and also φ2 = −φ1 ◦ h. With the notation
used in Theorem 7, if h carries the orientation of J1 into the orientation of
J2, then J1, J2 are equivalent. If h reverses the orientation, we consider that
J1 is the image of −φ1, then the new homeomorphism h∗ = −φ−1

1 ◦φ2 is the
homeomorphism that can be extended to all the surface by Theorem 7. �

3.2. Classification of separatrix eights on Σ.

Definition 9. A separatrix eight B, or in short an eight, is the image of an
immersion of S1 into Σ, ψ : S1 → Σ, homeomorphic to two circumferences
glued by a point p. A component si, will be any of the two circumferences.

We have: B = s1
⋃

p
s2

Definition 10. Two eights B and B
′ are topologically equivalent if there

exists a homeomorphism h : Σ → Σ, such that h(B) = B
′.

Lemma 11. Let B, B
′ be eights on the surface Σ(g, 0), g ≥ 0, and

h : B → B
′, a homeomorphism. Then h carries components si of B into

components s′i of B
′.

Proof. Suppose that B = s1
⋃

p
s2, B

′ = s′1
⋃

q
s′2 with h(p) 6= q. Then the

sets B − {p} and B
′ − {h(p)} will be homeomorphic. But the first one

is disconnected and the second one is connected. Therefore h(p) = q and
consequently h(si) is s

′
1 or s′2. �

Lemma 12. Let d be the dimension of the subgroup of the first group of
homology of Σ(g, 0) spanned by the components of B, s1 and s2. Then B

splits Σ(g, 0) in 3− d connected regions.

Proof. Let B be an eight. From a topological viewpoint, B is equivalent to
a graph whose vertices are the vertices of two triangles glued by a common
vertex and the edges are the edges of the two triangles. Thus by [8] page
181, we should get

(2) α0(B)− α1(B) + r = k + 1− d,

where d is the dimension of the image of i∗ : H1(B, 2) → H1(Σ(g, 0), 2),
r is the number of connected regions of Σ(g, 0) \ B, k is the number of
components of B and αp = |p-simplexes| of B. Obviously α0(B) = 5,
α1(B) = 6 and as B is connected we have k = 1. From (2) we obtain
r = 3− d. �

Definition 13. We will say that an eight B is a non-separating eight if
r = 1.
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s1

s2
p

(a)

s1

s2
p

(b)

s1

s2p

(c)

s1

s2p

(d)

Figure 3. Different ways to split Σ(1, 0) by B.

Denote by NB a closed regular neighborhood of B = s1
⋃

p
s2. (for details

about regular neighborhoods see [8], [9]), we have:

Lemma 14. A closed regular neighborhood of B is homeomorphic to Σ(0, 3)
or Σ(1, 1). In the first case, Σ(g, 0) \NB can be:

a) Σ(g1, 1), Σ(g2, 1), Σ(g3, 1), g1 + g2 + g3 = g.
b) Σ(g1, 1), Σ(g2, 2), g1 + g2 = g − 1.
c) Σ(g − 2, 3).
In the second case Σ(g, 0) \NB is homeomorphic to Σ(g − 1, 1).

Proof. Consider on the surface a circle centered at the point p and small
enough so that B cuts the circle in exactly four points. Taking into account
the component that corresponds to each points we have two cyclic orderings:
s1, s1, s2, s2 and s1, s2, s1, s2. The first ordering corresponds toNB ∼= Σ(0, 3)
and in the second NB ∼= Σ(1, 1). Considering the number of holes that each
component of Σ(g, 0) \NB has we get the cases a), b), and c).

If NB ∼= Σ(1, 1), the border of Σ(g, 0) \NB is a circle and s1, s2 are not
null homologous nor equivalent. If Σ(g, 0) \ s1 is Σ(g − 1, 2), s2 can be a
circle on Σ(g, 0) \ s1 or not. If it is a circle we get case c) stated previously,
if s2 is not a circle it is a line joining the holes of Σ(g − 1, 2). Therefore
Σ(g, 0) \NB ∼= Σ(g − 1, 1). �

If B is a separating eight, NB is homeomorphic to Σ(0, 3) and has two
boundary curves, J1 and J2, that are contractible to s1 and s2 respectively.
We will note this type of curves by Js. The third boundary curve, J3 is
contractible to B and will be noted by JB. Consider that s1, s2, are oriented
then we can give to each Js an orientation compatible with the contraction.

