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Abstract

Let QSH be the whole class of non-degenerate planar quadratic differential systems possessing
at least one invariant hyperbola. In this article, we study family QSH, _¢y of systems in QSH
which possess either exactly two distinct real singularities at infinity or the line at infinity filled
up with singularities. We classify this family of systems, modulo the action of the group of real
affine transformations and time rescaling, according to their geometric properties encoded in the
configurations of invariant hyperbolas and invariant straight lines which these systems possess.
The classification is given both in terms of algebraic geometric invariants and also in terms of
affine invariant polynomials and it yields a total of 40 distinct such configurations. This last
classification is also an algorithm which makes it possible to verify for any given real quadratic
differential system if it has invariant hyperbolas or not and to specify its configuration of invariant
hyperbolas and straight lines.
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2000 Mathematics Subject Classification: 34C23, 34A34

1 Introduction and statement of the main results

We consider planar polynomial differential systems which are systems of the form

dz/dt = p(z,y), dy/dt=q(z,y) (1)



where p(x,y), q(z,y) are polynomial in x, y with real coefficients (p, ¢ € R[z,y]) and their associated
vector fields

X = p(x, y)% + q(x, y);y- (2)

We call degree of such a system the number max(deg(p), deg(q)). In the case where the polynomials
p and ¢ are coprime we say that (1) is non-degenerate.

A real quadratic differential system is a polynomial differential system of degree 2, i.e.

T = Po +p1(dal‘7y) + pQ(d,ﬂf7y) = p(&vxvy)v
U =qo+ q(a,z,y) + qa,z,y) = q(a,x,y)

with max(deg(p),deg(q)) = 2 and

po=a, pi(a,r,y)=cr+dy, pary)=gz*+2hry+ ky?
w0=">0 qlaz,y) =er+fy, q@azy) =Ila®+2mzy+ny>

Here we denote by a = (a,c,d, g, h,k,b,e, f,1,m,n) the 12-tuple of the coefficients of system (3).
Thus a quadratic system can be identified with a points @ in R'2.

We denote the class of all quadratic differential systems with QS.

Planar polynomial differential systems occur very often in various branches of applied mathematics,
in modeling natural phenomena, for example, modeling the time evolution of conflicting species in
biology and in chemical reactions and economics [12, 30|, in astrophysics [6], in the equations of
continuity describing the interactions of ions, electrons and neutral species in plasma physics [19].
Polynomial systems appear also in shock waves, in neural networks, etc. Such differential systems
have also theoretical importance. Several problems on polynomial differential systems, which were
stated more than one hundred years ago, are still open: the second part of Hilbert’s 16th problem
stated by Hilbert in 1900, the problem of algebraic integrability stated by Poincaré in 1891 [17], [18],
the problem of the center stated by Poincaré in 1885 [16], and problems on integrability resulting
from the work of Darboux [8] published in 1878. With the exception of the problem of the center,
which was solved only for quadratic differential systems, all the other problems mentioned above,
are still unsolved even in the quadratic case.

Definition 1 (Darboux). An algebraic curve f(x,y) =0 where f € Clx,y| is an invariant curve of
the system polynomial system (1) if and only if there exists a polynomial k(x,y) € Clz,y| such that
of of

p(x,y)ail‘ + q(ajay)@ - f(w,y)k(x,y)

Definition 2 (Darboux). We call algebraic solution of a planar polynomial system an invariant
algebraic curve over C which is irreducible.

One of our motivations in this article comes from integrability problems related to the work of
Darboux [8].

Theorem 1 (Darboux). Suppose that a polynomial system (1) has m invariant algebraic curves
fi(x,y) =0, i <m, with f; € Clz,y| and with m > n(n+ 1)/2 where n is the degree of the system.
Then there exist complex numbers A1, ..., A\m such that fl)‘l...f,),‘lm is a first integral of the system.



The condition in Darboux’ theorem is only sufficient for Darboux integrability (integrability in
terms of invariant algebraic curves) and it is not also necessary. Thus the lower bound on the number
of invariant curves sufficient for Darboux integrability stated in the theorem of Darboux is larger
than necessary. Darboux’ theory has been improved by including for example the multiplicity of
the curves ([11]). Also, the number of invariant algebraic curves needed was reduced but by adding
some conditions, in particular the condition that any two of the curves be transversal. But a deeper
understanding about Darboux integrability is still lacking. Algebraic integrability, which intervenes
in the open problem stated by Poincaré in 1891 ([17] and [18]), and which means the existence of a
rational first integral for the system, is a particular case of Darboux integrability.

To advance knowledge on algebraic or more generally Darboux integrability it is necessary to have a
large number of examples to analyze. In the literature, scattered isolated examples were analyzed but
a more systematic approach was still needed. Schlomiuk and Vulpe initiated a systematic program
to construct such a data base for quadratic differential systems. Since the simplest case is of systems
with invariant straight lines, their first works involved only lines (see [22], [24], [25], [27], [28]). In this
work we study the class QSH of non-degenerate, i.e. p, ¢ are relatively prime, quadratic differential
systems having an invariant hyperbola. Such systems could also have some invariant lines and in
many cases the presence of these invariant curves turns them into Darboux integrable systems. We
always assume here that the systems (3) are non-degenerate because otherwise doing a time rescaling,
they can be reduced to linear or constant systems. Under this assumption all the systems in QSH
have a finite number of finite singular points.

We introduced here the class QSH of non-degenerate quadratic systems possessing at least one
invariant hyperbola. This class requires some explanation. Indeed the term hyperbola is reserved for
a real irreducible affine conic which has two real points at infinity. This distinguishes it from the
other two irreducible real conics: the parabola with just one real point at infinity which is double
and the ellipse which has two complex points at infinity. But in the theory of Darboux the invariant
algebraic curves are considered (and rightly so) over the complex field C. We need to extend the
notions of hyperbola, parabola or ellipse for conics over C which is easily done. We call ”complex
hyperbola” (respectively ”complex ellipse”, ”complex parabola”) an algebraic curve C : f(x,y) =0
with f € Clz,y|, deg(f) = 2 which is irreducible and which has two real points at infinity (respectively

two complex (non-real) points at infinity, one double point at infinity (see [1])).

Let us suppose that a polynomial differential system has an algebraic solution f(x,y) = 0 where
f(z,y) € Clx,y] is of degree n, f(z,y) = ap+a10T+ao1y~+ ...+ anox" +an—1,12" Ly + ...+ ag,y™ with
a = (ag, ..., aon) € CN where N = (n + 1)(n + 2)/2. We note that the equation \f(x,y) = 0 where
A € C* and C* = C\{0} yields the same locus of complex points in the plane as the locus induced by
f(z,y) = 0. So a curve of degree n defined by a can be identified with a point [a] = [ao : a1p : ... : aon]
in Py_1(C). We say that a sequence of degree n curves f;(x,y) = 0 converges to a curve f(x,y) =0
if and only if the sequence of points [a;] = [a;0 : @10-.. : aion] converges to [a] = [ag : a1p : ... : agy] in
the topology of Py_1(C).

On the class QS acts the group of real affine transformations and time rescaling and due to this,
modulo this group action quadratic systems ultimately depend on five parameters. This group also
acts on QSH and modulo this action the systems in this class depend on three parameters.

We observe that if we rescale the time ' = At by a non-zero real constant A the geometry of the



systems (1) does not change. So for our purposes we can identify a system (1) of degree n with a
point in [ag : a1g : ... : bop] in Py—1(R) with N = (n+ 1)(n + 2).

Definition 3. (i) We say that an invariant curve L : f(z,y) =0, f € Clz,y| for a polynomial system
(S) of degree n has multiplicity m if there exists a sequence of real polynomial systems (Sy) of degree
n converging to (S) in the topology of Py_1(R), N = (n+1)(n+2), such that each (Si) has m distinct
invariant curves Lig ¢ fip(x,y) = 0,..., Lok @ fp(z,y) = 0 over C, deg(f) = deg(fix) = 7,
converging to L as k — oo, in the topology of Pr—1(C), with R = (r + 1)(r +2)/2 and this does not
occur for m + 1.

(ii)) We say that the line at infinity Loo : Z = 0 of a polynomial system (S) of degree n has
multiplicity m if there exists a sequence of real polynomial systems (Sy) of degree n converging to
(S) in the topology of Pn—_1(R), N = (n+1)(n+2), such that each (Sy) has m—1 distinct invariant
lines Ly fie(z,y) =0,..., Lok fmi(x,y) = 0 over C, converging to the line at infinity Lo as
k — oo, in the topology of Po(C) and this does not occur for m.

Definition 4. (a) Suppose a planar polynomial system (S) has a finite number of algebraic solutions
L; 1 < k with corresponding multiplicities n; and the line at infinity Loo is not filled up with singu-
larities and it has multiplicity no. We call total multiplicity of these algebraic solutions, including
the multiplicity noo of the line at infinity Lo, the sum TMC(g) = ni + ... + ng + Neo.

(b) Suppose the system (S) has a finite number of real distinct singularities si,...,s;, finite or
infinite, which are located on the algebraic solutions, and having the corresponding multiplicities
mi,...,my. We call total multiplicity of the real singularities on the invariant curves of (S)
the sum TMS(gy =mi + ... + my and TMS is the function defined by this expression.

An important ingredient in this work is the notion of configuration of invariant curves of a poly-
nomial differential system. This notion appeared for the first time in [22].

Definition 5. Consider a planar polynomial system which has a finite number of algebraic solutions
and a finite number of singular points, finite or infinite. By configuration of algebraic solutions
of this system we mean the set of algebraic solutions over C of the system, each one of these curves
endowed with its own multiplicity and together with all the real singular points of this system located
on these curves, each one of these singularities endowed with its own multiplicity.

In the family QSH we could have systems which have an infinite number of algebraic solutions. In
this particular case we show that we also have a finite number of invariant straight lines and a finite
number of finite singularities and we can use this fact to define a notion of configuration including
only the affine invariant lines of the system. In case such a system has a finite number of singularities
at infinity (respectively an infinite number of singularities at infinity) we call configuration of lines of
the system, the set of all invariant lines (respectively the set of invariant affine lines), each endowed
with its own multiplicity together with the set of all real singularities of the systems located on these
lines. We associate to each system in QSH its configuration of invariant hyperbolas and/or straight
lines.

We may have two distinct systems which may even be non-equivalent modulo the action of the
group but which may have “the same configuration” of invariant hyperbolas and straight lines. We
need to say when two configurations are ”the same” or equivalent.



Definition 6. Suppose we have two configurations Cy,Cs of hyperbolas and lines of systems (S1), (S2)
in QSH with a finite number of such curves and a finite number of real singular points. We say that
they are equivalent if there is a one-to-one correspondence ¢p, between the hyperbolas of C1 and Co
and a one to one correspondence ¢; between the lines of Cv and Cy such that:

(i) the correspondences conserve the multiplicities of the hyperbolas and/or lines,

(ii) for each hyperbola H of Cy (respectively each line L) we have a one-to-one correspondence between
the real singular points on H (respectively on L) and the real singular points on ¢n(H) (respectively
d1(L)) conserving their multiplicities, their location on branches and their order on these branches.
In case the systems have an infinite number of hyperbolas we only need to have the one-to-one cor-
respondences between their lines (affine lines in case (S1) and (S2) have the line at infinity filled up
with singularities) with their associated conditions (i) and (ii) above.

In [13] the authors provide necessary and sufficient conditions for a non-degenerate quadratic
differential system to have at least one invariant hyperbola and these conditions are expressed in
terms of the coefficients of the systems. In [14] the family of quadratic systems in QSH which
possess three distinct real singularities at infinity was considered. The authors classified this family of
systems, modulo the action of the group of real affine transformations and time rescaling, according
to their geometric properties encoded in the configurations of invariant hyperbolas and invariant
straight lines which these systems possess. As a result 162 distinct such configurations where detected
as well as the necessary and sufficient affine invariant conditions for the realization of each one of
them where constructed.

This article is a continuation of [14]. We denote by QSH ;) the class of non-degenerate quadratic
differential systems possessing an invariant hyperbola and either exactly two distinct real singularities
at infinity or the line at infinity filled up with singularities. The goal of this article is to produce a
similar classification of the family QSH,_o.

As we want this classification to be intrinsic, independent of the normal form given to the systems,
we use here geometric invariants and invariant polynomials for the classification. For example it is
clear that the configuration of algebraic solutions of a system is an affine invariant. The classification
is done according to the configurations of invariant hyperbolas and straight lines encountered in
systems belonging to QSH. In particular the notion of multiplicity in Definition 3 is invariant under
the group action, i.e. if a quadratic system S has an invariant curve £ = 0 of multiplicity m, then
each system S’ in the orbit of S under the group action has a corresponding invariant line £ = 0 of
the same multiplicity m. To distinguish configurations of algebraic solutions we need some geometric
invariants which are introduced in Section 2. In the second part of our Main Theorem we use invariant
polynomials which are also introduced in our Section 2.

