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Abstract

Let QSH be the whole class of non-degenerate planar quadratic differential systems possessing

at least one invariant hyperbola. In this article, we study family QSH(η=0) of systems in QSH

which possess either exactly two distinct real singularities at infinity or the line at infinity filled

up with singularities. We classify this family of systems, modulo the action of the group of real

affine transformations and time rescaling, according to their geometric properties encoded in the

configurations of invariant hyperbolas and invariant straight lines which these systems possess.

The classification is given both in terms of algebraic geometric invariants and also in terms of

affine invariant polynomials and it yields a total of 40 distinct such configurations. This last

classification is also an algorithm which makes it possible to verify for any given real quadratic

differential system if it has invariant hyperbolas or not and to specify its configuration of invariant

hyperbolas and straight lines.

Key-words: quadratic differential systems, algebraic solution, configuration of algebraic solutions,

affine invariant polynomials, group action

2000 Mathematics Subject Classification: 34C23, 34A34

1 Introduction and statement of the main results

We consider planar polynomial differential systems which are systems of the form

dx/dt = p(x, y), dy/dt = q(x, y) (1)
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where p(x, y), q(x, y) are polynomial in x, y with real coefficients (p, q ∈ R[x, y]) and their associated

vector fields

X = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
. (2)

We call degree of such a system the number max(deg(p), deg(q)). In the case where the polynomials

p and q are coprime we say that (1) is non-degenerate.

A real quadratic differential system is a polynomial differential system of degree 2, i.e.

ẋ = p0 + p1(ã, x, y) + p2(ã, x, y) ≡ p(ã, x, y),

ẏ = q0 + q1(ã, x, y) + q2(ã, x, y) ≡ q(ã, x, y)
(3)

with max(deg(p), deg(q)) = 2 and

p0 = a, p1(ã, x, y) = cx+ dy, p2(ã, x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(ã, x, y) = ex+ fy, q2(ã, x, y) = lx2 + 2mxy + ny2.

Here we denote by ã = (a, c, d, g, h, k, b, e, f, l,m, n) the 12-tuple of the coefficients of system (3).

Thus a quadratic system can be identified with a points ã in R12.

We denote the class of all quadratic differential systems with QS.

Planar polynomial differential systems occur very often in various branches of applied mathematics,

in modeling natural phenomena, for example, modeling the time evolution of conflicting species in

biology and in chemical reactions and economics [12, 30], in astrophysics [6], in the equations of

continuity describing the interactions of ions, electrons and neutral species in plasma physics [19].

Polynomial systems appear also in shock waves, in neural networks, etc. Such differential systems

have also theoretical importance. Several problems on polynomial differential systems, which were

stated more than one hundred years ago, are still open: the second part of Hilbert’s 16th problem

stated by Hilbert in 1900, the problem of algebraic integrability stated by Poincaré in 1891 [17], [18],

the problem of the center stated by Poincaré in 1885 [16], and problems on integrability resulting

from the work of Darboux [8] published in 1878. With the exception of the problem of the center,

which was solved only for quadratic differential systems, all the other problems mentioned above,

are still unsolved even in the quadratic case.

Definition 1 (Darboux). An algebraic curve f(x, y) = 0 where f ∈ C[x, y] is an invariant curve of

the system polynomial system (1) if and only if there exists a polynomial k(x, y) ∈ C[x, y] such that

p(x, y)
∂f

∂x
+ q(x, y)

∂f

∂y
= f(x, y)k(x, y).

Definition 2 (Darboux). We call algebraic solution of a planar polynomial system an invariant

algebraic curve over C which is irreducible.

One of our motivations in this article comes from integrability problems related to the work of

Darboux [8].

Theorem 1 (Darboux). Suppose that a polynomial system (1) has m invariant algebraic curves

fi(x, y) = 0, i ≤ m, with fi ∈ C[x, y] and with m > n(n+ 1)/2 where n is the degree of the system.

Then there exist complex numbers λ1, ..., λm such that fλ11 ...fλmm is a first integral of the system.
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The condition in Darboux’ theorem is only sufficient for Darboux integrability (integrability in

terms of invariant algebraic curves) and it is not also necessary. Thus the lower bound on the number

of invariant curves sufficient for Darboux integrability stated in the theorem of Darboux is larger

than necessary. Darboux’ theory has been improved by including for example the multiplicity of

the curves ([11]). Also, the number of invariant algebraic curves needed was reduced but by adding

some conditions, in particular the condition that any two of the curves be transversal. But a deeper

understanding about Darboux integrability is still lacking. Algebraic integrability, which intervenes

in the open problem stated by Poincaré in 1891 ([17] and [18]), and which means the existence of a

rational first integral for the system, is a particular case of Darboux integrability.