Definition 15. We will say that B has a cyclic orientation if the orientation
given to J1, J2 are concordant.
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This is equivalent to say that we give to JB an orientation compatible
with the contraction.

Assume now that B is a non-separating eight and consider Σ(g, 0) \ s1.
With the notation introduced after the Definition 6, s2 can be a closed curve
of K or a line. In the first possibility, NB is again homeomorphic to Σ(0, 3)
and all is similar to the separating case. In the second possibility, NB is
homeomorphic to Σ(1, 1).

Definition 16. We will say that B is a toroidal eight if NB is homeomor-
phic to Σ(1, 1).

Lemma 17. Let B and B
′ be not toroidal eights on Σ. Then every home-

omorphism h : B → B
′ that preserves the type of orientations of an eight

can be extended to a homeomorphism H : NB → NB
′. If B and B

′ are
toroidal eights every homeomorphism h : B → B

′ can be extended to a
homeomorphism H : NB → NB

′.

Proof. We give to B a cyclic orientation. With the notation just introduced
NB \ B and NB

′ \ B
′ have three semi open annular components say Aj ,

A′
j, j = 1, 2, 3, Jj ∈ ∂Aj (see the Figure 4 (a)).

A1 A2

A3

s1 s2

p
J2J1

J3

NB

B

(a) NB ∼= Σ(0, 3)

p

(b) NB ∼= Σ(1, 1)

Figure 4. The closed regular neighborhood of B.

To extend h to A1, A2 is straightforward since J1, J2 are contractible to
s1, s2.

In order to extend h to A3 we consider two circles C, C ′, and two immer-
sions ψ1(C) = B and ψ2(C

′) = B
′. Since h preserves the type of orientations

of B there exist a homeomorphism h̃ = ψ−1
2 ◦ h ◦ ψ1 from C to C ′. We can

identify A3, A
′
3 with two semi open annulus limited by C,C ′. The extension

of h̃ to these annulus gives us an extension of h to A3.
As h is defined from B to B

′ which are the boundaries of A1, A2 and A3

we can apply the Pasting Lemma and obtain the extension H from NB to
NB

′.
Consider now a toroidal eight. A homeomorphism h of B can be decom-

posed in two homeomorphism, hi defined on the component si. As B is a
frame of NB we can extend h to H defined on all the regular neighborhood
considering that H is the product of h1 and h2. �
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In the classification of the embedding of S1 on Σ, the existence of a
homeomorphism between Σ \ φi(S

1), i = 1, 2 assures the equivalence of the
embeddings φi(S

1). By Lemma 11, Figure 3 (b) and (d) give us an example
where this condition is not enough in order to obtain the classification of
the eights.

The main Theorem of this section is the following one:

Theorem 18. Let Σ(g, 0) be an orientable closed surface with g ≥ 0. Then
the number of topological types of eights on Σ(g, 0) is

(1) 3g + 1, if g = 0, 1,
(2) E

(

g
2

)

C
(

g
2

)

+ E
(

g
2

)

+ 2g + 3, if g ≥ 2;

where E
(

g
2

)

is the largest integer not greater than g/2 and C
(

g
2

)

is the
smallest integer not less than g/2.

Proof. Let B and B
′ be eights on Σ(g, 0). We consider Σ(g, 0) = NB∪NC

where NC is a closed regular neighborhood of Σ(g, 0) \NB. The proof will
be achieved in two steps. In the first step we divide the set of all eights of
Σ(g, 0) in classes such that B and B

′ belongs to the same class if and only if
each component of B and it corresponding component in B

′ have the same
type of homology and Σ(g, 0) \B and Σ(g,m) \B′ are homeomorphics. In
the second step we show that each class of the above relation has only one
element.

Step 1.

If g = 0 all the closed curves on Σ are homotopic to zero then NC is the
union of three disks, so there exists only one way of embedding an eight in
the sphere. From now on we assume that g > 0.