Main Theorem. Consider the class QSH(;—o) of all non-degenerate quadratic differential systems
(3) possessing an invariant hyperbola and either exactly two distinct real singularities at infinity or
the line at infinity filled up with singularities.

(A) This family is classified according to the configurations of invariant hyperbolas and of invariant
straight lines of the systems, yielding 40 distinct such configurations. This geometric classifica-
tion appears in Diagrams 1 and 2. More precisely:

(A1) There are exactly 9 configurations with an infinity of invariant hyperbolas. These configu-



rations could have up to 38 distinct affine invariant lines which could have multiplicities up
to at most 3. The configurations are split as follows:

(a) 2 of them with exactly two infinite singularities (Config.Hsa, Config.Hss) distinguished
by the type of the invariant lines divisor ILD (as defined in Section 2);

(b) 7 of them with the line at infinity filled up with singularities (Config.H;, 34 < i < 40).
The type of the ILD splits these configurations in three groups: Group 1: Config.H i,
34 < i < 36, first distinguished by the number of finite singularities (3 for Config.H .36
and 2 for Config.H.i, i € {34,35}). The last two configurations are distinguished by
the number of finite singularities not located on the invariant hyperbolas (1 for i=34,
0 for i=35). Group 2: Config.H.i with i € {37,38} and Group 3: Config.H.i with
i € {39,40} The configurations in these groups are distinguished by the type of the
zero-cycle M Spc;

The remaining 31 configurations could have up to a mazximum of 2 distinct invariant hy-
perbolas, real or complex, and up to 3 distinct invariant straight lines, real or complez,
including the line at infinity.

-We have exactly 12 distinct configurations of systems with exactly one hyperbola

which is simple, and no invariant affine lines. These are classified by the total multiplicity

of the real singularities of the systems located on the algebraic solutions (T'MS) as follows:

(a) only one configuration (Config.Hy) with TMS = 3;

(b) 5 configurations with TMS =5 grouped as follows by the number of their singularities
and their multiplicities:

-one with only two singularities, both multiple and both at infinity (Conﬁg.ﬁ@),‘

-two with an additional finite singularity (Conﬁg.ﬁg, C’onﬁg.fL;) but with distinct mul-
tiplicities;

-two with two additional finite simple singularities (C’onﬁg.]%, Conﬁg.ﬁg) distinguished
using the proximity divisor PD defined in Section 2;

(¢) 4 with TMS = 6: one with only one finite singularity (Config.Hy); 8 with two finite
singularities with the same multiplicities, distinguished by the invariant O defined in
Section 2 (Config.H;, 8 < i < 10);

(d) 2 with TMS = T distinguished by the multiplicities of their two finite singularities
(Config.Hy1, Config.Hys).

-We have exactly 6 configurations with a unique simple invariant hyperbola and a

unique simple invariant line:

(a) one with no finite singularity (Config.Hy3);

(b) one with only one finite singularity (Config.Hy4);

(¢) one with two finite singularities (Config.Hys);

(d) one with three finite singularities (Config.Hig);

(e) two with four simple finite singularities (Config.Hy7, Config.Hig), configurations dis-
tinguished by the proximity divisor PD (see Section 2);

-We have exactly 9 configurations with a simple invariant hyperbola and invariant
lines, including the line at infinity, of total multiplicity 3 < TML < 5:



(a) 5 configurations have exactly three distinct simple invariant lines (Conﬁg.l:fi, 19 < <
23) distinguished by the types of ICD, M Syc and the prozimity divisor PD;

(b) 4 configurations with exactly two invariant lines, one of them being multiple (Conﬁgf]i,
24 < < 27). They are distinguished by the multiplicities of the two invariant lines.

-We have exactly 4 configurations with invariant hyperbolas of total multiplicity 2:

(a) two with two distinct hyperbolas, one with real hyperbolas (Config.Hag) and one with
complex (non-real) hyperbolas (Config.Hag),

(b) two of them with a double hyperbola, one with 3 finite singularities (Config.Hsg)and
one without any finite singularity (Config.Hs, );

(B) Diagram 8 is the bifurcation diagram in the space R'2 of the coefficients of the system in
QSH ;o) according to their configurations of invariant hyperbolas and invariant straight
lines. Moreover Diagram 8 gives an algorithm to compute the configuration of a system
with an invariant hyperbola for any quadratic differential system, presented in any normal

form.

Remark 1. In the above Theorem we indicated that the 40 configurations obtained for the family
QSH(n:o) are distinct due to the types of ICD,ILD, M Soc and PD. We define in Section 2 such
functions on the family QSH ,_q) and prove that they define a complete set of geometric invariants
for the configurations of the family QSH,_o).

Remark 2. The invariant polynomials which appear in Diagram 8 are introduced in Section 2.
Moreover in this diagram we denote by (€1) the following condition

(€1) = (Bs =0, B11R11 # 0) N ((Br2 # 0,715 = 0) U (B12 = m16 = 0)).

2 Basic concepts, proof of part A of the Main Theorem and aux-
iliary results

In this section we define all the invariants we use in the Main Theorem and we state some auxiliary
results. A quadratic system possessing an invariant hyperbola could also possess invariant lines. We
classified the systems possessing an invariant hyperbola in terms of their configurations of invariant
hyperbolas and invariant lines. Each one of these invariant curves has a multiplicity in the sense of
Definition 3 (see also in [7]). We encode this picture in the multiplicity divisor of invariant hyperbolas
and lines. We first recall the algebraic-geometric definition of an r-cycle on an irreducible algebraic
variety of dimension n.

Definition 7. Let V be an irreducible algebraic variety of dimension n over a field K. A cycle of
dimension r or r-cycle on'V is a formal sum Xywnw W, where W is a subvariety of V' of dimension
r which is not contained in the singular locus of V, ny € Z, and only a finite number of ny ’s are
non-zero. We call degree of an r-cycle the sum Xnyy. An (n — 1)-cycle is called a divisor.

Definition 8. Let V' be an irreducible algebraic variety over a field K. The support of a cycle
C on V is the set Supp(C) = {Winw # 0}. We denote by Max(C) the mazimum value of the
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DiaGrAM 1: Diagram of configurations with one simple hyperbola
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DIAGRAM 1: (Cont.) Diagram of configurations with one simple hyperbola

coefficients ny in C. For every m < Maxz(C) let s(m) be the number of the coefficients ny in C
which are equal to m. We call type of the cycle C the set of ordered couples (s(m),m) where
1 <m < Maz(C).

For a non-degenerate polynomial differential systems (S) possessing a finite number of algebraic
solutions fi(z,y) = 0, each with multiplicity n; and a finite number of singularities at infinity,
we define the algebraic solutions divisor (or the invariant curves divisor) on the projective plane,
ICD = %,,n;C; + noo L (the invariant curves divisor) where C; : F;(X,Y, Z) = 0 are the projective
completions of f;(x,y) = 0, n; is the multiplicity of the curve C; = 0 and no, is the multiplicity of
the line at infinity Lo : Z = 0. It is well known (see [2]) that the maximum number of invariant
straight lines for polynomial systems of degree n > 2 is 3n (including the line at infinity).

In the case we consider here, we have a particular instance of the divisor IC'D because the invariant
curves will be invariant hyperbolas and invariant lines of a quadratic differential system, in case these
are in finite number. In case we have an infinite number of hyperbolas we use only the invariant lines
to construct the divisor.
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DiaGrAM 2: Diagram of configurations with TMH > 2

Another ingredient of the configuration of algebraic solutions are the real singularities situated

on these curves. We also need to use here the notion of multiplicity divisor of real singularities of a
system located on the algebraic solutions of the system.
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DIAGRAM 3: Bifurcation diagram in R12? of the configurations: Case n = 0
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Y1670 -
n=0 B13#0 |110="717=0, . Config. H.20
R 0 = ~
N=0 nz i Config. H27
0 ~
Bi13=0 — ks Config. H.32
1 e =%9=0 iy = B
Config. H33
Hy <0 ~
Config. H.36
Ho 70| Hy >0 Config. H.38
Hy=0 C’onﬁg.ﬁ.élo
A2 H _
[C =0, Nz=0 270 Config. H.34
M:O] H127§0 Hiy <0 N
Ho—0 Config. H.35
Hyp=0 2=

H11>0, config. H37
H12=0 0 ig H.39

DIAGRAM 3: (Cont.) Bifurcation diagram in R!2 of the configurations: Case 1 = 0

Definition 9. 1. Suppose a real quadratic system has a finite number of invariant hyperbolas
H; : fi(z,y) =0 and a finite number of affine invariant lines L;. We denote the line at infinity
Loo : Z = 0. Lets assume that on the line at infinity we have a finite number of singularities.

The divisor of invariant hyperbolas and invariant lines on the complex projective plane of the
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system is the following:
ICD =n1Hi+...+nH +m1L1+ ...+ mp Ly + Moo Loo,

where n; (respectively m;) is the multiplicity of the hyperbola H; (respectively of the line L;),
and My, 1s the multiplicity of Loo. We also mark the complex (non-real) invariant hyperbolas
(respectively lines) denoting them by HS (respectively LS ). We define the total multiplicity
TMH of invariant hyperbolas as the sum ), n; and the total multiplicity TML of invariant
line as the sum ), m;. We denote by IHD (respectively ILD ) the invariant hyperbolas divisor
(respectively the invariant lines divisor) i.e. IHD = n1Hy + ... + ngH; (respectively ILD =
MocLoo + ML+ ...+ mkﬁk).

2. The zero-cycle on the real projective plane, of real singularities of a system (3) located on the
configuration of invariant lines and invariant hyperbolas, is given by:

MSoc =11UL + ... + U + mis1 + ... + mySn,

where U; (respectively s;) are all the real infinite (respectively finite) such singularities of the
system and l; (respectively m;) are their corresponding multiplicities.

In the family QSH,,_y)we have configurations which have an infinite number of hyperbolas. These
are of two kinds: those with a finite number of singular points at infinity, namely two, and those with
the line at infinity filled up with singularities. To distinguish these two cases we define |Sing..| to
be the cardinality of the set of singular points at infinity. In the first case we have |Sings| = 2 and
in the second case |Sings| is the continuum and we simply write |Sing..| = co. Since in both cases
the systems admit a finite number of affine invariant straight lines we can use them to distinguish
the configurations.

Definition 10. 1. In case we have an infinite number of hyperbolas and just two singular points
at infinity but we have a finite number of invariant straight lines we define ILD = mq1L1 +
coiF mpLy + Mmoo Loo (see Definition 9);

2. In case we have an infinite number of hyperbolas, a finite number of affine lines and the line
at infinity s filled up with singularities, we define ILD = m1L1 + ...+ mpLy;

As the Main Theorem indicates, we have nine cases with an infinite number of hyperbolas and
since we have a finite number of invariant lines, the systems are classified by their configurations of

invariant straight lines encoded in the invariant lines divisor.

Attached to the divisors and the zero-cycle we defined, we have their types which are clearly affine
invariants. So although the cycles IC' D and M Sy¢ are not themselves affine invariants, they are used
in the classification because we can read on them several specific invariants, such as for example their
types, TMS, TMC, etc.

The above defined divisor IC'D and zero-cycle M Syc contain several invariants such as the number
of invariant lines and their total multiplicity 7'M L, the number of invariant hyperbolas (in case these
are in finite number) and their total multiplicity 7'M H, the number of complex invariant hyperbolas
of a real system, etc.
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Given a system in QSH, there are two compactifications which intervene in the classification of
QSH according to the configurations of the systems: the compactification in the Poincaré disk and
the compactification of its associated foliation with singularities on the real projective plane Py(R).
We also have the compactification of its associated (complex) foliation with singularities on the
complex projective plane. Each one of these compactifications plays a role in the classification. In
the compactified system the line at infinity of the affine plane is an invariant line. The system may
have singular points located at infinity which are not points of intersection of invariant curves, points
also denoted by U,.

The points at infinity which are intersection point of two or more invariant algebraic curves we

denote by (J]T, where j € {h,l, hh,hl,ll,1lh*>°,...}. Here h (respectively I, hh, hi,1l,1lh*>°,...) means
that the intersection of the infinite line with a hyperbola (respectively with a line, or with two
hyperbolas, or with a hyperbola and a line, or with two lines, or with two line and infinity number
of hyperbolas etc.).

In case we have a real finite singularity located on the invariant curves we denote it by ér, where
j € {h,l,hh,hl,1l,1lh>°,...}. Here h (respectively [, hh, hl,ll,1lh>,...) means that the singular point
sy is located on a hyperbola (respectively located on a line, on the intersection of two hyperbolas, on
the intersection of a hyperbola and a line, on the intersection of two lines, on the intersection of two
line and a infinity number of hyperbolas etc.). In other words, whenever the symbor A*® appears in
the divisor MSyc it means that the singularity lies on infinity number of hyperbolas.