To advance knowledge on algebraic or more generally Darboux integrability it is necessary to have a

large number of examples to analyze. In the literature, scattered isolated examples were analyzed but

a more systematic approach was still needed. Schlomiuk and Vulpe initiated a systematic program

to construct such a data base for quadratic differential systems. Since the simplest case is of systems

with invariant straight lines, their first works involved only lines (see [22], [24], [25], [27], [28]). In this

work we study the class QSH of non-degenerate, i.e. p, q are relatively prime, quadratic differential

systems having an invariant hyperbola. Such systems could also have some invariant lines and in

many cases the presence of these invariant curves turns them into Darboux integrable systems. We

always assume here that the systems (3) are non-degenerate because otherwise doing a time rescaling,

they can be reduced to linear or constant systems. Under this assumption all the systems in QSH

have a finite number of finite singular points.

We introduced here the class QSH of non-degenerate quadratic systems possessing at least one

invariant hyperbola. This class requires some explanation. Indeed the term hyperbola is reserved for

a real irreducible affine conic which has two real points at infinity. This distinguishes it from the

other two irreducible real conics: the parabola with just one real point at infinity which is double

and the ellipse which has two complex points at infinity. But in the theory of Darboux the invariant

algebraic curves are considered (and rightly so) over the complex field C. We need to extend the

notions of hyperbola, parabola or ellipse for conics over C which is easily done. We call ”complex

hyperbola” (respectively ”complex ellipse”, ”complex parabola”) an algebraic curve C : f(x, y) = 0

with f ∈ C[x, y], deg(f) = 2 which is irreducible and which has two real points at infinity (respectively

two complex (non-real) points at infinity, one double point at infinity (see [1])).

Let us suppose that a polynomial differential system has an algebraic solution f(x, y) = 0 where

f(x, y) ∈ C[x, y] is of degree n, f(x, y) = a0+a10x+a01y+ ...+an0x
n+an−1,1x

n−1y+ ...+a0ny
n with

â = (a0, ..., a0n) ∈ CN where N = (n + 1)(n + 2)/2. We note that the equation λf(x, y) = 0 where

λ ∈ C∗ and C∗ = C\{0} yields the same locus of complex points in the plane as the locus induced by

f(x, y) = 0. So a curve of degree n defined by â can be identified with a point [â] = [a0 : a10 : ... : a0n]

in PN−1(C). We say that a sequence of degree n curves fi(x, y) = 0 converges to a curve f(x, y) = 0

if and only if the sequence of points [ai] = [ai0 : ai10... : ai0n] converges to [â] = [a0 : a10 : ... : a0n] in

the topology of PN−1(C).

On the class QS acts the group of real affine transformations and time rescaling and due to this,

modulo this group action quadratic systems ultimately depend on five parameters. This group also

acts on QSH and modulo this action the systems in this class depend on three parameters.

We observe that if we rescale the time t′ = λt by a non-zero real constant λ the geometry of the
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systems (1) does not change. So for our purposes we can identify a system (1) of degree n with a

point in [a0 : a10 : ... : b0n] in PN−1(R) with N = (n+ 1)(n+ 2).

Definition 3. (i) We say that an invariant curve L : f(x, y) = 0, f ∈ C[x, y] for a polynomial system

(S) of degree n has multiplicity m if there exists a sequence of real polynomial systems (Sk) of degree

n converging to (S) in the topology of PN−1(R), N = (n+1)(n+2), such that each (Sk) has m distinct

invariant curves L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm,k(x, y) = 0 over C, deg(f) = deg(fi,k) = r,

converging to L as k →∞, in the topology of PR−1(C), with R = (r + 1)(r + 2)/2 and this does not

occur for m+ 1.

(ii) We say that the line at infinity L∞ : Z = 0 of a polynomial system (S) of degree n has

multiplicity m if there exists a sequence of real polynomial systems (Sk) of degree n converging to

(S) in the topology of PN−1(R), N = (n+ 1)(n+ 2), such that each (Sk) has m−1 distinct invariant

lines L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm,k(x, y) = 0 over C, converging to the line at infinity L∞ as

k →∞, in the topology of P2(C) and this does not occur for m.

Definition 4. (a) Suppose a planar polynomial system (S) has a finite number of algebraic solutions

Li i ≤ k with corresponding multiplicities ni and the line at infinity L∞ is not filled up with singu-

larities and it has multiplicity n∞. We call total multiplicity of these algebraic solutions, including

the multiplicity n∞ of the line at infinity L∞, the sum TMC(S) = n1 + ...+ nk + n∞.

(b) Suppose the system (S) has a finite number of real distinct singularities s1, ..., sl, finite or

infinite, which are located on the algebraic solutions, and having the corresponding multiplicities

m1, ...,ml. We call total multiplicity of the real singularities on the invariant curves of (S)

the sum TMS(S) = m1 + ...+ml and TMS is the function defined by this expression.

An important ingredient in this work is the notion of configuration of invariant curves of a poly-

nomial differential system. This notion appeared for the first time in [22].

Definition 5. Consider a planar polynomial system which has a finite number of algebraic solutions

and a finite number of singular points, finite or infinite. By configuration of algebraic solutions

of this system we mean the set of algebraic solutions over C of the system, each one of these curves

endowed with its own multiplicity and together with all the real singular points of this system located

on these curves, each one of these singularities endowed with its own multiplicity.