Assume first that both components are homologous to zero with s1 homo-
topic to zero. By Theorem 7 and Lemma 14 we have the following 1+E

(

g
2

)

configurations:

K1
∼= D2,K2

∼= Σ(g, 1),K3
∼= D2;

K1
∼= D2,K2

∼= Σ(g − 1, 1),K3
∼= Σ(1, 1);

K1
∼= D2,K2

∼= Σ(g − 2, 1),K3
∼= Σ(2, 1);

...

K1
∼= D2,K2

∼= Σ
(

E
(g

2

)

, 1
)

,K3
∼= Σ

(

E
(g

2

)

, 1
)

(3)

We will denote these eights by B(l0, li). See the cases 1 and 2 in the Table
1.

Consider now that the components of the eight are homologous to zero, s1
is of type li and s2 is lj but not homotopic to zero. Choose s1 in such a way
that i ≤ j. If the two components B \ s2 are not homeomorphic, depending
on which component contains s1 we get two possibilities for K1,K2,K3:

K1
∼= Σ(i, 1),K2

∼= Σ(g − j, 1),K3
∼= Σ(j − i, 1);

K1
∼= Σ(i, 1),K2

∼= Σ(j, 1),K3
∼= Σ(g − (i+ j), 1);(4)
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They will be denoted by B(li, lj , j − i), B(li, lj , g− (i+ j)). See the cases
3 and 4 in the Table 1.

The number of non equivalent pairs (li, lj), of non homotopic to zero
curves is n2, when g is even and n(n+1), when g is odd. In other way, there
exist E

(

g
2

)

.C
(

g
2

)

non equivalent pairs in this case.
The case with only one component homologous to zero, for instance s1,

corresponds to the case b) of Lemma 14. We have: K1
∼= Σ(gi, 1) and

K2
∼= Σ(gj , 2). We will denote the eight by B(ln, gi, gj) assuming that

the component with genus gi is the component with one hole. One has g
possibilities. See cases 5, 6 and 7 in the Table 1.

If the components si are essential (i = 1, 2) and equivalent we are again
in the case b) of Lemma 14. Therefore we have g possibilities and the eight
will be denoted by B(gi, gj) where K1

∼= Σ(gi, 1) and K2
∼= Σ(gj , 2). The

regular neighborhood NC is the union of two surfaces Ki, i = 1, 2. See the
cases 8, 9 and 10 in the Table 1.

Finally if the closed curves si are essential and not equivalent then NC
has only one component K with K ∼= Σ(g − 1, 1) or K ∼= Σ(g − 2, 3) that
will be noted B(1) and B(3) respectively. See the cases 11 and 12 in the
Table 1.

Step 2.

Let B and B
′ two eights that belong to the same class. We will proof

that they are equivalent. Consider first that B is not a toroidal eight. It is
always possible to define a homeomorphism h : B → B

′ that preserves the
type of orientation. It follows from Lemma 17 that h can be extended to a
homeomorphism H : NB → NB

′. In particular we have a homeomorphism
H̃ : ∂(NB) → ∂(NB

′) that preserves concordant orientations.
It can be extended to Σ(g, 0) \ NB by Theorem 4 and by the Pasting

Lemma find an extension of h on Σ(g, 0).
If B is a toroidal eight, we can extend h : B → B

′ in a similar way.
In this case there not need to take into account orientability conditions on
B. �

4. Invariant for Morse Bott systems

The decomposition of the leaves of a foliation of codimension one on a
surface in points, oriented lines or circles generates a flow on the surface. An
invariant for the foliation is also an invariant for the flow; hence we begin
with the invariant for MB foliations.

4.1. MB foliations.

Proposition 19. A toroidal eight is not admissible in an MB foliation.

Proof. Suppose that B = s1
⋃

p
s2 is a toroidal eight of a MB foliation F(g)

on Σ and g(B) = 0. If p were a saddle point we can find two sectors in a
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neighborhood of p were g will be positive. In the complementary sectors,
g will be negative. The interior NB is filled by regular closed curves con-
tractible to B. These curves connect positive and negative sectors, therefore
the curves will be not level curves of g. �

Henceforth, we assume that all eights are not toroidal. Next proposition
shows that the structure of a MB foliation differs from the structure of a
Morse foliation.

Proposition 20. Given a Morse foliation, two components of an eight B of
F(g) cannot be connected by a cylinder filled by closed curves. Two regular
cylinders connecting two eights contain only Js circles.