Suppose the real invariant hyperbolas and lines of a system (S) are given by equations f;(z,y) = 0,
i € {1,2,..,k}, fi € Rlz,y]. Let us denote by F;(X,Y,Z) = 0 the projection completion of the
invariant curves f; = 0 in P>(R).

Definition 11. We call total invariant curve of (S) in P»(C), the curve T(S) : [[ Fi(X,Y,Z)Z = 0.

We use the above notion to define the basic curvilinear polygons determined by the total curve
T(S). Consider the Poincaré disk and remove from it the (real) points of the total curve 7(S). We
are left with a certain number of 2-dimensional connected components.

Definition 12. We call basic polygon determined by T (S) the closure of anyone of these components
associated to T(S).

Although a basic polygon is a 2-dimensional object, we shall think of it as being just its border.

Regarding the singular points of the systems situated on 7'(.S), they are of two kinds: those which
are simple (or smooth) points of 7(S) and those which are multiple points of 7(.5).

Remark 3. To each singular point of the system we have its associated multiplicity as a singular
point of the system. In addition, we also have the multiplicity of these points as points on the total
curve. Through a singular point of the systems there may pass several of the curves F; = 0 and
Z = 0. Also we may have the case when this point is a singular point of one or even of several of
the curves in case we work with invariant curves with singularities. This leads to the multiplicity of
the point as point of the curve T(S). The simple points are those of multiplicity one. They are also
the smooth points of this curve.
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The real singular points of the system which are simple points of 7(S) are useful for defining some
geometrical invariants, helpful in the geometrical classification, besides those which can be read from
the zero-cycle defined further above.

We now introduce the notion of minimal proximity polygon of a singular point of the total curve.
This notion plays a major role in the geometrical classification of the systems.

Definition 13. Let p be a real singular point of a system lying on T (S) and in the Poincaré disk.
Then p may belong to several basic polygons. We call minimal proximity polygon of p a basic polygon
on which p is located and which has the minimum number of vertices, among the basic polygons to
which p belongs. In case we have more than one polygon with the minimum number of vertices, we
take all such polygons as being minimal proximity polygons of p.

Remark 4. We observe that for systems in QSH,_q) we have a finite basic polygon only in one
case (Config. H.36) and the polygon is a triangle. All other polygons have at least one vertex at
mnfinity.

For a configuration C, consider for each real singularity p of the system which is a simple point
of the curve 7(S), its minimal proximity basic polygons. We construct some formal finite sums
attached to the Poincaré disk, analogs of the algebraic-geometric notion of divisor on the projective
plane. For this we proceed as follows:

We first list all real singularities of the systems on the Poincaré disk which are simple points (ss
points) of the total curve. In case we have such points U;’s located on the line at infinity, we start
with those points which are at infinity. We obtain a list Uy, ..., Uy, s1, ..., Sk, where s;’s are finite
points. Associate to Uy, ..., U, their minimal proximity polygons P41, ..., Pm. In case some of them
coincide we only list once the polygons which are repeated. These minimal proximity polygons may
contain some finite points from the list sy, ..., sx. We remove all such points from this list. Suppose
we are left with the finite points s/, ..., s.. For these points we associate their corresponding minimal
proximity polygons. We observe that for a point sg- we may have two minimal proximity polygons
in which case we consider only the minimal proximity polygon which has the maximum number
of singularities s;, simple points of the total curve. If the two polygons have the same maximum
number of simple (ss) points then we take the two of them. We obtain a list of polygons and we
retain from this list only that polygon (or those polygons) which have the maximal number of ss
points and add these polygons to the list Py,...,P,. We remove all the ss points which appear in
this list of polygons from the list of points s, ..., s, and continue the same process until there are
no points left from the sequence sy, ..., s which have not being included or eliminated. We thus
end up with a list Py, ..., P, of proximity polygons which we denote by P(C).

Definition 14. We denote by PD the proximity ”divisor” of the Poincaré disk
PD=uvP1+-+vPr,

over Po(R), associated to the list P(C) of the minimal proximity polygons of a configuration, where P;
are the minimal proximity polygons from this list and v; are their corresponding number of vertices.

We used the word divisor of the Poincaré disk in analogy with divisor on the projective plane,
also thinking of polygons as the borders of the 2-dimensional polygons.
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Definition 15. We define a function O (for 7order”), O: QSH — {1,0,—1} as follows: Suppose
a system (S) in QSH has two singular points at infinity, one simple Uy and the other double Us.
Suppose the system has only one invariant hyperbola and only two real finite singular points s and
so lying on a branch of an invariant hyperbola connecting Uy with Us such that so is double and s;
is simple. We have only two possibilities: either the segment of hyperbola connecting the two double
singularities Us and sy contains s1 in which case we write O(S) = 1 or it does not contain s1 and
then we write O(S) = 0. In case we have a configuration where this specific situation does not occur
we write O(S) = —1.

Proof of part (A) of the Main Theorem.
Part (B) of the Main Theorem is proved in Section 3 and here we assume that part (B) occurs.

Summing up all the concepts introduced in order to define the invariants, we end up with the
list: ICD, ILD, MSoc, TMH, TML, PD, O and |Sings|. We note that TMH, TML, O are
invariants under the group action because the multiplicities of the hyperbolas, or of the lines and
of the singularities of the systems are conserved and furthermore by continuity the order of the real
singular points on a branch of a hyperbola is also conserved. In general real singularities are also
conserved as well as the simple singularities on an algebraic solution. As a consequence the types
of the divisor ICD, PD,... on P»(C) and of the zero-cycle MSyc on P»(R) are invariants under
the group. The number of vertices of a basic polygon is conserved under the group action basically
because the intersection points of the various invariant curves is conserved. The number of ss points
on a basic polygon is also conserved. So the coefficients of PD are also conserved. The concepts
involved above yield all the invariants we need. To prove that the 40 configurations obtained in
Section 3 are distinct we evaluate for each configuration these divisors and zero-cycle, read on them
their types and use the additional invariants O and |Sings| whenever necessary.

More precisely, we start with the TMH = 1 and TML = 1 and list all the corresponding confi-
gurations for this case. We next write the values of the main divisor /C'D. In many cases, just
using the invariants which we can read on ICD and the zero-cycle MSyc (TMH, TML and the
corresponding types), suffices for distinguishing the configurations in a group of configurations. In
other cases more invariants are needed and we introduce the necessary additional invariants, to
distinguish the configurations of the following groups. Then we continue in a similar way with the
other cases starting with TMH = 1 and TML = 2. Furthermore we consider the case TMH > 2.
Here we have two possibilities: either |Sing.| is finite or it is infinite. In the first case we list in order
of increasing values of the maximum multiplicity occurring in ITHD, ILD for the configurations
we obtained for this case. We end up with the Diagrams 1 and 2 in which all configurations are
distinguished by the system of invariants mentioned in the diagrams or those which could be read
on the divisor IC'D and on the zero-cycle M Syc such as their types for example.

These calculations and the corresponding stratification is exhibited in the Diagram 1 and Dia-
gram 2 which show that the 40 configurations are distinct yielding the geometric classification of the
class QSH,_q) according to the configurations of invariant hyperbolas and lines of the systems.
This proves statement (A) of the Main Theorem, using its part (B) proved in Section 3 where the
configurations are obtained. B

A few more definitions and results which play an important role in the proof of the part (B) of
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the Main Theorem are needed. We do not prove these results here but we indicate where they can
be found.

Consider the differential operator £ = z - Lo — y - L; constructed in [4] and acting on Rla, z,y],
where

L, = QGOO%IO + a10%20 + %am% + 2boo%m + 510%20 + %bm%,

Ly = 2@0056%1 + 0013%02 + %aloac% + 25003%01 + 50131%2 + %bmabiu-
Using this operator and the affine invariant pg = Res$(p2(&,x,y), q(a, x,y)) /y* we construct the
following polynomials

. I .
Mi(aax7y) = Zi'ﬁ( )(/’LO)7 1= 17 "747

where £ (o) = L(LED (o)) and £ (19) = po.
These polynomials are in fact comitants of systems (3) with respect to the group GL(2,R) (see
[4]). Their geometrical meaning is revealed in the next lemma.

Lemma 1. ([3],[4]) Assume that a quadratic system (S) with coefficients a belongs to the family (3).
Then:

(i) Let X be an integer such that A\ < 4. The total multiplicity of all finite singularities of this
system equals 4 — X if and only if for every i € {0,1,...,A — 1} we have p;(a,z,y) = 0 in the ring
Rlz,y] and px(a,z,y) # 0. In this case, the factorization uy(a,x,y) = Hf‘zl(uix —vy) #0 over C
indicates the coordinates [v; : u; : 0] of those finite singularities of the system (S) which “have gone”
to infinity. Moreover, the number of distinct factors in this factorization is less than or equal to three
(the mazimum number of infinite singularities of a quadratic system in the projective plane) and the
multiplicity of each one of the factors u;x — v;y gives us the number of the finite singularities of the
system (S) which have coalesced with the infinite singular point [v; : u; : 0].

(i) The system (S) is degenerate (i.e. ged(P, Q) # const) if and only if pi(a,z,y) = 0 in Rz, y]
for every1=20,1,2,3,4.

The following zero-cycle on the complex plane was introduced in [10] based on previous work in
[20].

Definition 16. We define D2(S) = Y o2 nss where ng is the intersection multiplicity at s of the
curves p(z,y) = 0, q(x,y) =0, p,q being the polynomials defining the equations (1) for system (S).

Proposition 1. ([31]) The form of the zero-cycle D¢2(S) for non-degenerate quadratic systems (3)
1s determined by the corresponding conditions indicated in TABLE 1, where we write p + q + ¢ + s¢
if two of the finite points, i.e. ¢, s¢, are complex but not real, and

D = [3((u3, 13)®, 12)® — (6popa — 3p1ps + 4, u4)(4)} /48,

P =120p14 — 3 pis + 13,
R =37 — 8uopa,

S =R? — 16,2P, (4)
T =184 (313 — Buapa) + 2u0(243 — Y piopis + 27p3pus) — PR,

U =3 — 4papta,

V =uy.
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TABLE 1

No Zero—cycle Invariant No Zero—cycle Invariant
De2(S) criteria De2(S) criteria
po #0,D <0, _
1 p+qg+r+s R>0.8>0 10 p+gq+7r | po=0,D<0O,R#0
2| p+qg+re+s© o #Z0,D >0 Mip+g¢+r°| ug=0,D>0,R#0
po#0,D<0,R<0
3 ¢ ¢ ¢ ¢ 12 2 =D=0,PR#0
pe+qt+ri+ts 0w Z0D<0,8<0 D+ q Ho : e
4 2p+q+r wo#Z0,D=0,T <0 |13 3p w=D=P=0,R #0
50 2p4¢+1° | pu#£0,D=0,T>0|14| p+gq Ho=R=0,P 70,
U>0
po #0,D =T =0, c c po=R=0,P#0,
0 2P+ PR > 0 Bl ptta U<0
c c po #0,D=T =0, po=R=0,P#0,
7 2p°¢ + 2q PR < 0 16 2p U—o0
MO#()?D:T:Ov MOZR:onv
1
8 3p+a P—0R+0 7 P U+£0
MO#()?D:T:Ov po=R=P =0,
4 1
) p P=R=0 8 0 U=0,V£0

The next result is stated in [13] and it gives us the necessary and sufficient conditions for the
existence of at least one invariant hyperbola for non-degenerate systems (3) and also their multi-
plicities. The invariant polynomials which appears in the statement of the next theorem and in the
corresponding diagrams are constructed in [13] and we present them further below.

Theorem 2. ([13]) (A) The conditions y1 = 2 = 0 and either n > 0, M # 0 or Cy = 0 are
necessary for a quadratic system in the class QS to possess at least one invariant hyperbola.

(B) Assume that for a system in the class QS the condition v1 = 2 = 0 is satisfied.

e (B1) If n > 0 then the necessary and sufficient conditions for this system to possess at least
one invariant hyperbola are given in DIAGRAM 4, where we can also find the number and
multiplicity of such hyperbolas.

e (B2) In the case n =0 and either M # 0 or Cy = 0 the corresponding necessary and sufficient
conditions for this system to possess at least one invariant hyperbola are given in DIAGRAM 5,
where we can also find the number and multiplicity of such hyperbolas.

(C) The DIAGRAMS 4 and 5 actually contain the global bifurcation diagram in the 12-dimensional
space of parameters of the coefficients of the systems belonging to family QS, which possess at least
one invariant hyperbola. The corresponding conditions are given in terms of invariant polynomials
with respect to the group of affine transformations and time rescaling.