In the family QSH we could have systems which have an infinite number of algebraic solutions. In

this particular case we show that we also have a finite number of invariant straight lines and a finite

number of finite singularities and we can use this fact to define a notion of configuration including

only the affine invariant lines of the system. In case such a system has a finite number of singularities

at infinity (respectively an infinite number of singularities at infinity) we call configuration of lines of

the system, the set of all invariant lines (respectively the set of invariant affine lines), each endowed

with its own multiplicity together with the set of all real singularities of the systems located on these

lines. We associate to each system in QSH its configuration of invariant hyperbolas and/or straight

lines.

We may have two distinct systems which may even be non-equivalent modulo the action of the

group but which may have “the same configuration” of invariant hyperbolas and straight lines. We

need to say when two configurations are ”the same” or equivalent.
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Definition 6. Suppose we have two configurations C1, C2 of hyperbolas and lines of systems (S1), (S2)

in QSH with a finite number of such curves and a finite number of real singular points. We say that

they are equivalent if there is a one-to-one correspondence φh between the hyperbolas of C1 and C2

and a one to one correspondence φl between the lines of C1 and C2 such that:

(i) the correspondences conserve the multiplicities of the hyperbolas and/or lines,

(ii) for each hyperbola H of C1 (respectively each line L) we have a one-to-one correspondence between

the real singular points on H (respectively on L) and the real singular points on φh(H) (respectively

φl(L)) conserving their multiplicities, their location on branches and their order on these branches.

In case the systems have an infinite number of hyperbolas we only need to have the one-to-one cor-

respondences between their lines (affine lines in case (S1) and (S2) have the line at infinity filled up

with singularities) with their associated conditions (i) and (ii) above.

In [13] the authors provide necessary and sufficient conditions for a non-degenerate quadratic

differential system to have at least one invariant hyperbola and these conditions are expressed in

terms of the coefficients of the systems. In [14] the family of quadratic systems in QSH which

possess three distinct real singularities at infinity was considered. The authors classified this family of

systems, modulo the action of the group of real affine transformations and time rescaling, according

to their geometric properties encoded in the configurations of invariant hyperbolas and invariant

straight lines which these systems possess. As a result 162 distinct such configurations where detected

as well as the necessary and sufficient affine invariant conditions for the realization of each one of

them where constructed.

This article is a continuation of [14]. We denote by QSH(η=0)the class of non-degenerate quadratic

differential systems possessing an invariant hyperbola and either exactly two distinct real singularities

at infinity or the line at infinity filled up with singularities. The goal of this article is to produce a

similar classification of the family QSH(η=0).

As we want this classification to be intrinsic, independent of the normal form given to the systems,

we use here geometric invariants and invariant polynomials for the classification. For example it is

clear that the configuration of algebraic solutions of a system is an affine invariant. The classification

is done according to the configurations of invariant hyperbolas and straight lines encountered in

systems belonging to QSH. In particular the notion of multiplicity in Definition 3 is invariant under

the group action, i.e. if a quadratic system S has an invariant curve L = 0 of multiplicity m, then

each system S ′ in the orbit of S under the group action has a corresponding invariant line L′ = 0 of

the same multiplicity m. To distinguish configurations of algebraic solutions we need some geometric

invariants which are introduced in Section 2. In the second part of our Main Theorem we use invariant

polynomials which are also introduced in our Section 2.

Main Theorem. Consider the class QSH(η=0) of all non-degenerate quadratic differential systems

(3) possessing an invariant hyperbola and either exactly two distinct real singularities at infinity or

the line at infinity filled up with singularities.

(A) This family is classified according to the configurations of invariant hyperbolas and of invariant

straight lines of the systems, yielding 40 distinct such configurations. This geometric classifica-

tion appears in Diagrams 1 and 2. More precisely:

(A1) There are exactly 9 configurations with an infinity of invariant hyperbolas. These configu-
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rations could have up to 3 distinct affine invariant lines which could have multiplicities up

to at most 3. The configurations are split as follows:

(a) 2 of them with exactly two infinite singularities (Config.H̃32, Config.H̃33) distinguished

by the type of the invariant lines divisor ILD (as defined in Section 2);

(b) 7 of them with the line at infinity filled up with singularities (Config.H̃i, 34 ≤ i ≤ 40).

The type of the ILD splits these configurations in three groups: Group 1: Config.H̃.i,

34 ≤ i ≤ 36, first distinguished by the number of finite singularities (3 for Config.H̃.36

and 2 for Config.H̃.i, i ∈ {34, 35}). The last two configurations are distinguished by

the number of finite singularities not located on the invariant hyperbolas (1 for i=34,

0 for i=35). Group 2: Config.H̃.i with i ∈ {37, 38} and Group 3: Config.H̃.i with

i ∈ {39, 40} The configurations in these groups are distinguished by the type of the

zero-cycle MS0C ;

(A2) The remaining 31 configurations could have up to a maximum of 2 distinct invariant hy-

perbolas, real or complex, and up to 3 distinct invariant straight lines, real or complex,

including the line at infinity.