Proof. Since g takes the same value at each component of the boundary of
the cylinder, g must have a critical value in the cylinder. The critical level
set will be a circle, that is not an admissible singularity in Morse foliations.

In a NB, the sign of g(B) − g(JS) is constant. In a double connection
between eights, the existence of a connecting cylinder with JB and without
singular circles contradicts the rule of the sign. �

We will denote by Fc and Fs the foliation by circles of a neighborhood
of a center and a saddle respectively. If the foliated surface has m holes
bounded by regular levels, s1, . . . , sm, the new foliation obtained from F
attaching Fc to each hole will be denoted Ps1,...,sm(F). Finally, Gc = P(Fc)
and Gs = P(Fs). See the foliations on S2 in the Table 2.

4.2. Reduced Graphs. The Reeb graph of a function g is a topological
invariant widely used [1]. In our case RG(g), by itself, do not characterize
the function and at the same time it contains unnecessary information about
F(g). In Figure 5 we have an example of two equivalent foliations but with
not isomorphic graphs. The MB function is in both cases the height function.
The function on the left side has three singularities and the function on the
right side, two. The associated Reeb graphs are shown bellow. Although we
eliminate critical circumferences the topological type of the foliation does
not change.

Nevertheless, this reduction is not always possible, as in the case of the
critical circumference in the foliation without saddle points on the torus in
Table 2. These remarks leads us to the following definition

Definition 21 (The Graph of the MB foliation). Let f be a MB function.
Then the Graph Θ(F(f)) ( in short, Θ(f) or Θ(F)) of the MB foliation is:

a)A circle, in the case of a regular foliation by circles on the torus.
b)The Reeb graph of f without vertices associated to critical circumfer-

ences of f .

Θ(f) contains exactly one point for each leaf of the foliation. See also [5].
Θ(f) carries the information about the surface Σ since the number of cycles
in Θ(f) corresponding to the genus of Σ. But, this graph is not a complete
invariant, as the next example shows.
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Op

Figure 5. F(g1) ∼= F(g2), RG(g1) ≇ RG(g2)

p q
s1

s2

s3

s4

Θ(F1)

Θξ(F1)

Figure 6.

p q

s1

s2

s3 s4

Θ(F2)

Θξ(F2)

Figure 7.

Example 2. In the Figures 6 and 7 we show two non equivalent MB folia-
tions on the torus, F1 and F2, which graphs and space of leaves are isomor-
phic. In fact, if there exist a homeomorphism h which sends the leaves of the
first foliation to leaves of the second one, then the topological type of the
leaves would be the same. But this does not happen for all the components
of the saddle points and such homeomorphism does not exist.

The topological type of an eight must be included in any complete invari-
ant associated with MB foliations. Nevertheless, this topological type can
be implicitly included in a graph adding some extra structure.
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Proposition 22. Let ξ be a function on Θ(F(f)) that associates to each
saddle vertex the edge that contains the JB circles. The graph and ξ deter-
mines the topological type of the eights.

Proof. The topological type of an eight contains information about the topol-
ogy of the components si, if they are independent or not and finally on the
components of Σ(g, 0)\NB. In Θ(F(f)), the component Js corresponds the
point pJs and to B corresponds the vertex vB. Then Θ(F(f)) \ pJs deter-
mines the type of Js and therefore the type of the component of the eight
that jointly with Js bounds a cylinder. The remainder information can be
deduced from the components of Θ(F(f)) \ vB. �

An edge on Θ(F(f)) can have 0 ≤ n ≤ 2 distinctions. We denote the
edge by n-edge. In this paper, a 0-edge will be unmarked, a 1-edge will be
an arrow directed towards the vertex that distinguishes, and a 2-edges will
be represented by an left right arrow. The sense of the arrow indicates the
sense of branching of the graph.

4.3. Complete Invariant. We now present a complete invariant that solves
the problem of the classification of MB foliations on orientable closed sur-
faces.

By Θξ(f) or Θξ(F) will be denoted the pair formed by Θ(f) and the ξ as
in the Proposition 22, and the foliation associated to Θξ will be Fol(Θξ)

We assume here that (Θξ) (f) and (Θξ) (g) are isomorphic if there exists
an isomorphism from one Θ(f) onto the other that preserves the assignments
of the functions ξ.

Theorem 23. Θξ(f) is a complete topological invariant for MB foliations
on orientable closed surfaces.