C
Remark 5. An invariant hyperbola is denoted by H if it is real and by H if it is complex. In the
case we have two such hyperbolas then it s necessary to distinguish whether they have parallel or
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non-parallel asymptotes in which case we denote them by HP (7—c[p) if their asymptotes are parallel
and by H if there exists at least one pair of non-parallel asymptotes. We denote by Hy, (k =2,3) a
hyperbola with multiplicity k; by H5 a double hyperbola, which after perturbation splits into two HP;
and by H% a triple hyperbola which splits into two HP and one H.

B0, 319 & Ry £0

B1#0
17 570, 3194 & 4y=0, R, £0
B2=0
53:0 M d1H < 6573,2750
640 P1=0, 319 & 45=0, Ra£0
Ba#0 B . 61#0 = 1H, or
B0 3>1 < v =0, R3#0 and either 5, =0 = M
52=0, 3191 & 75 =0, Ry £0
f1=0 By £0 B3 +05#0 = 1H, or
T, 31 =0, R5#0 and either 4% © 2 ’
> 1< v5=0, R5#0 and either By =6y =0 = 2K
Bs=0
ﬁ #0 537&0:> 1H, or
8.—0 9720 3> 14 45=0,R5£0 and either §5=0, s #0= 2H, or
— 03=pPs=0=3H
59=0, 319 & 75=0,R5 £0 s
>0 0202270 3 1% & 9720, R0
Pr0=0, F1H & 74=0, f2R3#0
Br#0 - . 04#0 = 1H, or
N#0 Ba#0 321 95=0, fiRr#0 and either | 5~ ) oy
Br=0 B . 05#0 = 1H, or
3>14 49=0, Rg#0 and either S5=0 = M
0 , B2 +65#0 = 1H, or
Bs=0 510_7&.321<:>7778:0,R57é0 and either {588 :(52:0:27-[
C
y Br#0 ’)/7750,’}/10<O:>2’Hp, or
=0
4 ")/77&0,")/10>0=>2,Hp, or
Ba=0 B10=0 R3#0 _
- =1 (:)and either 177 0,70=0 = 17‘[12), Oi
v7=0,710<0 = 1H+2HP, or
=0
5720, 3 9306 42=0, Ry 0 i =0,710 >0 = 1H +2H?

0
N=0 ﬁ' d1H & 61:’711:0, RQ#O
B2=0

v12=0, Ro#0 = 1H,
or v3=0= 00

4> 1<« ;=0 and either {

DiacraM 4: Existence of invariant hyperbolas: the case n > 0

Following [13] we present here the invariant polynomials which according to DIAGRAMS 4 and 5
are responsible for the existence and the number of invariant hyperbolas which systems (3) could
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Bz#oﬂl_ﬂ). J1H & Ry £0
B1=0

517&0 = 1H;
(51:0 = 17‘[2

040 J1H < v4=0, Rg;«éO:{

B2=0 ) BBs #0 = 1H;
—=—— J1H & fi1=714=0, Rio#0:
B1=m14 107 {ﬂ758=0=>17'lg

B47#0 o CJ0a#0 = 1H;
M#0 3 e B=s=0 Re#0: 5 Lo yqy
N#£0
2 52
’716+5b7é02>17'l,
0 5:02
Ba=0 B12#0, M {716:66:0:17_[201"
=2 L 3> 14 B=0, PuRu#0

and either {812 =716 =0, 117 < 0= 2H" or

C
n=0 =0 B12 = v16 = 0, ")/17>0=>2Hp, or
Bz =716 = 117 = 0 = 1H},

B13#0
— J1H < = =0,R 0
N=0 Y10 =717 1n#
=0 - -
Prs=0, J 00 & 99 =Y18=719=0
02:0 400 & N7:0
[M=0]

DiacraM 5: Existence of invariant hyperbolas: the case n = 0

possess.

First we single out the following five polynomials, basic ingredients in constructing invariant poly-
nomials for systems (3):

CZ(&)x7y) = ypl(x7y) - qu(xay)v (Z - 07 172)

Di(damay) = 8pi + %7 (Z = 172)'

or Oy

(5)

As it was shown in [29] these polynomials of degree one in the coefficients of systems (3) are GL—
comitants of these systems. Let f, g € R[a, z,y] and

k k k
(f,g)(k) _ Z(_l)h <Z> 5 0 f 0 g

k=R, h §phgyk—h"
— ROy xOy

The polynomial (f,g)*) € R[a,z,v] is called the transvectant of index k of (f,g) (cf. [9], [15])).

Theorem 3 (see [32]). Any GL-comitant of systems (3) can be constructed from the elements (5)
by using the operations: +, —, X, and by applying the differential operation (x, *)(k).

Remark 6. We point out that the elements (5) generate the whole set of GL-comitants and hence
also the set of affine comitants as well as the set of T-comitants and CT-comitants (see [22] for
detailed definitions).

We construct the following G L—comitants of the second degree with respect to the coefficients of
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the initial systems

Tl = (00501)(1) ) T2 - (COaCQ)(l) 5 T3 - (CoaDQ)(l) 5
Ty = (Cr,C)?, Ts=(C1,C)V, Te=(C1,C)?, (6)
T7 = (Ch, D2)(1) . Ty = (Cy, 02)(2) . Ty = (Cy, D2)(1) .

Using these GL—comitants as well as the polynomials (5) we construct additional invariant poly-
nomials. In order to be able to directly calculate the values of the invariant polynomials we need,
for every canonical system we define here a family of T—comitants expressed through C; (i =0,1,2)
and D; (j =1,2):

i_ _ 2)(2)

A=(C, Ty — 2Ty + D3) ™ /144,

D = [2Cy(Ty — 8Ty — 2D3) + C1 (6T — Ty — (C1,T5)"") + 6D1 (C1 Dy — T5) — 9DCs| /36,

E = [Dl 2Ty — Ty) — 3 (C1, Tp)Y — Da(3T7 + D1D2)} /72,
F

(
F = [6D%(D3 — 4Ty) + 4Dy Do(Ts + 6T%) +48C, (Do, Tp)'Y) — 9D3Ty+288D, E
— 24 (CQ, f)) ® 190 (DQ, f)) Y 36C, (D, 1)V 48D (Ds, T5)(1>] /144,
B ={16D; (D5, Ts)Y (3C1 Dy — 2Co Dy + 4T3) + 32Cy (D2, Ty)") (3D1 Dy — 5T + 9T)
+2(Dy, Ty)W (27C1 Ty — 18C1 D} —32D1 Ty + 32 (Co, T5) ™M)
+6(Da, T7) YV [8Co(Ts — 12T) — 12C1 (D1 Dy + Ty) + D1(26C5 Dy + 32T5) +Co (9T, + 96T%)]
+ 6 (Dy, Tg)M [32C Ty — C1 (12T 4 52D Dy) —32C5D?] + 48D; (Do, Ty) M (2D3 — Tg)
— 32D, Tk (D2, To)V) + 9D3Ty (T — 2T7) — 16Dy (Ca, Ty) V) (D? + 4T3)
+ 12Dy (C1, T5)® (C1 Dy — 2C2 D) + 6Dy Do Ty (Ts — 7D3 — 42Ty)
+12D; (C1, Ts) Y (T + 2D1Ds) + 96 D2 [Dl (1, T)Y + Dy (Co, T6)(1>} -
— 16D, DyT5 (2D3 + 31%) — 4D3 Dy (D3 + 3T% + 61h) + 6D7 D3 (TTs + 2T%)
— 252D DoTy Ty} /(253%),
K =(Ts + 4Ty + 4D3)/72, H = (8Ty — Ty +2D3)/72, N =4K —4H.

These polynomials in addition to (5) and (6) will serve as bricks in constructing affine invariant
polynomials for systems (3).

Using the above bricks, the following 42 affine invariants Ai,..., A4o are constructed from the
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minimal polynomial basis of affine invariants up to degree 12. This fact was proved in [5].

A = A, Ay = ﬁ[Cg, A)(l),Dg)(l),Dg)(l),Dg)(l)DQ)(l),
Ay = (Co, D)® /12, Ay = [F,H)D, K)? /38,
Ay = [CQ,DQ)(”,Dg)(l),DQ)(l)/48, Ay = [02713)(2)’[})(1)’131) (2)/32’
Ay = (H,H)®, Ass = [D, D), E)® /16,
As = (H,K)® /2, Az = /36,
Ag = (B, 1)) )2, Ayr = [B, Do)V, H)® 24,
Ar = [Cy, B)®, Dy)W 8, Agg = [Cy, K)®, DYV E)? /16,
As = [D,H)®,Dy)V s, Ay = [D,F)V,D)? 9,
Ag = [D, D)V, D) Dy) M /a8, Agy = [Co, D)@, D) DYP) /288,
Ay = [D,K)®, Dy) Vs, Az = [D,D)®, YV B)? /64,
Ay = (F,K)?/4, Asy = [D,D)®, D), 7)Y, D,)Y 64,
Ay = (F,H)®/4, Asy = [D, Do), F)', Dy)", Dy) M /128,
Az = [Co, D, H)? Do)V 24, Ay = [D, D)@, Do)V K)Y, D) 64,
Ay = (B, C5)® /36, Ags = [D,D)®,E)Y Dy)", Dy)W 128,
Ay = (E,F)? /4, Ass = [D,B)» DYV H)® /16,
A = [E, D), C) Y K)? /16, Az = [D, D)@, DYV, )P /576,
Az = [D,D)®, D) Dy) V64, Ass = [Co, DY, DY D) H)P s64,
Ais = [D,F)® Dy) V16, Asy = [D, D), F)V H)® 64,
Ay = [D, D), B)? /16, A =[D,D)®, F)V KY® /64,
Agy = [02,13)(2),13)(2)/16, Ay = [02713)(2)713)(2),13)(1)713 )(1)/64,
Ay = [D, D)@, K)® /16, Ay = [D,FY®,F)M Dy)Y /1.
In the above list, the bracket “[” is used in order to avoid placing the otherwise necessary up to

five parentheses “(”.

Using the elements of the minimal polynomial basis given above the following affine invariant
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polynomials were constructed in [14].

(@) =A7 (346 + 247) — 246(As + Ar2),

Yo(@) =9A%A5(23252 A3 + 23689A4,) — 1440A5A5(3A10 + 13A11) — 1280A4,3(2417 + Ag
+23A19 — 4As0) — 320A24(50Ag + 3A10 + 45A11 — 18412) + 1204, Ag(6718 A
+ 4033 A9 + 3542411 + 2786 A12) + 3041 A15(14980A3 — 20294, — 48266 A5)
— 304, A7(76626 A3 — 15173 Ag + 11797 A1 + 16427A1; — 30153 A12)
+ 845 A7(75515A¢ — 32954 A7) + 2A5 A3(33057Ag — 98759 A15) — 6048043 Aoy
+ A A4 (6860545 — 131816 Ag + 131073 A19 + 129953 A1) — 242(141267 A2
— 208741 A5A12 + 320045A13),

v3(a@) =843696 A5 AgA1g + A1 (—27(689078 Ag + 419172A9 — 2907149410 — 2621619A11) A13
— 26(21057 A3 Agz + 4900544 Aoz — 166774 A3 Agg + 11564145 Asy)).

y4(@) = — 9A3(14A17 4+ Agy) + AZ(—560A17 — 518 A15 + 881 A19 — 28 A9y + 509A9;)
— Ag(1T1A2 + 3A5(367Ag — 107A1g) + 4(99A2 + 9349 A11 + As5(—63A15 — 69419
+ TAgg + 24 A51))) + T2A23 Aoy,

v5(d) = — 488 A3 A4 + A9(12(4468 A2 + 3243 — 91542, 4+ 32049411 — 3898A419A11 — 333142,
+ 2Ag(7T8Ag + 199410 + 2433 A11)) + 2A5(25488A15 — 60259419 — 16824 A91)
+ 77944 A21) + 4(7380A10 431 — 24(A10 + 41A11) Ass + As(33453 A3 + 19588 A0
— 468A33 — 19120A34) + 96 Ag(—Asg + Asy) + 556 A4 As — A5(27773 Azs + 41538 Agg
— 2304 A4 + 5544 A449)),

Y6(@) =2A20 — 33 A2,

y7(@) =A1(64A3 — 541A4) A7 + 86Ag A1z + 128 Ag A3 — 54A10A13 — 128 A3 Aoy + 256 A5 Ago
+ 10143404 — 27 A4 Aoy,

v8(a) =3063A44 A% — 42A%(304Ag + 43(Ag — 11A1¢)) — 6A3A9(159Ag + 28 Ag + 409A410)
+ 210045 A9 A13 + 315049 A7 A1 + 24A%(34A19 — 11A0) + 840A2 Ag; — 93245 A3 A9
+ 525 A9 A4 A9y + 844 A3, — 630413433,