-We have exactly 12 distinct configurations of systems with exactly one hyperbola

which is simple, and no invariant affine lines. These are classified by the total multiplicity

of the real singularities of the systems located on the algebraic solutions (TMS) as follows:

(a) only one configuration (Config.H̃1) with TMS = 3;

(b) 5 configurations with TMS = 5 grouped as follows by the number of their singularities

and their multiplicities:

-one with only two singularities, both multiple and both at infinity (Config.H̃2);

-two with an additional finite singularity (Config.H̃3, Config.H̃4) but with distinct mul-

tiplicities;

-two with two additional finite simple singularities (Config.H̃5,Config.H̃6) distinguished

using the proximity divisor PD defined in Section 2;

(c) 4 with TMS = 6: one with only one finite singularity (Config.H̃7); 3 with two finite

singularities with the same multiplicities, distinguished by the invariant O defined in

Section 2 (Config.H̃i, 8 ≤ i ≤ 10);

(d) 2 with TMS = 7 distinguished by the multiplicities of their two finite singularities

(Config.H̃11, Config.H̃12).

-We have exactly 6 configurations with a unique simple invariant hyperbola and a

unique simple invariant line:

(a) one with no finite singularity (Config.H̃13);

(b) one with only one finite singularity (Config.H̃14);

(c) one with two finite singularities (Config.H̃15);

(d) one with three finite singularities (Config.H̃16);

(e) two with four simple finite singularities (Config.H̃17, Config.H̃18), configurations dis-

tinguished by the proximity divisor PD (see Section 2);

-We have exactly 9 configurations with a simple invariant hyperbola and invariant

lines, including the line at infinity, of total multiplicity 3 ≤ TML ≤ 5:
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(a) 5 configurations have exactly three distinct simple invariant lines (Config.H̃i, 19 ≤ i ≤
23) distinguished by the types of ICD,MS0C and the proximity divisor PD;

(b) 4 configurations with exactly two invariant lines, one of them being multiple (Config.H̃i,

24 ≤ i ≤ 27). They are distinguished by the multiplicities of the two invariant lines.

-We have exactly 4 configurations with invariant hyperbolas of total multiplicity 2:

(a) two with two distinct hyperbolas, one with real hyperbolas (Config.H̃28) and one with

complex (non-real) hyperbolas (Config.H̃29),

(b) two of them with a double hyperbola, one with 3 finite singularities (Config.H̃30)and

one without any finite singularity (Config.H̃31);

(B) Diagram 3 is the bifurcation diagram in the space R12 of the coefficients of the system in

QSH(η=0) according to their configurations of invariant hyperbolas and invariant straight

lines. Moreover Diagram 3 gives an algorithm to compute the configuration of a system

with an invariant hyperbola for any quadratic differential system, presented in any normal

form.

Remark 1. In the above Theorem we indicated that the 40 configurations obtained for the family

QSH(η=0) are distinct due to the types of ICD, ILD,MS0C and PD. We define in Section 2 such

functions on the family QSH(η=0) and prove that they define a complete set of geometric invariants

for the configurations of the family QSH(η=0).

Remark 2. The invariant polynomials which appear in Diagram 3 are introduced in Section 2.

Moreover in this diagram we denote by (C1) the following condition

(C1) : (β6 = 0, β11R11 6= 0) ∩
(
(β12 6= 0, γ15 = 0) ∪ (β12 = γ16 = 0)

)
.

2 Basic concepts, proof of part A of the Main Theorem and aux-

iliary results

In this section we define all the invariants we use in the Main Theorem and we state some auxiliary

results. A quadratic system possessing an invariant hyperbola could also possess invariant lines. We

classified the systems possessing an invariant hyperbola in terms of their configurations of invariant

hyperbolas and invariant lines. Each one of these invariant curves has a multiplicity in the sense of

Definition 3 (see also in [7]). We encode this picture in the multiplicity divisor of invariant hyperbolas

and lines. We first recall the algebraic-geometric definition of an r-cycle on an irreducible algebraic

variety of dimension n.

Definition 7. Let V be an irreducible algebraic variety of dimension n over a field K. A cycle of

dimension r or r-cycle on V is a formal sum ΣWnWW , where W is a subvariety of V of dimension

r which is not contained in the singular locus of V , nW ∈ Z, and only a finite number of nW ’s are

non-zero. We call degree of an r-cycle the sum ΣnW . An (n− 1)-cycle is called a divisor.

Definition 8. Let V be an irreducible algebraic variety over a field K. The support of a cycle

C on V is the set Supp(C) = {W |nW 6= 0}. We denote by Max(C) the maximum value of the
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Diagram 1: Diagram of configurations with one simple hyperbola
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Diagram 1: (Cont.) Diagram of configurations with one simple hyperbola

coefficients nW in C. For every m ≤ Max(C) let s(m) be the number of the coefficients nW in C

which are equal to m. We call type of the cycle C the set of ordered couples (s(m),m) where

1 ≤ m ≤Max(C).