Proof. Necessity. Σ(g, 0) is contractible to Θ(F) considered as a cellular
complex; the number of the different singularities and how they are con-
nected by regular cylinders is the same for equivalent foliations. Therefore
Θ(F) is a topological invariant of foliations. The topological type of the
eights is by definition another invariant that is equivalent to the distinction
between JB and Js leaves.

Sufficiency. Let F1 and F2 be two MB foliations on Σ(g, 0), and as-
sume that there exists an isomorphism θ : Θξ(F1) → Θξ(F2). Denote by
S(F1)i = f−1(ai) and S(F2)i = g−1(bi), bi = θ(ai) two related singular lev-
els of the foliations; then there exist homeomorphisms θsi : S(F1)i → S(F2)i
that in the case of eights can be chosen in such a way that it preserves the
type of orientation. We are going to prove that it is possible to extend θsi
to a homeomorphism h : Σ → Σ sending leaves to leaves.

We assume that there exist saddle singularities in order to avoid trivial
cases and we suppose also that the extension of θsi to NBi, denoted here θri
and defined in Lemma 17 sends level curves to level curves. The restrictions
of θri to the components of ∂NBi are concordant by construction. There
exist extensions of θri to the entire Σ(g, 0) that we will denote hNBi

.
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Consider two connected eights Bi, Bj and let C1
ij be one connecting cylin-

der. We have a homeomorphism between each components of the border of
C1
ij. If both homeomorphism preserve or reverse orientation, it is trivial to

construct an extension, θC1

ij
, of the homeomorphisms on the border to the

entire cylinder. If not, we can modify what kind of orientation preserves
one of the θsk in order to be in the previous case. If we have more cylin-

ders Ck
ij connecting Bi, Bj we follow the same process to define new θ

Ck
ij
.

The homeomorphism obtained pasting together θri , θ
r
j , and all θ

Ck
ij

can be

extended to a homeomorphism hNBi,NBj
on the entire Σ(g, 0) as in the case

of one saddle. We iterate the extension to new saddles until all eights have
been involved obtaining a homeomorphism hNB : Σ → Σ.

Finally, consider saturated neighborhoods Nck of the centers. They are
disk trivially foliated by circles and hNB defines an homeomorphism between
∂Nck and ∂Nθ(ck). Since we can extend a homeomorphism between the
borders of two disks fixing one point in the interior of one disk and its image
on the other, we get finally the desired extension h. Note that the border of
the basin of a center can be an eight or a component si. Therefore, in order
to attach properly the disks the JB must be marked in Θξ(f). �

4.4. Invariant for MB integrable systems. Given a ψMB(Σ) vector
field, Θξ(f) is an invariant for the system. Now we are going to adapt
this system to the case of flows having into account the singularities of the
system. Recall that, according to our definition, these singular leaves are
filled by equilibrium points. We will say that this singular curve is an equa-
torial curve (e-curve) if the nearby periodic orbits have different sense of
rotation; not equatorial (ne-curve) in the other case.

Definition 24 (The Graph of a system). Let (X, f) ∈ ψMB(Σ). Then the
Graph Θ(X, f) associated to the system is the graph obtained from Θ(f),
adding a vertex for each close curve with equilibrium points.

Definition 25. The invariant associated to MB systems (X, f) defined on
a closed orientable surface Σ(g, 0) is Θ(X, f), the function ξ previously de-
fined, and the function η that associates to each non periodic circle its type
(e or ne). We denote this invariant by Θξ,η(X).

Theorem 26. Θξ,η(X) is a complete invariant for ψMB(Σ) systems.

Proof. Given an orbit of a ψMB(Σ) and knowing Θξ,η(X), the sense of this
orbit determines the sense of all the orbits. Therefore there exists at most
two different systems with the same invariant. But in the case of MB systems
we are going to see that the two systems are equivalent. Since the graph of
the system can be immersed in the surface, the homeomorphism h between
the surfaces generates a homeomorphism hG between the graphs. Let x be
a point in the graph associated with a regular level set l. On this level set h
can be expressed : h(x, α) = (hG(x), φx(α)), α ∈ l. This map is not defined
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on singular levels, nevertheless by continuity, this expression of h is enough
to determine the homeomorphism in all points of the surface.