Yo(a) =2Ag — 6Ag + A1,
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Y10(@) =34s + A1,
711(a) = — 5A7As + A7Ag + 10A3A14,
m2(@) =25A5A3 + 1847,
113(a) =Aa,
v14(a) =A2A4 + 18A5 A5 — 236 Aoz + 188424,
Y15(a, 2, y)
Y16(@, 7, y) =T1s,
yi7(a, x,y) =T11 + 12113,
F18(a, z,y) =C1(Ca, C) @ — 2C5(Cy, C2)?,
F9(a@, x,y) =D1(C1, C)? — ((Ca, C2)®), Co) W,
01(a) =9As + 3149 + 641,
55(a) =41Ag + 4449 + 324,
d3(a) =3A19 — 4417,
04(a) = — 5A2A3 + 3A2A4 + Asa,
d5(a) =62Ag + 102A9 — 125 A1,
d¢(a) =2T5 + 31y,
B1(a) =3A3 — 245 — 2419,
Ba(a) =2A7 — 9Ag,
Bs(a) =Ag,
Ba(a) = — 5A4 + 8A4s,
Bs(a) =Ay,
Bs(a) =41,
Br(a) =8As — 3A4 — 4As5,
Bs(a) =24A3 + 11A4 + 2045,
Bo(a) = — 8As + 11A4 + 4As5,
Bio(a) =8As + 27A4 — 54 A5,
Bi1(a, x,y) =T — 20T3 — 8Ty,
Bra(a, z,y) =11,
Bis(a,z,y) =Ts,
Ri(a)
+ Ag(94g + TA12),
Ra(a) =Ag + Ag — 24,
Rs(a) =Ay,
Ru(a) = — 3AT Ay +4A4 A,

24



Rs(a, z,y) =(2Co(Ts — 8Ty — 2D3) + C1(6T7 — Tg) — (C1, T5) M + 6D, (Cy Dy — Ts) — 9D3Cy),
Re(@) = — 21342 A + A1 (2057 Ag — 126449 + 67T Ao + 1107 A2) + 746(Agr — Agg),
Rr(d) = — 6A2 — AyAg + 2A3Ag — 5A4Ag + 4A4A10 — 2A2 Ay,
Rs(a) =Ao,
Ro(a) = — 5As + 3Ao,
Rio(a) =TAs +5A10 + 11414,
Rii(a,xz,y) =Tie.
X(AU( ) =Ag(A1 Ay — 2A15) (342 — 245 — 2A15),
X(@) = 08185 [8A1 (42403 — 24 A5 Ag + 59 A9 As) + Ag(2196 A% + 384Ag + 24410 + 36041,
— 432A12) + 4A7(123Ag—61A410—23A11 + 123A12) + 8(244A14— 3445 A15— 1942 A56)]
(@) = — 37842 + 21345 + 4049 — 187A1g — 205411 + 317 A1,
(@) = Au(5As — 1847 — Ay — 3411 + 9A12),
XD (@) = 5442 Ay + 6114549 — 1044541, — 140A5 A1y + T32A1 Ayy — 243 Ag) — 234 Agg + 245 Asy,
Xfp (a) = (A3 — Ay)(Ag — A1),
X (@) = 2445 — 2310,
XSS) (a) = 5A4g — Ay,

We also need here the following additional affine invariant polynomials, constructed in [26]:

~

Hy=—[(C1,8H + N)Y +2D,N], Hy=—[D,D)®, D)V D)® = 12D,
Hy=— [D,N)®, Do)V, Hyy =3[(C1,8H + N)V 42D, N)? — 32H[(Cy, D)? + (D, Dy) V],
Hiy =(D,D)®, Ny =12D;(Co, Do)V + 2D3 + 9D (C1, C2)@ + 36[Co, C1) V), D)D),

Next we construct the following T-comitants (for the definition of T-comitants see [23]) which are

responsible for the existence of invariant straight lines of systems (3):

Notation 1.
B3(a7xa y) = (C2,D)(1) = Jacob (CQa D) ’

BQ(avway> = (B37B3)(2) _6B3(027D)(3)7 (7)
Bi(a) = Res, (Cy, D) /y = —279373% (By, B3)W .

Lemma 2 (see [22]). For the existence of invariant straight lines in one (respectively 2; 8 distinct)
directions in the affine plane it is necessary that By = 0 (respectively By = 0; B3 =0).

At the moment we only have necessary and not necessary and sufficient conditions for the existence
of an invariant straight line or for invariant lines in two or three directions.

Let us apply a translation = = 2’ + 2o, y = ¥’ + yo to the polynomials p(a,z,y) and q(a, x,y). We
obtain ﬁ(d(aa xo, 3/0)7 $/7 y/) = (a ‘T + xo, y + yO) ( (CL Zo, ZUO) ‘T/7 y/) = Q(a’7 x/ + xo, y/ + yO) Let us
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construct the following polynomials
F’L(aa xo, Z/O) = Res x! (C’L (&(EL, Zo, y0)7 $/7 y,) ) CO (d<a7 Zo, y0)7 Hﬁ'/, y/)> /(y/)H_lu
Fz(ay Zo, yO) € R[a7 Zo, yO]a i = 17 2.

Notation 2. We denote by

gi(d,il],y) = Fl(aa anyO)‘{zozx, Yyo=y} € R[a7x7y] (7’ = 172)'

Observation 1. We note that the polynomials Ei(a,z,y) and E(a,x,y) are affine comitants of
systems (3) and are homogeneous polynomials in the coefficients a,b,c,d, e, f,g,h,k,l,m,n and non-
homogeneous in x,y and deg;E1 = 3, deg(x’y)gl =5, deg;E2 =4, deg(Ly)Eg = 6.

Notation 3. Let &(a, X,Y,Z), i = 1,2, be the homogenization of gi(&,x,y), i.e.

&(a,X,Y,2) = 2°61(a, X/2,Y/Z),  &(a,X,Y,Z) = Z2°6(a, X/Z,Y/Z)

The geometrical meaning of these affine comitants is given by the following lemma (see [22]):

Lemma 3 (see [22]). 1) The straight line L(z,y) = ux + vy + w = 0, u,v,w € C, (u,v) # (0,0) is
an invariant line for a quadratic system (3) if and only if the polynomial L(x,y) is a common factor
of the polynomials & (a, x,y) and E5(a, xz,y) over C, i.e.

&i(a,z,y) = (ux + vy +w)Wi(z,y), i =1,2,

where Wy(z,y) € Clz, ).

2) If L(x,y) = 0 is an invariant straight line of multiplicity X\ for a quadratic system (3), then
[L(z, )] | gcd(gl,gg) in Clx,y], i.e. there exist Wi(a,z,y) € Clz,y|, i = 1,2, such that

Ei(a,z,y) = (ux + vy + w) \Wila, z,y), i =1,2.
3) If the line lo : Z = 0 is of multiplicity X > 1, then Z =" | ged(&1, E).
In order to detect the parallel invariant lines we need the following invariant polynomials:
N(a,z,y) = D3+ Ts — 2Ty = ON, 0(@) = 245 — Ay (= Discriminant (N (a, z,y)) /1296).

Lemma 4 (see [22]). A necessary condition for the ezistence of one couple (respectively two couples)
of parallel invariant straight lines of a system (3) corresponding to a € R'? is the condition 0(a) = 0
(respectively N(a,z,y) =0).

Now we introduce some important G L—comitant in the study of the invariant conics. Considering
Cy(a,x,y) = ypa(a,z,y) — xq2(a, x,y) as a cubic binary form of x and y we calculate

n(a) = Discrim[Cy, €], M(a,x,y) = Hessian[Cs),

where £ = y/x or £ = x/y. According to [28] we have the next result.
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Lemma 5 ([28]). The number of infinite singularities (real and imaginary) of a quadratic system
in QS is determined by the following conditions:

(1) 3 real if n > 0;

(74) 1 real and 2 imaginary if n < 0;
(#i7) 2 real if n =0 and M # 0;

() 1 real if n =M =0 and Cy # 0;
(v) oo ifn=M=Cy=0.

Moreover, for each one of these cases the quadratic systems (3) can be brought via a linear transfor-
mation to one of the following canonical systems (Sr) — (Sy):

& = a+cx+dy+gr®+ (h— 1)y, (s1)
: I
g = btex+ fy+(9—1)zy+ hy?
i = a+cr+dy+gr®+ (h+ 1)y, (S)
g = b+ex+ fy—a?+gry+ hy% "
& = a+cx+dy+ g’ + hay,
. 9 (Smr)
y = b+ex+ fy+(9—1)zy+ hy*;
& = a+cx+dy+ gz®+ hay,
. 2 2 (SIV)
y = bter+ fy—a®+gzy+ hy
& = a+cx+dy+ a2,
. (Sv)
y = b+ex+ fy+xy.

Finally, in order to detect if an invariant conic
®(z,y) = p+ g +ry + sz + 2try + uy® =0 (8)

(or an invariant line) of a system (3) has the multiplicity greater than one, we use the notion of k-th
extactic curve &,(X) of the vector field X (see (2)), associated to systems (3). This curve is defined
in the paper [7, Definition 5.1] as follows:

U1 vy . Uy
£4(X) = det X(.vl) X(‘U2) o X(.’Ul) |
Xl’i(vl) Xl’i(vg) . Xl’.l(vl)
where vy, v9,...,v; is the basis of the C-vector space C,[z,y] which is the set of all polynomials

in z,y of degree n , of polynomials in Cy[z,y] and | = (k + 1)(k + 2)/2. Here X°(v;) = v; and
X (v1) = X (X771 (v1)).

According to [7] the following statement holds:

Lemma 6. Assume that an algebraic curve ®(x,y) = 0 of degree k is an invariant curve for systems
(3). Then this curve has multiplicity m if and only if ®(z,y)™ divides &(X).
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3 Proof of statement (B) of Main Theorem

In this section we provide the proof of statement (B) of our Main Theorem, following the conditions
given by DIAGRAM 5 (the case n = 0).

So in what follows we assume 1 = 0 and we consider two possibilities: M(a,z,y) # 0 (i.e. at
infinity we have two distinct real singularities) and M = 0 = C3 (when we have an infinite number
of singularities at infinity).

3.1 The possibility M(a,z,y) # 0

According to Lemma 5 there exists a linear transformation and time rescaling which brings systems
(3) to the systems

d d
d—f =a+ cx + dy + gz* + hay, d—gz =b+exr+ fy+(g— Dy + hy?. 9)
For this systems we calculate
Ca(z,y) = 2%y, 0= —h2(g—1)/2. (10)

3.1.1 The case 6§ #0

In this case h(g — 1) # 0 and due to a translation we may assume d = e = 0. So in what follows we
consider the family of systems

dz 9

— =a+cx + gz° + hry,

a (11)
dfgz=6+fy+(g—1)wy+hy2

for which calculations yield:

n=2c—f)le+ f)°hl(g —1)?/32, Ba=h*(2c— [)/2.

According to Theorem 2 for the existence of an invariant hyperbola of the above systems the condition
~v1 = 0 is necessary. So we consider two subcases: f2 # 0 and G2 = 0.

3.1.1.1 The subcase 2 # 0 Then 2¢ — f # 0 and the condition v; = 0 implies f = —c. Then
we calculate

vo = — 14175¢2h° (g — 1)*(3g — 1)[a(2g — 1) — 2bh], By = —3c*h*(g — 1)(3g — 1)/4

and following Diagram 5 (see Theorem 2) we examine two possibilities: £; # 0 and 51 = 0.

3.1.1.1.1 The possibility §; # 0. Then the necessary condition v2 = 0 (for the existence of

a hyperbola) gives a(2g — 1) — 2bh = 0 and setting a = 2a;1h (since h # 0) we get b = a1(2g — 1).
Therefore keeping the old parameter a (instead of a;) we arrive at the following family of systems

dx

i 2ah + cx + gz + hay,

dy

i a(2g —1) — ey + (g — Dy + hy*.
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We observe that since ch # 0 , we may assume ¢ = h = 1 due to the rescaling (z,y,t) — (cz,cy/h,t/c)
and the additional parametrization ah/c? — a. So we get the following 2-parameter family of systems

dx d
E:2a+x+g:v2+xy, d—g:a(2g—1)*y+(9*1)$y+y2v (12)

which possess the following invariant hyperbola (with cofactor (29 — 1)x + 2y):
O(@,y) = atay =0 (13)
and for which the following coefficient conditions (defined by 63251R1 # 0) must be satisfied:

a(g—1)(3g —1) #0. (14)

For systems (12) we calculate
By = 4a’(g — 1)*(1 — 29). (15)

1) The case By # 0. In this case by Lemma 2 we have no invariant lines. For systems (12) we
calculate pug = g and we consider two subcases: g # 0 and pg = 0.

a) The subcase pg # 0. Then by Lemma 1 the systems have finite singularities of total multiplicity
four. More exactly, systems (12) possess the singular points M 2 (93172,y172) and Ms 4 (x374,y3,4),

—1++/1—4ag _ 1++/1—4ag
2g ' N 2 ’
r34=—-1E£V1—-4a, y3a=29—-1)(1FV1—-4a)/2.