For a non-degenerate polynomial differential systems (S) possessing a finite number of algebraic

solutions fi(x, y) = 0, each with multiplicity ni and a finite number of singularities at infinity,

we define the algebraic solutions divisor (or the invariant curves divisor) on the projective plane,

ICD = ΣniniCi + n∞L∞ (the invariant curves divisor) where Ci : Fi(X,Y, Z) = 0 are the projective

completions of fi(x, y) = 0, ni is the multiplicity of the curve Ci = 0 and n∞ is the multiplicity of

the line at infinity L∞ : Z = 0. It is well known (see [2]) that the maximum number of invariant

straight lines for polynomial systems of degree n ≥ 2 is 3n (including the line at infinity).

In the case we consider here, we have a particular instance of the divisor ICD because the invariant

curves will be invariant hyperbolas and invariant lines of a quadratic differential system, in case these

are in finite number. In case we have an infinite number of hyperbolas we use only the invariant lines

to construct the divisor.
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Diagram 2: Diagram of configurations with TMH ≥ 2

Another ingredient of the configuration of algebraic solutions are the real singularities situated

on these curves. We also need to use here the notion of multiplicity divisor of real singularities of a

system located on the algebraic solutions of the system.
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Diagram 3: Bifurcation diagram in R12 of the configurations: Case η = 0
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Diagram 3: (Cont.) Bifurcation diagram in R12 of the configurations: Case η = 0

Definition 9. 1. Suppose a real quadratic system has a finite number of invariant hyperbolas

Hi : fi(x, y) = 0 and a finite number of affine invariant lines Li. We denote the line at infinity

L∞ : Z = 0. Lets assume that on the line at infinity we have a finite number of singularities.

The divisor of invariant hyperbolas and invariant lines on the complex projective plane of the
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system is the following:

ICD = n1H1 + . . .+ nkHl +m1L1 + . . .+mkLk +m∞L∞,

where nj (respectively mi) is the multiplicity of the hyperbola Hj (respectively of the line Li),

and m∞ is the multiplicity of L∞. We also mark the complex (non-real) invariant hyperbolas

(respectively lines) denoting them by HCi (respectively LCi ). We define the total multiplicity

TMH of invariant hyperbolas as the sum
∑

i ni and the total multiplicity TML of invariant

line as the sum
∑

imi. We denote by IHD (respectively ILD) the invariant hyperbolas divisor

(respectively the invariant lines divisor) i.e. IHD = n1H1 + . . . + nkHl (respectively ILD =

m∞L∞ +m1L1 + . . .+mkLk).

2. The zero-cycle on the real projective plane, of real singularities of a system (3) located on the

configuration of invariant lines and invariant hyperbolas, is given by:

MS0C = l1U1 + . . .+ lkUk +m1s1 + . . .+mnsn,

where Ui (respectively sj) are all the real infinite (respectively finite) such singularities of the

system and li (respectively mj) are their corresponding multiplicities.

In the family QSH(η=0)we have configurations which have an infinite number of hyperbolas. These

are of two kinds: those with a finite number of singular points at infinity, namely two, and those with

the line at infinity filled up with singularities. To distinguish these two cases we define |Sing∞| to

be the cardinality of the set of singular points at infinity. In the first case we have |Sing∞| = 2 and

in the second case |Sing∞| is the continuum and we simply write |Sing∞| =∞. Since in both cases

the systems admit a finite number of affine invariant straight lines we can use them to distinguish

the configurations.

Definition 10. 1. In case we have an infinite number of hyperbolas and just two singular points

at infinity but we have a finite number of invariant straight lines we define ILD = m1L1 +

. . .+mkLk +m∞L∞ (see Definition 9);

2. In case we have an infinite number of hyperbolas, a finite number of affine lines and the line

at infinity is filled up with singularities, we define ILD = m1L1 + . . .+mkLk;

As the Main Theorem indicates, we have nine cases with an infinite number of hyperbolas and

since we have a finite number of invariant lines, the systems are classified by their configurations of

invariant straight lines encoded in the invariant lines divisor.

Attached to the divisors and the zero-cycle we defined, we have their types which are clearly affine

invariants. So although the cycles ICD and MS0C are not themselves affine invariants, they are used

in the classification because we can read on them several specific invariants, such as for example their

types, TMS, TMC, etc.

The above defined divisor ICD and zero-cycle MS0C contain several invariants such as the number

of invariant lines and their total multiplicity TML, the number of invariant hyperbolas (in case these

are in finite number) and their total multiplicity TMH, the number of complex invariant hyperbolas

of a real system, etc.
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Given a system in QSH, there are two compactifications which intervene in the classification of

QSH according to the configurations of the systems: the compactification in the Poincaré disk and

the compactification of its associated foliation with singularities on the real projective plane P2(R).