To finish the proof, if h is the homeomorphism that conjugates both
systems and preserves the sense of the orbits, in suitable coordinates h is
the identity: h(x, α) = (x, α). If the sense of the orbits is not preserved,
substitute h by h∗(x, α) = (x,−α). �

5. Realization of the invariant

The aim of this section is to introduce the conditions that an abstract
graph G with labels must fulfill to be realizable as the invariant of a MB
foliation F . We limit the study to MB foliations since realization for systems
can be easily derived from the case of foliations. We will characterize the
set of the graphs G which arise as a graph of a MB foliation in terms of one
generator and two transformations.

The graph of a MB foliation has vertices with degree 1 or 3. Moreover
if the foliation is defined on a simple closed orientable surface, Σ(g, 0), it is
necessary that the number of cycles of the graph will be equal to the genus
g of Σ(g, 0).

Definition 27. An abstract Θξ graph is or a circle or a connected graph
whose vertices has degree one or three, moreover, the vertices of degree three
have one distinguished edge

We have three types of edges that we identify by a left right arrow, an
arrow or a simple segment.

Fixing the surface Σ(g, 0), the foliations with a minimal number of centers
will be called minimal foliations on Σ(g, 0).

The minimal foliation on Σ(0, 0) is Gc. We will denote the invariant by G
and call it the generator graph. Consists of an edge and two vertices.

Before to state the realization Theorem we need to define the union of
two foliations. Let Σi(gi, 0), i = 1, 2 be two surfaces and Fi a foliation on
each surface. Consider the connected sum of both surfaces made over two
discs Di. On the connected sum of Σi we can define new foliations.

Definition 28. Let each ∂Di be a leaf of the basin of centers, Gi the restric-
tion of Fi to Σi(gi, 0) \ D̊i, then the leaves of the new foliation F consists
of the union of the leaves of G1 and G2. We call F the union of Fi and by
extension the union of Gi.

If c1, c2 are the centers involved in the union of two foliations, we will
denote this union by: F1

⊔

c1,c2

F2

The union of foliations can be easily generalized to the union with an
arbitrary number of pairs of centers.

Next proposition can be easily proved.

Proposition 29. The union of MB foliations are MB foliations.
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Next theorem characterize the realizable graphs using the generator G
and two transformations defined on it.

Theorem 30. An abstract graph obtained by applying one of the transfor-
mations defined bellow to the Θξ(f) of a MB foliation is also the graph of a
MB foliation.

• Transformation I: Replace a point in the interior of an n-edge by a
vertex v of degree three with one distinguished edge and connected to
a final vertex. The sum of the distinctions of the three edges adjacent
to v must be n+ 1.

• Transformation II: Connect two final vertices of a graph or of a pair
of graphs, eliminating the final vertices. The distinction of the new
edge is the sum of the distinctions of the connected edges.

Proof. Let F ′ be a MB foliation on Σ(g, 0) and Θ′
ξ their associated graph.

We are going to prove that the new foliation obtained applying a transfor-
mation to Θ′

ξ is again a MB foliation.
Let us start with the transformation I. Consider a regular circle s and

assume first that this curve is represented by a point on a final edge. Then:

F = F ′
⊔

s,J
Gc

If s is not in a final edge, lets call s1 and s2 the boundary curves on Σ(g, 2)
obtained deleting the interior of a regular neighborhood of s and let F ′

1 be
the associated foliation, then:

F = Ps1,s2
(

F ′
1

)
⊔

si,J
Gs

The type of J , (Js or JB) determines the labeling on the edges.
The transformations II is the union of two MB foliations or the union of

a MB foliation and Gc. �

The converse also holds.

Theorem 31. All MB foliations F on an orientable and compact surface
Σ(g, 0) can be obtained applying a finite sequence of transformations applied
to G.

Proof. We will proof the Theorem by induction on the number of saddle
points of F .

Case n = 0, 1. In Table 2 are listed all MB foliation with n ≤ 1 saddles.
They are obtained considering all combinations of three-valent vertices and
centers and adding the type of eight at each saddle vertex.

Case n ≥ 2. We will suppose that the Theorem holds for foliations with n
saddle points and prove that still holds for foliations with n+1 saddle points.
We will separate the proof by considering all types of eights on Θξ(F), the
foliation with n+ 1 saddles.