We detect that the singularities M o (mLQ, yl,g) are located on the hyperbola. On the other hand for

where

Y12

)

T12 =

systems (12) we calculate the invariant polynomials
1
¥ = 9(g — 1(3g — 1)*(1 ~ dag) /64

and by (14) we conclude that sign (X(Al)) = sign (1 — 4ag) (if 1 — 4ag # 0) and we consider three

possibilities: XS) <0, XE41) > 0 and X(Al) =0.

a1) The possibility XS) < 0. So we have no real singularities located on the invariant hyperbola

and we arrive at the configurations of invariant curves given by Config. H.1.
az) The possibility XE41) > 0. In this case the singularities M o (:1:1,2, ym) located on the hyperbola

are real and we have the next result.

Lemma 7. Assume that the singularities M 2 (.%1,2, y172) (located on the hyperbola) are finite. Then
these singularities are located on different branches of the hyperbola if Xg) < 0 and they are located
on the same branch if XS) > 0, where X(Cl) = 315ag(g — 1)*(3g — 1)2/32.

Proof: Since the asymptotes of the hyperbola (13) are the lines x = 0 and y = 0 it is clear that
the singularities M o are located on different branches of the hyperbola if and only if z1z2 < 0. We

_1+m] [—1—W] :g (16)

29 29

calculate

T1T2 = |:
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(1))

and due to the condition (14) we obtain that sign (z172) = sign (x’). This completes the proof of

the lemma. B

Other two singular points M3 4 (3:374, y374) of systems (12) are generically located outside the hyper-
bola. We need to determine the conditions when some singular points of the system become singular
points lying on the hyperbola. Considering (13) we calculate

é(xvy”{z:mg’zl, y:y374} = (29 - 1)( -1+ \% 1- 40’) + (1(49 - 1) = Qi(avg)'

Put Qs(a,g) = Q4+ (a,g) and Q4(a,g) = Q_(a,g). It is clear that at least one of the singular points
Ms(x3,y3) or My(x4,ys) belongs to the hyperbola (13) if and only if

Q3 = a[2(1 — 29) + a(l — 49)%] = aZy = 0.

On the other hand for systems (12) we have X( ) = 54Z1 and clearly due to (14) the condition

A)’(%) =0is equivalent to Z1 = 0. We examine two cases: XD # 0 and XS) = 0.

o) The case X ;é 0. Then Z; # 0 and on the hyperbola there are two simple real singularities
(namely M 2(x1,2,y12)). By Lemma 7 their position is defined by the invariant polynomial X(C) and

we arrive at the configuration given by Config. H.2if ng) < 0 and by Config. H.3if X(l)

B) The case X( ) = 0. In this case the condition Z1 = 0 implies 4g — 1 # 0 (otherwise for g = 1/4
we get Z1 = 1 # 0. So we obtain a = 2(2g — 1)/(4g — 1)2. In this case the coordinates of the finite
singularities M;(x;,y;) (i=1,2,3,4) are as follows

1—-2g 29 2 29 — 1
Tl = —F % = ; Tg =23 = —7— Y
1 g(dg— 1)’ Y1 Ag— 1’ 2 3 1—4g’ Y2 =13 4g— 1’
4(1 -2 2(g—1)2
o= X 9)7 i = (g )7
(49 — 1 4g — 1

i.e. all the singularities are real. Then considering Proposition 1 we calculate

D=0, T=-3]29(g—1)z+ (29— 1)y]°P,

(49 = 3)*(92 — y)* (292 — x + 2)*

P= (49 — 1)

B1) The subcase T # 0. Then T < 0 and according to Proposition 1 systems (12) possess one
double and two simple real finite singularities. As it is mentioned above, the singular point M3(z3, y3)
coalesces with the singular point Ma(x2,y2) located on the hyperbola, whereas My(z4,y4) remains
outside the hyperbola.

Considering the coordinates of the singular points we calculate

(1) _ 315g(29 —1)(g — 1)*(3g — 1)?
Xo 16(dg — 1) '

sign (z172) = sign (9(29 — 1)),

Therefore in the case xg ) <0 the singular points M; and My = M3 are located on different branches
of the hyperbola and we arrive at the configuration Config. H.4.

Assume now that the condition Xg) > 0 holds, i.e. the two singular points (one double and one

simple) are located on the same branch of the hyperbola. Since on this branch are also located two
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infinite singular points (one double and one simple), it is clear that the reciprocal position of singular
points M; and Ms (double) on the branch leads do different configurations. So we need to determine
the conditions to distinguish these two situations.

We calculat
e calculate 12 9 1

9(dg—1) 1-4g g(4g9-1)

and hence the reciprocal position of M; and Ms depends on the sign of the expression g(4g —1). On
the other hand, the condition X(Cl) > 0 implies g(2g — 1) > 0, i.e. we have either g < 0 or g > 1/2.
Since pg = g we deduce that these two possibilities are governs by the invariant polynomial pg.

Ty — X2 =

It is easy to detect that we arrive at Config. H5 if o < 0 (i.e. g < 0) and we get Conﬁg.ﬁﬁ if
po >0 (ie. g >1/2).

B2) The subcase T = 0. In this case due to the condition By # 0 (i.e. 2g — 1 # 0) the equality
T = 0 holds if and only if P = 0 which is equivalent to 49 — 3 = 0, i.e. ¢ = 3/4. In this case we
obtain

D=T=P=0, R=3(3z—4y)*/64

and since R # 0, by Proposition 1 we obtain one triple and one simple singularities. More precisely
the singular points Ma, M3 and My coalesce and since all the parameters of systems (12) are fixed
we get the unique configuration given by Config. H.7.

a3) The possibility XS) = 0. In this case we get ¢ = 1/(4a) and the singularities M; o (1‘172, ng)

located on the hyperbola coincide. On the other hand we have Z; = a # 0 and hence none of
the singular points M3 4 could belong to the hyperbola. So we arrive at the unique configuration
presented by Config. H.8.

b) The subcase pyp = 0. Then we have pu; = —y and by Lemma 1 one finite singular point has
gone to infinity and coalesced with the infinite singular point [1,0,0]. In this case we arrive at the
1-parameter family of systems

dx dy 9

R , 2 =—a—y-— 17

— atztay, — a—y—zy+y (17)
possessing the singular points M (z],vy]) and M 3(x23,y23) (the same points for the particular case
g = 0) with the coordinates

¥y =—a, Yy =1; r34=—-1+vV1—4a, yss=(—-1xv1—4a)/2.

We observe that only the singular point M is located on the hyperbola. On the other hand it was
shown earlier that one of the points Mj 3(x23,y2,3) belongs to the hyperbola if and only if Z; =0
which in this case gets the value Z; = a + 2. For systems (17) we calculate

5 = 54(a +2)

and it is not too difficult to detect that in the case 3((5) # 0 (i.e. a+ 2 # 0) we arrive at the unique
configuration given by Config. H.9.
Assume now 52(5) = 0. Then a = —2 and we get a system with constant coefficients for which the

singular point My has coalesced with M. As a result we obtain Config. H.10.
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2) The case By = 0. Considering (15) and the condition (14) this implies g = 1/2 and we obtain
the following 1-parameter family of systems
dy

= 2a+ 1z +2°/2 + 2y, = = v +z/2 —y). (18)

dx B
dt

These systems besides the hyperbola (13) possess the invariant line y = 0 and four singular points
M;(x;,y;) with the coordinates

1++v1—2a
12 = —-1& V1_2a7 Y12 = f’

T34 = —1+v1-— 4a, Y34 = 0.

We observe that the singular point M; and M, are located on the hyperbola, whereas M3 and My
are situated on the invariant line y = 0, which is one of the asymptotes of the hyperbola (13). For
the above systems we calculate

D = 48a%(1 — 2a)(4a — 1), X&) =9(1 — 2a)/1024

and it is clear that due to the condition (14) (i.e. a # 0) two of the finite singular point could coalesce
if and only if D = 0. So we examine three subcases: D < 0, D > 0 and D = 0.

a) The subcase D < 0. Then (1 — 2a)(4a — 1) < 0 and we observe that if Xfaxl) <0 (ie.a>1/2)
all the singular points are complex and we get the unique configuration given by Config. H.11.

Assume now XS) > 0 (i.e. @ < 1/2). Then the condition D < 0 implies a < 1/4 and all singular
points are real. We calculate x122 = 2a and Xg) = 316a/4096 and hence this invariant polynomials
governs the position of the singular points located on the hyperbola (on the same branch or not).

Thus we get Config. H.12 when X( ) <0 and Config. H.13 when XS) > 0.

b) The subcase D > 0. In this case we have 1/4 < a < 1/2 and therefore the singular points
located on the hyperbola are real, whereas the singularities from the invariant line are complex. As
a > 0 we deduce that the real singularities are located on the same branch of the hyperbola. As a
result, we get the unique configuration Config. H.14.

c) The subcase D = 0. Then either a = 1/4 or a =1/2 and these possibilities are distinguished by
( ). Therefore we get the configuration Config. H.15 if XA 75 0 and Config. H.16 if X(A) = 0.

3.1.1.1.2 The possibility §; =0. Then due to 6 # 0 (i.e. h(g — 1) # 0) and to the condition
B2 = 3ch?/2 # 0, the condition B; = 0 implies g = 1/3 and 42 = 0. So we arrive at the following
family of systems

d d
d—f=a+cx+$2/3+hﬂﬁya d—izb—cy—?xy/?)—l-hyz.

We observe that since ch # 0 we may assume ¢ = h = 1 due to the rescaling (z, y,t) — (cz,cy/h,t/c).
According to Theorem 2 (see DIAGRAM 2) the above systems possess an invariant hyperbola if and
only if 74 = 0 and R3 # 0. Considering the condition ¢ = h = 1 for these systems we calculate

v4 = 16(a + 6b)?/3, R3 = 3b/2

32



and hence the condition 4 = 0 gives b = —a/6 # 0. So we get the following 1-parameter family of

systems

d d
£:a+x+z2/3+$ya %Z_a/6—y—2$y/3+y2 (19)

with a # 0 which possess the following invariant hyperbola
O(z,y) =a+22y=0 (20)

and singular points M;(x;,y;) (i=1,2,3,4) with the coordinates

12 = (—3 + +/ 3(3 - 2&)/2, Y12 = (3 + vV 3(3 - 2&)/6,
x374:—1iv1—2a, y374:(—1iv1—2a)/6.

We observe that the singularities My o (m172,y172) are located on the hyperbola and since Xf) =

2(3 — 2a)/9 we deduce that these points are complex (respectively, real) if X(Ag) < 0 (respectively
Xf) > 0) and they coincide if X,(42) =0.
On the other hand we have x122 = 3a/2 and Xf) = 23a/12 and therefore we conclude that the

singular points M 2 are located on different branches of the hyperbola if Xf) < 0 and on the same

branch if X&) > 0.
Other two singular points M3 4 (x374,y374) of systems (19) generically are located outside the hy-
perbola. In order to determine the conditions when at least one of these singular points is located

on the hyperbola we calculate

(I)(l', y)|{ac:a:374, y=y3.4} — (CL +2F2vV1 - 2&)/3 = 93’4(61),

Q30 = a(12+a)/9, XS) = —9a(12 + a)/8.

It is clear that at least one of the singular points Ms or My belongs to the hyperbola (20) if and
only if XS) = 0.

Since for systems (19) we have By = 2a%/27 # 0 and pp = 1/3 # 0, by Lemmas 1 and 2 we have no
invariant lines and none of the finite singularities could go to infinity. So we arrive at the following

conditions and configurations:

° XE42) <0 = C’onﬁg.f[.l;

xf) >0, Xf) < 0 and XS) #0 = Conﬁg.ﬁ[.2;

xf) > 0, Xf) < 0 and Xg) =0 = Conﬁg.ﬁ.ll;

XE42) > 0 and Xff) >0 = Config. ﬁ.S;

X(AQ) =0 = Config. H 8.

3.1.1.2 The subcase 2 =0 Then f = 2c¢ and this implies 7; = 0. By Theorem 2 (see Diagram
5) in this case we have an invariant hyperbola if and only if 79 = 1 = y14 = 0 and Ri9 # 0.
Moreover, this hypebola is simple if 878s # 0 and it is double if 8783 = 0. So we calculate

vo = — 14175ac*h®(g — 1)2(1 + 3g), B1 = —9¢%(g — 1)*h?/16
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and evidently the condition 5 = 81 = 0 implies ¢ = 0. Then we obtain
Y14 = —80h*[a(2g — 1) — 2bh], Rip = —4ah® # 0

and as h # 0 the condition 714 = 0 gives a(2g — 1) — 2bh = 0. Then setting a = 2a1h we get
b = a1(2¢g—1) and keeping the old parameter a (instead of a;) after the additional rescaling y — y/h
we arrive and at the following 2-parameter family of systems

d d
d% = 2a + ga* + xy, ditj:a(2g—1)+(g—1)$y+92- (21)

These systems possess the invariant hyperbola (13) and we calculate

67:8(1_29)7 68:32(1_49)3 By :40“3(9_1)2(1_29)’ Ho =@

and following Diagram 5 (see Theorem 2) we examine two possibilities: 8783 # 0 and S78s = 0.