We also have the compactification of its associated (complex) foliation with singularities on the

complex projective plane. Each one of these compactifications plays a role in the classification. In

the compactified system the line at infinity of the affine plane is an invariant line. The system may

have singular points located at infinity which are not points of intersection of invariant curves, points

also denoted by Ur.

The points at infinity which are intersection point of two or more invariant algebraic curves we

denote by
j

U r, where j ∈ {h, l, hh, hl, ll, llh∞, . . .}. Here h (respectively l, hh, hl, ll, llh∞, . . .) means

that the intersection of the infinite line with a hyperbola (respectively with a line, or with two

hyperbolas, or with a hyperbola and a line, or with two lines, or with two line and infinity number

of hyperbolas etc.).

In case we have a real finite singularity located on the invariant curves we denote it by
j
sr, where

j ∈ {h, l, hh, hl, ll, llh∞, . . .}. Here h (respectively l, hh, hl, ll, llh∞, . . .) means that the singular point

sr is located on a hyperbola (respectively located on a line, on the intersection of two hyperbolas, on

the intersection of a hyperbola and a line, on the intersection of two lines, on the intersection of two

line and a infinity number of hyperbolas etc.). In other words, whenever the symbor h∞ appears in

the divisor MS0C it means that the singularity lies on infinity number of hyperbolas.

Suppose the real invariant hyperbolas and lines of a system (S) are given by equations fi(x, y) = 0,

i ∈ {1, 2, ..., k}, fi ∈ R[x, y]. Let us denote by Fi(X,Y, Z) = 0 the projection completion of the

invariant curves fi = 0 in P2(R).

Definition 11. We call total invariant curve of (S) in P2(C), the curve T (S) :
∏
Fi(X,Y, Z)Z = 0.

We use the above notion to define the basic curvilinear polygons determined by the total curve

T (S). Consider the Poincaré disk and remove from it the (real) points of the total curve T (S). We

are left with a certain number of 2-dimensional connected components.

Definition 12. We call basic polygon determined by T (S) the closure of anyone of these components

associated to T (S).

Although a basic polygon is a 2-dimensional object, we shall think of it as being just its border.

Regarding the singular points of the systems situated on T (S), they are of two kinds: those which

are simple (or smooth) points of T (S) and those which are multiple points of T (S).

Remark 3. To each singular point of the system we have its associated multiplicity as a singular

point of the system. In addition, we also have the multiplicity of these points as points on the total

curve. Through a singular point of the systems there may pass several of the curves Fi = 0 and

Z = 0. Also we may have the case when this point is a singular point of one or even of several of

the curves in case we work with invariant curves with singularities. This leads to the multiplicity of

the point as point of the curve T (S). The simple points are those of multiplicity one. They are also

the smooth points of this curve.
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The real singular points of the system which are simple points of T (S) are useful for defining some

geometrical invariants, helpful in the geometrical classification, besides those which can be read from

the zero-cycle defined further above.

We now introduce the notion of minimal proximity polygon of a singular point of the total curve.

This notion plays a major role in the geometrical classification of the systems.

Definition 13. Let p be a real singular point of a system lying on T (S) and in the Poincaré disk.

Then p may belong to several basic polygons. We call minimal proximity polygon of p a basic polygon

on which p is located and which has the minimum number of vertices, among the basic polygons to

which p belongs. In case we have more than one polygon with the minimum number of vertices, we

take all such polygons as being minimal proximity polygons of p.

Remark 4. We observe that for systems in QSH(η=0) we have a finite basic polygon only in one

case (Config. H.36) and the polygon is a triangle. All other polygons have at least one vertex at

infinity.

For a configuration C, consider for each real singularity p of the system which is a simple point

of the curve T (S), its minimal proximity basic polygons. We construct some formal finite sums

attached to the Poincaré disk, analogs of the algebraic-geometric notion of divisor on the projective

plane. For this we proceed as follows:

We first list all real singularities of the systems on the Poincaré disk which are simple points (ss

points) of the total curve. In case we have such points Ui’s located on the line at infinity, we start

with those points which are at infinity. We obtain a list U1, . . . , Un, s1, . . . , sk, where si’s are finite

points. Associate to U1, . . . , Un their minimal proximity polygons P1, . . . ,Pm. In case some of them

coincide we only list once the polygons which are repeated. These minimal proximity polygons may

contain some finite points from the list s1, . . . , sk. We remove all such points from this list. Suppose

we are left with the finite points s′1, . . . , s
′
r. For these points we associate their corresponding minimal

proximity polygons. We observe that for a point s′j we may have two minimal proximity polygons

in which case we consider only the minimal proximity polygon which has the maximum number

of singularities sj , simple points of the total curve. If the two polygons have the same maximum

number of simple (ss) points then we take the two of them. We obtain a list of polygons and we

retain from this list only that polygon (or those polygons) which have the maximal number of ss

points and add these polygons to the list P1, . . . ,Pn. We remove all the ss points which appear in

this list of polygons from the list of points s′1, . . . , s
′
r and continue the same process until there are

no points left from the sequence s1, . . . , sk which have not being included or eliminated. We thus

end up with a list P1, . . . ,Pr of proximity polygons which we denote by P(C).