Case (a): Type B(l0, l0). Let Σ(g, 0) be the foliated surface, Fn+1 the
foliation that contains B(l0, l0) and J1, J2, J3 as in the Definition 16. Let
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DJB the disk bounded by J3 = JB. Consider the foliation Fn defined by
PJB

(

Fn+1 \DJB

)

. Then Fn+1 = Fol(I(Θξ(F
n))

Case (b): The eight will be of type B(lX , l0) (where X = 1, ..., E
(

g
2

)

)
or B(l0, g − 1, 0) if X = K. The foliation obtained by collapsing the disk
bounded by the component of type l0 to the saddle point is a MB foliation
Fn with n saddles. Then F = Fol(I(Θξ(F

n)).
Case (c): Type B(lX , lX , 0) where X = 1, ..., E

(

g
2

)

. A regular neighbor-
hood of the eight separates the surface in three surfaces, Σ(X, 1), Σ(g−X, 1)
and Σ(0, 1). Let Gi the foliations obtained attaching Jc to these foliated sur-
faces. Then F = Fol(I(Θξ(G1

⊔

J1,J2

G2))).

Case (d): Type B(li, lj , g− (i+ j)) with i ≤ j. Let us consider the closed
regular neighborhood NB of B; Σ(g, 0) \ NB is formed by the surfaces:
Σ(i, 1) bounded by li, Σ(j, 1) bounded by lj and Σ(g − (i + j), 1). The
restriction of F to these surfaces and completed with Jc attached are MB
foliations, Gi. Then F = Fol(I(Θξ(G1

⊔

G2)))
⊔

G3.
Case (e): If the eight is of type B(li, lj , j − i) with i < j the induction

method is similar.
Case (f): Type B(ln, gi, gj). The component of the eight of type ln sepa-

rates the surface Σ(g, 0) in two components Σ(gi, 1), Σ(gj , 1) with foliations
F1, F2. Assume that the second one contains the component lK of the eight.
Let Gi = Pln(Fi), ci the new centers. Let G3 the foliation on Σ(gj , 0) ob-
tained collapsing ln to a point. The foliation G2 is equivalent to I(Θξ(G3)).
Then: Fn+1 = Fol(II(Θξ(G1), I(Θξ(G3))). The transformation II has been
applied over the centers c1, c2.

Case (g): Type B(gi, gj). If gi = 0, let G the foliation obtained by
collapsing the closed disk bounded by the components of the eight to one
component of type lK . This new foliations has n saddle points and Fn+1 =
Fol(I(Θξ(G))). If gi > 0, Σ(g, 0)\NB consists of one surface with two holes
and another one with one hole. Let G1 (G2) the foliations obtained from the
restrictions of Fn+1 to the first (second) surface attaching Jc to the holes.
Then Fn+1 = Fol(II (II(I(Θξ(G2)),Θξ(G1)),Θξ(G1))).

Case (h): The type of the eight B formed by s1, s2, s1 ∩ s2 = p is B(3).
In this case the curves J1 and J2 are not trivial since they are contractible to
s1 and s2. The curve J3 is also trivial, if not, s1 jointed with s2 will bound
a disk, therefore they will be homologically equivalent. The edges adjacent
to the saddle point can not be connected to a center. Consider one saddle
B

′ connected to B.
The curve of type J3 of B is connected with another curves J of B′ though

a cylinder. Let s be a regular circle of this cylinder , Σ(g, 0) \ s ∼= Σ(g, 2).
Attach one Jc to each hole. We have a new foliation with two centers c1,
c2. Collapse the basin of one center to B and we get a foliation Fn with n
saddle points. Then Fn+1 = Fol(II (I(Θξ(F

n)))).



AN INVARIANT FOR MORSE BOTT SYSTEMS 19

If B and B
′ are connected through Js curves the reduction is similar,

instead of collapsing the basin of a center toB, we collapse it to a component
of B.