3.1.1.2.1 The possibility 5755 # 0. In this case for systems (21) the condition

alg—1)(29 —1)(4g—1) #0 (22)
is satisfied and this implies By # 0. Therefore according to Lemma 2 these systems could not have

invariant lines and as earlier we consider two cases: ug # 0 and pg = 0.

1) The case py # 0. Then systems (21) possess four finite singular points M;(x;,y;) (i=1,2,3,4)

with the coordinates
w12 =+ —a/g, 2 =+V/—ag,
34 = E£2vV—a, yz4=tvV—a(l—2g).

We detect that the singularities M o (m172, ylvg) are located on the hyperbola and they are complex
(respectively, real) if ag > 0 (respectively ag < 0). Moreover since x1x2 = a/g then in the case when
they are real (i.e. ag < 0) these points are located on different branches of the hyperbola (13).

On the other hand considering singular points M3 4 (933,4, y374) we calculate

q)(xvy”{x:zg, y=ys} — (I)(xvy)|{x=24, y=ya} — a(4g - 1) 7é 0,

i.e. for any values of the parameters a and g satisfying the condition (22) these singularities could
not belong to the hyperbola (13).

For systems (21) we calculate poRi9 = —8ag # 0 and hence sign (uoRm) = —sign (ag). So we
arrive at the configuration given by Config. H.1if toR10 < 0 and by Config. H.2 if toR10 > 0.

2) The case po = 0. Then g = 0 and we calculate

po =1 =0, pz=ay’#0

and by Lemma 1 two finite singular points have gone to infinity and both coalesced with the infinite
singular point [1,0,0]. As a result we get the unique configuration Config. H.17.
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3.1.1.2.2 The possibility ;05 = 0. Assume first f7 = 0, i.e. ¢ = 1/2 which implies B; = 0
and systems (21) possess the invariant line y = 0. Since R19 = —8a, considering the coordinates of
the singularities we arrive at Config. H.11 if R1g < 0 and at Config. H.12 if R > 0.

Suppose now fg = 0 which gives ¢ = 1/4. Then the singularities M3 and M, coalesce with M
and Ma, respectively. So in this case systems (21) have two double singular points located on the
hyperbola which are complex if @ > 0 and real if a < 0. So we obtain Config. H.1if Ryp < 0 and
Config. H.18 if Ryg > 0.

3.1.2 The case § =0

According to (10) we get h(g — 1) = 0 and since for systems (9) we have pg = gh? we consider two
subcases: g # 0 and pg = 0.

3.1.2.1 The subcase g # 0 Then h # 0 and the condition § = 0 yields g = 1. Since h # 0 via
the affine transformation
x1=x+d/h, y1=hy+c—2d/h

we may assume d = f =0, h = 1 and systems (9) become as systems

dz 9
— =a+cr+x°+ 1Y,

di W bieaty (23)

dt

for which we calculate
N=92 B=2 fz=—e/4, v =9c*/16.

Since N4 # 0 following Diagram 5 (see Theorem 2) for the existence of an invariant hyperbola
the conditions v; = 9 = 3 = 0 are necessary. Therefore we have e = 0 and this implies 73 = v =0

and
vg = 42(9a — 18b — 2¢)%.

So setting for simplicity ¢ = 3¢; and a = 2a; the condition 75 = 0 yields b = a; — ¢ and keeping the
notation for the parameters ¢ and a we arrive at the 2-parameter family of systems

d d
d—at::2a+30x+:v2+3:y, d—i:a—02+y2. (24)

These systems possess the following invariant hyperbola and two invariant lines:
P(z,y)=a+cx+zy=0, Lio=yxtvVcZ—a=0 (25)
and singular points M;(x;,y;) (i=1,2,3,4) with the coordinates

ri2=—-ctV—a, y12==xVc—a,

z34=—2(ctVc?—a), ysa==EVc—a.

The singularities M 2 (:Ul,g, ng) are located at the intersection points of the hyperbola with invariant
lines, whereas the singularities M3 4 are located only on the invariant lines. More precisely, the
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singular point Ms (respectively, My) is located on the same invariant line as the singularity M;

(respectively, Ms). Since XEZ) = (c? — a)/4 we deduce that all these finite singular points as well

as the invariant lines L2 are complex if Xg) < 0 and real if Xg) > 0. In the case X,(47) =0 ( then
a = c® # 0) we obtain that the singular point M (respectively, M3) coincides with My (respectively,
My) and moreover, in this case invariant lines coincide, too. So we consider three possibilities:

X(A7) <0, X(A7) > 0 and XEZ) = 0.

3.1.2.1.1 The possibility X(A7) < 0. Then ¢ —a < 0 (this implies @ > 0) and all the singu-
larities and the invariant lines are complex. As a result we arrive at the unique configuration given

by Config. H.19.

3.1.2.1.2 The possibility XEZ) > 0. Inthis case the finite singularities M1 # My and M3 # M,
are real and we observe that the singular points M3 4 of systems (24) generically are located outside
the hyperbola. We calculate

(2, Y)l (r=rs 4, y=ys4} = 30 T 4dc(—c £ 2V c? —a) = Q34(a,c), Q304 = a(9a - 8c?).

On the other hand by Theorem 2 (see Diagram 5) the hyperbola (25) is simple if 6, = 3(9a—8¢?) # 0
and it is double if 64 = 0. So we conclude that at least one of the singularities M3 4 belongs to the
hyperbola if and only if the hyperbola is double (i.e. when d4 = 0). So we consider two cases: d4 # 0
and d4 = 0.

1) The case 64 # 0. Then all four finite singularities are real and distinct. In this case in order to
detect the different configurations we need to distinguish the position of the branches of the hyperbola
(which depends on the sign of the parameter a) as well as the position of the singular point M3 on
the line y = v/c2 — a with respect to M; and the position of My on the line y = —/c% — a with
respect to Ms. So considering the coordinates of the finite singularities we calculate

rixe = a, (r1—x3)(x2 —24) =90 — 82, R;= —3a/4, Xg) = 9a — 8¢°.

So the singularities M; and Ms are located on the same branch of the hyperbola if R7 < 0 and on
different branches if R7 > 0. To determine exactly the position of M7 and M3 as well as of My and
My we observe, that due to the rescaling (x,y,t) — (—x, —y, —t) we may assume that the parameter
¢ > 0. This means that z1 —x3 = ¢+ 3vc? — a > 0 (due to ¢ > 0 and —a> 0) and hence the sign
of 9 — x4 is governed by the invariant polynomial Xg).

Thus in the case xf) > 0 and d4 # 0 (then Xg) # 0) we arrive at the following conditions and

configurations:
e Ry <0 = C(Config. H .20;
e R7 >0 and Xg) <0 = Conﬁg.f[.Ql;

e R7 >0 and Xg) >0 = Conﬁg.f[.22;

2) The case 64 = 0. Then a = 8¢?/9 # 0 and by Theorem 2 (see Diagram 5) the hyperbola (25)
is double. Moreover in this case the singular point My coincides with My, located on the hyperbola.
Since ¢ # 0 (i.e. no other singularities could coincide) we get the unique configuration Config. H.23.
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3.1.2.1.3 The possibility Xg) = 0. Then a = c® # 0 and this implies the coalescense of the
singularity M, with M; and of My with Ms. Clearly in this case we get the double line 4> = 0 and
since ¢ # 0 we obtain Config. H.24.

3.1.2.2 The subcase pp =0 Then the condition § = pp = 0 gives h = 0 and for systems (9) in
this case we calculate

N=9(g-1)1+g)z* mm=7=01=0 B=dg-1)(1+g)/4

We next consider two possibilities: N # 0 and N = 0.

3.1.2.2.1 The possibility N # 0. In this case by Theorem 2 (see Diagram 5) for the existence
of at least one hyperbola the condition (€;) are necessary and sufficient, where

(€1): (Bs=0,B11R11 # 0) N ((Br2 # 0,715 = 0) U (B12 = 716 = 0)).

So the condition B¢ = 0 is necessary. Since N # 0 we get d = 0 and moreover as g — 1 # 0, due a
translation, we may assume e = f = 0. Therefore we arrive at the family of systems

d d
d—f:a+cx+ga:2, d—§:b+(g—1)xy,

for which following Diagram 2 we calculate:

B =429 — )2?, Ru = -3b(g —1)%z*, B2 = (3g — 1)z,
s =4(g —1)*(3g — 1) [a(3g — 1) + *(1 — 29)]°.

So according to Theorem 2 the condition S11R11 # 0 is necessary for the existence of a hyperbola
and considering Diagram 2 we have to consider the two cases: f12 # 0 and f12 = 0.

1) The case 12 # 0. By Theorem 2 in this case there exists one hyperbola if and only if 715 = 0.
We observe that due to b # 0 (since R1; # 0) we may assume b = 1 due to the rescaling (x,y,t) —
(bz,y,t/b). Since (3g — 1) # 0, setting ¢ = (3g — 1)c; the condition v15 = 0 yields a = ¢3(2g — 1) and
renaming the parameter c; as ¢ again we arrive at the 2-parameter family of systems

d d
—‘T:(c—kx)[c(Qg—l)—i-g:z], —y:1+(g—1)1:y (26)
dt dt
for which the condition NN (11812R11 implies
(9—D(g+1)(2g-1)(3g9 —1) #0. (27)

These systems possesses the following invariant hyperbola and invariant lines:

O(x,y) = 29_1+cy—|—xy20, Li=gr+c¢29g—1)=0, Ly=x+c=0. (28)

On the other hand for systems (26) we calculate
o _ 2 2 2 _ 2 3
po=p1 =0, p2=cglg—1)7°(29—1)z% me=clg—1)°(1-3g)z"/2 (29)
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and by Lemma 1 in the case us # 0 these systems possess finite singular points of total multiplicity
two. Other two points have gone to infinity and coalesced with the singularity [0, 1,0]. So we consider
two cases: g # 0 and ps = 0.

a) The subcase pz # 0. Then ¢ # 0 and due to the rescaling (z,y,t) — (cx,y/c,t/c) we may
assume ¢ = 1. In this case the 1-parameter family of systems (26) possess the finite singular points
M;(x;,y;) (i=1,2) with the coordinates
(1—29) g 1

) N =70 v 1‘2:—1, Yy2=—=-
g (g—-1)(2g - 1) g—1

We detect that the singular point M; is located at the intersection point of the hyperbola with

Ir1 =

invariant line L1 = 0 (see (28)) whereas My is located on the line Ly = 0 outside the hyperbola.

On the other hand taking into account (29) for systems (26) with ¢ = 1 we have 16 # 0 (due to
(27)) and hence by Theorem 2 (see Diagram 5) the hyperbola (28) is a simple one. So considering
the condition (27) and looking at all the intervals given by this condition we arrive at the unique
configuration presented by Config. H.25.

b) The subcase pp = 0. Then considering (29) and condition (27) we get cg = 0 and we consider
two possibilities: y16 # 0 and 16 = 0.

b1) The possibility 16 # 0. Then ¢ # 0 (and we may assume ¢ = 1) and this implies g = 0. So we
arrive at the system with constant coefficients

%:—(1—&-90), %zl—acy

possessing one finite singular point M;(—1,—1), the invariant hyperbola zy +y — 1 = 0 and the
invariant line z + 1 = 0. On the other hand following Lemma 3 we detect that the line at infinity
Z = 0 is double for these systems because Z is a common factor of degree one of the polynomials
E1(X,Y,Z) and &(X,Y, Z). Moreover, since pig = p1 = p2 = 0 and p3 = —2%y, according to Lemma
1 we deduce that another finite singular point has gone to infinity and coalesced with [1,0,0]. We

observe that M; belongs to the invariant line and it is outside the hyperbola, i.e. we get Config. H.26.
ba) The subcase 16 = 0. In this case ¢ = 0 and we get the systems

dz 9 dy
o =9 =1+ (g Dy,

for which g # 0 (otherwise we obtain a degenerate system). For these systems we calculate
po=p =pr=ps="6=0, p=g’z" b6=(g9—1)(4g—1)(z?)/2

and by Lemma 1 we deduce that all four finite singular points have gone to infinity and coalesced
with [0, 1,0]. Moreover, for the above systems we calculate

&(X) = g2*(1+ g — zy + gay)

and by Lemma 6 the invariant line = 0 is a triple one.