Definition 14. We denote by PD the proximity ”divisor” of the Poincaré disk

PD = v1P1 + · · ·+ vrPr,

over P2(R), associated to the list P(C) of the minimal proximity polygons of a configuration, where Pi
are the minimal proximity polygons from this list and vi are their corresponding number of vertices.

We used the word divisor of the Poincaré disk in analogy with divisor on the projective plane,

also thinking of polygons as the borders of the 2-dimensional polygons.
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Definition 15. We define a function O (for ”order”), O: QSH → {1, 0,−1} as follows: Suppose

a system (S) in QSH has two singular points at infinity, one simple U1 and the other double U2.

Suppose the system has only one invariant hyperbola and only two real finite singular points s1 and

s2 lying on a branch of an invariant hyperbola connecting U1 with U2 such that s2 is double and s1
is simple. We have only two possibilities: either the segment of hyperbola connecting the two double

singularities U2 and s2 contains s1 in which case we write O(S) = 1 or it does not contain s1 and

then we write O(S) = 0. In case we have a configuration where this specific situation does not occur

we write O(S) = −1.

Proof of part (A) of the Main Theorem.

Part (B) of the Main Theorem is proved in Section 3 and here we assume that part (B) occurs.

Summing up all the concepts introduced in order to define the invariants, we end up with the

list: ICD, ILD, MS0C , TMH, TML, PD, O and |Sing∞|. We note that TMH, TML, O are

invariants under the group action because the multiplicities of the hyperbolas, or of the lines and

of the singularities of the systems are conserved and furthermore by continuity the order of the real

singular points on a branch of a hyperbola is also conserved. In general real singularities are also

conserved as well as the simple singularities on an algebraic solution. As a consequence the types

of the divisor ICD,PD, ... on P2(C) and of the zero-cycle MS0C on P2(R) are invariants under

the group. The number of vertices of a basic polygon is conserved under the group action basically

because the intersection points of the various invariant curves is conserved. The number of ss points

on a basic polygon is also conserved. So the coefficients of PD are also conserved. The concepts

involved above yield all the invariants we need. To prove that the 40 configurations obtained in

Section 3 are distinct we evaluate for each configuration these divisors and zero-cycle, read on them

their types and use the additional invariants O and |Sing∞| whenever necessary.

More precisely, we start with the TMH = 1 and TML = 1 and list all the corresponding confi-

gurations for this case. We next write the values of the main divisor ICD. In many cases, just

using the invariants which we can read on ICD and the zero-cycle MS0C (TMH, TML and the

corresponding types), suffices for distinguishing the configurations in a group of configurations. In

other cases more invariants are needed and we introduce the necessary additional invariants, to

distinguish the configurations of the following groups. Then we continue in a similar way with the

other cases starting with TMH = 1 and TML = 2. Furthermore we consider the case TMH ≥ 2.

Here we have two possibilities: either |Sing∞| is finite or it is infinite. In the first case we list in order

of increasing values of the maximum multiplicity occurring in IHD, ILD for the configurations

we obtained for this case. We end up with the Diagrams 1 and 2 in which all configurations are

distinguished by the system of invariants mentioned in the diagrams or those which could be read

on the divisor ICD and on the zero-cycle MS0C such as their types for example.

These calculations and the corresponding stratification is exhibited in the Diagram 1 and Dia-

gram 2 which show that the 40 configurations are distinct yielding the geometric classification of the

class QSH(η=0) according to the configurations of invariant hyperbolas and lines of the systems.

This proves statement (A) of the Main Theorem, using its part (B) proved in Section 3 where the

configurations are obtained.

A few more definitions and results which play an important role in the proof of the part (B) of

16



the Main Theorem are needed. We do not prove these results here but we indicate where they can

be found.

Consider the differential operator L = x · L2 − y · L1 constructed in [4] and acting on R[ã, x, y],

where

L1 = 2a00
∂

∂a10
+ a10

∂
∂a20

+ 1
2a01

∂
∂a11

+ 2b00
∂

∂b10
+ b10

∂
∂b20

+ 1
2b01

∂
∂b11

,

L2 = 2a00
∂

∂a01
+ a01

∂
∂a02

+ 1
2a10

∂
∂a11

+ 2b00
∂

∂b01
+ b01

∂
∂b02

+ 1
2b10

∂
∂b11

.

Using this operator and the affine invariant µ0 = Res x
(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the

following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.

These polynomials are in fact comitants of systems (3) with respect to the group GL(2,R) (see

[4]). Their geometrical meaning is revealed in the next lemma.

Lemma 1. ([3],[4]) Assume that a quadratic system (S) with coefficients ã belongs to the family (3).