�
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1

l0
l0

K1
∼= D2; K2

∼= D2;

K3
∼= Σ(3, 1) B(l0, l0)

2

l0l1
K1

∼= D2; K2
∼= Σ(2, 1);

K3
∼= Σ(1, 1) B(l0, l1)

3

l1 l1
K1

∼= Σ(1, 1); K2
∼= Σ(2, 1);

K3
∼= Σ(0, 1) B(l1, l1, 0)

4

l1 l2
K1

∼= Σ(1, 1); K2
∼= Σ(1, 1);

K3
∼= Σ(1, 1) B(l1, l2, 0)

5
lk

l0
K1

∼= Σ(0, 1); K2
∼= Σ(2, 2) B(l0, 0, 2)

6

lk
l1

K1
∼= Σ(0, 2); K2

∼= Σ(2, 1) B(l1, 0, 2)

7
lk

l1

K1
∼= Σ(1, 2); K2

∼= Σ(1, 1) B(l1, 1, 1)

8

lk

lk K1
∼= Σ(0, 1); K2

∼= Σ(2, 2) B(0, 2)

9

lk
lk

K1
∼= Σ(2, 1); K2

∼= Σ(0, 2) B(2, 0)

10

lk
lk

K1
∼= Σ(1, 1); K2

∼= Σ(1, 2) B(1, 1)

11

lk
lk

K ∼= Σ(1, 3) B(3)

12
lk

lk

K ∼= Σ(2, 1) B(1)

Table 1. Eights on Σ(3, 0).
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Zero saddle points

c c
G

II(G)

One saddle points

c c
c

c

c

I(G)

I(II(G))

I(II(G))

Table 2. MB foliation with n ≤ 1 saddles.



22 J. MARTÍNEZ-ALFARO, I.S. MEZA-SARMIENTO AND R. D. S. OLIVEIRA

References

1. Vladimir I. Arnold, Topological classification of Morse functions and
generalisations of Hilbert’s 16-th problem, Math. Phys. Anal. Geom. 10
(2007), 227–236.

2. A. Banyaga and D. Hurtubise, A proof of the Morse-Bott Lemma, Expo.
Math 22 (2004), 365–373.

3. A.V Bolsinov and A.T Fomenko, Integrable Hamiltonian systems, Boca
Raton, Fla. : Chapman & Hall/CRC, 2004.

4. Raoul Bott, Letures on Morse theory, old and new, American Mathe-
matical Society 7 (1982), 331–358.

5. Alberto Candel and Lawrence Conlon, Foliations II, American Mathe-
matical Society, 2003.

6. Milton Cobo, Carlos Gutierrez, and Jaume Llibre, Flows without wan-
dering point on compact connected surfaces, Transactions of the Ameri-
can Mathematical Society 362 (2010), 4569–4580.

7. Antonio R. da Silva, Peixoto classification of 2-dim flows revisited, Dy-
namics, Games and Science II Chapter 47 (2011), 639–645.

8. Peter Giblin, Graphs, surfaces and homology, Cambridge University
Press, New York, 2010.

9. Morris W. Hirsch, Differential topology, Springer-Verlag, New York,
1994.

10. Harold I. Levine, Homotopic curves on surfaces, Proceedings of the
American Mathematical Society 14 (1963), 986–990.

11. Dean Neumann and Thomas O’Brien, Global structure of continuous
flows on 2-manifolds, Journal of Differential Equations 22 (1976), 89–
110.

12. Liviu. I Nicolaescu, An invitation to Morse theory, New York : Springer,
London., 2007.

13. Igor Nikolaev and Evgeny Zhuzhoma, Flows on 2-dimensional mani-
folds, Springer, 1999.

14. A.A. Oshemkov and V.V Sharko, Classification of Morse-Smale flows
on two-dimensional manifolds, Shornik Mathematics 189 (1998), 1205–
1250.

15. M.M Peixoto, On the classification of flows on two-manifolds, Dynami-
cal Systems, edited by M.M. Peixoto, Academic Press, New York (1973),
389–419.

16. Dale Rolfsen, Knots and links, American Mathematical Society, 2003.
17. J.W.T Youngs, The extension of a homeomorphism defined on the

boundary of a 2-manifold, Bull. Amer. Math. Soc. 54 (1948), 805–808.
18. Nguyen Tien Zung and Nguyen Van Minh, Geometry of integrable dy-

namical systems on 2-dimensional surfaces, Acta Math Vietnam 38

(2013), 79–106.



AN INVARIANT FOR MORSE BOTT SYSTEMS 23

J. Mart́ınez-Alfaro, Department de Matemática Aplicada, Universitat de
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