According to Diagram 2 the hyperbola is simple if dg # 0 (i.e. 49— 1 # 0) and it is double if 6 = 0
(i.e. 49 — 1 =0). So we arrive at Config. H.27 if g # 0 and at Config. H.28 if g = 0.
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2) The case Bia = 0. Then g = 1/3 and we calculate 736 = —2c2®/9. Since by Theorem 2 in
the case under consideration the condition 714 = 0 is necessary for the existence of an invariant
hyperbola, we obtain ¢ = 0 and we arrive at the 1-parameter family of systems

dz 9 dy

G ot g zy/
For these systems we calculate y17 = 32az?/9 and following Theorem 2 we conclude that for 17 < 0
or y17 > 0 or 17 = 0 we obtain three different configurations due to the number and types of
hyperbolas. Since sign (a) = sign (717) setting a new parameter k as follows: a = sign (a)k?/3 after
the rescaling (x,y,t) — (kz,3y/k,3t/k) (in the case k # 0) or the rescaling z — 3z if a = 0, the

above systems become
dz 2, dy
2.
dt Todt
where ¢ = sign (y17) if 17 #0 and e =0 if y37 =0, i.e. £ € {—1,0,1}.

=1-2uxy, (30)

These systems possess the following invariant hyperbolas and invariant lines:
Qi9(z,y) =3+ V—cy—a2y=0, Lig=zx++—c=0. (31)

We detect that these systems possess the finite singularities M o(+/€,34+1/(21/2)) (if € # 0) and
each one of the lines intersect only one of the hyperbolas.

On the other hand for systems (30) we calculate
po=p1 =0, py=4dex®, pz3=0, pg=2a"(x+2ey)”

Therefore by Lemma 1 we conclude that in the case € # 0 only two finite singularities of these
systems have gone to infinity and coalesced with [0,1,0] and we get Config. H.29 if v17 < 0 and
Config. H.30 if 17 > 0.

Assume now 17 = 0 (i.e. ¢ = 0). Then j; = 0 for i = 0,1,2,3 and yy = 2* and by Lemma 1 all
the finite singularities of this system have gone to infinity and coalesced with [0, 1, 0].

We observe that the two lines coincide and we get the invariant multiple line x = 0. Considering
Lemma 6 for systems (30) with ¢ = 0 we calculate

Ep(X) = 223(2 — 3zy)

and by this lemma in the case under consideration the invariant line x = 0 is a triple one. Since by
Theorem 2 (see Diagram 5) the hyperbola (31) in the case 17 = 0 (i.e. € = 0) is double, we arrive
at the same configuration given by Config. H.28.

3.1.2.2.2 The possibility N = 0. Then (g — 1)(g+ 1) = 0 and as B13 = (g — 1)%22/4 we
consider two cases: 813 # 0 and 13 =0

1) The case B13 # 0. Therefore the condition N = 0 gives g = —1 and we can assume e = f =0
due to a translation. So we get the systems

d d
d—j:a—kcm%—dy—ﬁ, d—ii:b—ny,
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which by Theorem 2 (see Diagram 5) possess an invariant hyperbola if and only if 19 = y17 = 0
and R11 # 0. Calculations yield

10 = 14d? =0, ~17 = —8(16a + 3¢?)z? + 4dy(14cz + 9dy) = 0,
Ri1 = —6x(2bx3 — cday? — d*y®) #0

and therefore we obtain d = 0, a = —3c?/16 and b # 0 and we may assume b = 1 due to the rescaling
y — by. So we arrive at the 1-parameter of systems

dr 9 o dy
i 3¢ /16 + cx — a7, E—l 2xy

possessing the invariant hyperbolas and the invariant lines
Pio(z,y) =44+3cy — 122y =0, L1 =40 —c=0, Ly=4x—3c=0. (32)

We observe that for ¢ = 0 the lines coincide and this phenomenon is governed by the invariant
polynomial v = —2ca3. So we consider two subcases: 16 # 0 and 6 = 0.

a) The subcase 16 # 0. Then ¢ # 0 and we may assume ¢ = 4 due to the rescaling (x,y,t) —
(cx/4,4y/c,4t/c). So we obtain the system

dr dy B
pri (x —1)(3 —z), i 1 —2zy (33)

which possesses the following invariant hyperbolas and invariant lines:
@172(x,y):1/3+y—xy:0, Li=x—-1=0, Ly=x—-3=0 (34)

and two finite singularities: Mj(1,1/2) and M(3,1/6). Since py = p1 = 0 and pp = 1222 by
Lemma 1 we conclude that two finite singularities of this system have gone to infinity and coalesced
with [0, 1, 0]. So considering the position of the hyperbola, invariant lines and of the finite singularities
we arrive at Config. H.25.

b) The subcase y16 = 0. Then ¢ = 0 and we get the system

dz 9 dy
at T dt e

for which

po=pun =pp=pz=0, pg=ax".

So by Lemma 1 all the finite singularities of this system have gone to infinity and coalesced with
[0,1,0].

On the other hand we observe that the invariant line = 0 is a multiple one. For the above system
we calculate &, (X) = 2x%y and by Lemma 6 we deduce that the invariant line z = 0 has multiplicity

four. So considering the invariant hyperbola (34) (for ¢ = 0)we arrive at the configuration given by
Config. H.31.

2) The case 13 = 0. Then we have g = 1 and we can assume ¢ = 0 due to a translation. So we

get the systems
d d
d—jza—f—dy—{—ﬁ, d—z:b-l-ex—l—f%
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and by Theorem 2 (see Diagram 5) these systems possess an invariant hyperbola if and only if
Y9 = 18 = Y19 = 0. Calculations yield

vo = —6d% =0, A8 =8x(ex? —2dy?) =0, Fi9=4(4a+ f?)z +4dfy =0

and evidently this implies d = e = 0 and a = —f2/4 which leads to the 2-parameter family of
systems

dx 2 2 dy

g = A =0t fy

For these systems we calculate pug = p; = 0, e = f22? and we consider two subcases: up # 0 and
Ho = 0.

a) The subcase pz # 0. Then f # 0 and we may assume f = 1 and b = 0 due to the transformation
(x,y,t) — (fx,y —b/f,t/f). So we obtain the system

dx dy

which possesses the 1-parameter family of hyperbola:

Y (35)

O(z,y) =—q/2+qr+y+22y=0, qeC\{0}

as for ¢ = 0 we get a reducible conic.

On the other hand system (35) possesses the following invariant lines and finite singularities:
Li=2r—-1=0, Ly=2x+1=0, Ly=y=0, M 2(£1/2,0).
Following Lemmas 3 and 6 for this system we calculate
ged (E1(X,Y, 2),E(X,Y,2)) =YZ(2X — 2)*(2X + Z), &(X) = (1 —22)*(1 +2z)y/4

and we deduce that the invariant lines Ly = 0 and Ls = 0 are simple, whereas the line L; = 0 as
well as the infinite line Z = 0 are double ones.

So considering the fact that other two finite singular points have gone to infinity and coalesced
with [1,0,0] we arrive at Config. H.32.

b) The subcase pg = 0. In this case we have f = 0 and as b # 0 (otherwise we get degenerate
system) we may assume b = 1 due to the change y — by and we get the system

de o @_

a -t w

which possesses the 1-parameter family of hyperbola:

1 (36)

O(z,y)=14+rz+2y=0, reC
and has no finite singularities. Calculations yield
po=pn =p2=p3 =0, pyg=2x", ged(&1(X,Y,2),6(X,Y,2))=X2%, &(X)=2X"

and considering Lemma 1 we conclude that all the finite singularities of these systems have gone to
infinity and coalesced with [0, 1,0]. Moreover by Lemmas 3 and 6 the invariant line z = 0 as well
as the infinite line Z = 0 are of multiplicity 3. As a result we arrive at the configuration given by
Config. H.33.
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3.2 The possibility M(a,z,y) = 0= Csy(a,z,y)

In this section we consider the configurations of invariant hyperbolas and invariant lines of quadratic
systems with Cy = 0, taking into account Theorem 2 (see Diagram 5). Then the line at infinity is
filled up with singularities and according to [26] in this case via an affine transformation and time
rescaling quadratic systems could be brought to the following systems

t=k+4cx+dy+a2®, y=I1+ay. (37)

Following [26] we consider the stratification of the parameter space of the above systems given by
invariant polynomials Hy — His in [26, Table 1 on page 754] according to possible configurations of
invariant lines. So for systems (37) we calculate H1o = 36d* and we consider two cases: Hip # 0 and
H10 =0.

3.2.1 The case Hig #0

Then d # 0 and as it was shown in [26, pages 748,749], in this case via some parametrization and
using an additional affine transformation and time rescaling we arrive at the following 2-parameter
family of systems
t=a+y+(x+c)? §=ay. (38)
for which we calculate
Ny = 16¢(9a + ¢*), Hy = 2304a(a + c*)?

and by Theorem 2 (see Diagram 5) for the existence of invariant hyperbola the condition N7 = 0
is necessary and sufficient. So we have either ¢ = 0 or 9a + ¢ = 0. However in the second case the
condition @ < 0 must hold and in the case a = 0 we get again ¢ = 0. In the case a < 0 we may
assume a = —1 and ¢ > 0 due to the rescaling (z,y,t) — (sign (c)v/—a =z, —ay, t/(sign (c)v/—a)),
therefore we set ¢ = 3. Moreover the transformation

(z,y,t) = (2(x — 1), 4y —z — 1), t/2).

sends the system (38) for a = —1, ¢ = 3 to the system (38) with a = —1 and ¢ = 0. Thus we assume
¢ =0 and we get the systems
i=a+y+a’, y=ay (39)

which possess the following 1-parameter family of hyperbolas
d(s,z,y) =a+2y+ 2> —m*P? =0 (40)
as well as the following invariant lines and finite singularities:
Li=y=0, Loz=ar’+ (a+y)?=0; M(0,—a), Mz(+v—a,0).

We observe that the two lines Ls 3 = 0 as well as the singular points Ms 3 are real if a < 0; they are
complex if a > 0 and they coincide if @ = 0. Moreover these three possibilities are distinguished by
the invariant polynomial Hy = 2304a3.

So, considering that all the hyperbolas from the family (40) intersect invariant line y = 0 at the
singular points M3 we arrive at the configuration Config. H.34 if Hyg < 0; Config. H.35 if Hg > 0
and Config. H.36 if Hg = 0.
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3.2.2 The case Hip =0

In this case we have d = 0 and we distinguish two subcases: k # 0 and k = 0. Since for systems
(37) with d = 0 we have Hyy = —8k2?z? it is clear that this invariant polynomial governs these two
subcases.

3.2.2.1 The subcase Hj2 # 0. Then k # 0 and as it was shown in [26, page 750] in this case
via an affine transformation and time rescaling after some additional parametrization we arrive at
the following 2-parameter family of systems

t=a+ (x+c)? 7=z (41)

For these systems the condition His = —8(a + ¢?)22? # 0 must hold and according to Diagram 5
the condition N7 = 16¢(9a + ¢?) = 0 must be satisfied for the existence of invariant hyperbolas. On
the other hand for these systems we have Hy = 8cz? and we consider two possibilities: Hy = 0 and
Hy #0.

3.2.2.1.1 The possibility Hy # 0. Then ¢ # 0 and in this case we get 9a + ¢ = 0, i.e.
a = —c?/9 # 0. Therefore due to the rescaling (z,y,t) — (2cz,y,t/(2c)) systems (41) could be
brought to the system

t=(143z)(2+3x)/9, y=uxy. (42)

This system possesses the 1-parameter family of the hyperbolas and three invariant lines
O(z,y) =4+ 120+ 922 + my +3may =0; y=0, 324+1=0, 3z+2=0, (43)

as well as the singularities M;(—1/3,0) and M2(—2/3,0). It is not too difficult to convince ourselves
that in this case we get the configuration given by Config. H.37.

3.2.2.1.2 The possibility H, = 0. Then ¢ =0 and we get the systems
t=a+2% g=zy, a#0, (44)
which possess the following family of conics and the invariant lines:
d(z,y) =a+2>—m?*?=0;, Li=y=0, Lyz=z2>+a=0 (45)

as well as two finite singularities: M; o(£+v/—a, y).

On the other hand we calculate Hy; = —192ax? and therefore sign (a) = —sign (H11). So conside-
ring the position of the invariant lines and of the hyperbolas given in (45) we obtain the configuration
Config. H.38 if Hy; < 0 and Config. H.39 if Hy; > 0.

3.2.2.2 The subcase His = 0. Then k = 0 and we arrive at the family of systems (37) with
d = k = 0 for which we have N; = —16¢ and by Theorem 2 (see Diagram 5) we have to force the
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condition ¢ = 0. Since [ # 0 (otherwise we get a degenerate system) due to the change y — ly we
may assume [ = 1 and we arrive at the system

t=2% g=1+uay, (46)

which possesses the following family of hyperbolas
O(z,y) =1+ ma? + 2y =0

and the invariant line £ = 0. We remark that by Lemma 6 this line is triple since for this system
we have & (X) = X3. So considering the absence of finite singularities of system (46) we obtain the
configuration given by Config. H.40.

This completes the proof of statement (B) of Main Theorem.
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