Then:

(i) Let λ be an integer such that λ ≤ 4. The total multiplicity of all finite singularities of this

system equals 4 − λ if and only if for every i ∈ {0, 1, . . . , λ − 1} we have µi(ã, x, y) = 0 in the ring

R[x, y] and µλ(ã, x, y) 6= 0. In this case, the factorization µλ(ã, x, y) =
∏λ
i=1(uix− viy) 6= 0 over C

indicates the coordinates [vi : ui : 0] of those finite singularities of the system (S) which “have gone”

to infinity. Moreover, the number of distinct factors in this factorization is less than or equal to three

(the maximum number of infinite singularities of a quadratic system in the projective plane) and the

multiplicity of each one of the factors uix− viy gives us the number of the finite singularities of the

system (S) which have coalesced with the infinite singular point [vi : ui : 0].

(ii) The system (S) is degenerate (i.e. gcd(P,Q) 6= const) if and only if µi(ã, x, y) = 0 in R[x, y]

for every i = 0, 1, 2, 3, 4.

The following zero-cycle on the complex plane was introduced in [10] based on previous work in

[20].

Definition 16. We define DC2(S) =
∑

s∈C2 nss where ns is the intersection multiplicity at s of the

curves p(x, y) = 0, q(x, y) = 0, p, q being the polynomials defining the equations (1) for system (S).

Proposition 1. ([31]) The form of the zero-cycle DC2(S) for non-degenerate quadratic systems (3)

is determined by the corresponding conditions indicated in Table 1, where we write p+ q + rc + sc

if two of the finite points, i.e. rc, sc, are complex but not real, and

D =
[
3
(
(µ3, µ3)

(2), µ2
)(2) − (6µ0µ4 − 3µ1µ3 + µ22, µ4)

(4)
]
/48,

P =12µ0µ4 − 3µ1µ3 + µ22,

R =3µ21 − 8µ0µ2,

S =R2 − 16µ20P,

T =18µ20(3µ
2
3 − 8µ2µ4) + 2µ0(2µ

3
2 − 9µ1µ2µ3 + 27µ21µ4)−PR,

U =µ23 − 4µ2µ4,

V =µ4.

(4)
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Table 1

No.
Zero–cycle

DC2(S)

Invariant

criteria
No.

Zero–cycle

DC2(S)

Invariant

criteria

1 p+ q + r + s
µ0 6= 0,D < 0,
R > 0,S > 0

10 p+ q + r µ0 = 0,D < 0,R 6= 0

2 p+ q + rc + sc µ0 6= 0,D > 0 11 p+ qc + rc µ0 = 0,D > 0,R 6= 0

3 p c + qc + rc + sc
µ0 6= 0,D < 0,R ≤ 0

12 2p+ q µ0 = D = 0,PR 6= 0
µ0 6= 0,D < 0,S ≤ 0

4 2p+ q + r µ0 6= 0,D = 0,T < 0 13 3p µ0=D=P=0,R 6= 0

5 2p+ qc + rc µ0 6= 0,D = 0,T > 0 14 p+ q
µ0 = R = 0,P 6= 0,

U > 0

6 2p+ 2q
µ0 6= 0,D = T = 0,

PR > 0
15 p c + qc

µ0 = R = 0,P 6= 0,
U < 0

7 2p c + 2qc
µ0 6= 0,D = T = 0,

PR < 0
16 2p

µ0 = R = 0,P 6= 0,
U = 0

8 3p+ q
µ0 6= 0,D = T = 0,

P = 0,R 6= 0
17 p

µ0 = R = P = 0,
U 6= 0

9 4p
µ0 6= 0,D = T = 0,

P = R = 0
18 0

µ0 = R = P = 0,
U = 0,V 6= 0

The next result is stated in [13] and it gives us the necessary and sufficient conditions for the

existence of at least one invariant hyperbola for non-degenerate systems (3) and also their multi-

plicities. The invariant polynomials which appears in the statement of the next theorem and in the

corresponding diagrams are constructed in [13] and we present them further below.

Theorem 2. ([13]) (A) The conditions γ1 = γ2 = 0 and either η ≥ 0, M 6= 0 or C2 = 0 are

necessary for a quadratic system in the class QS to possess at least one invariant hyperbola.

(B) Assume that for a system in the class QS the condition γ1 = γ2 = 0 is satisfied.

• (B1) If η > 0 then the necessary and sufficient conditions for this system to possess at least

one invariant hyperbola are given in Diagram 4, where we can also find the number and

multiplicity of such hyperbolas.

• (B2) In the case η = 0 and either M 6= 0 or C2 = 0 the corresponding necessary and sufficient

conditions for this system to possess at least one invariant hyperbola are given in Diagram 5,

where we can also find the number and multiplicity of such hyperbolas.

(C) The Diagrams 4 and 5 actually contain the global bifurcation diagram in the 12-dimensional

space of parameters of the coefficients of the systems belonging to family QS, which possess at least

one invariant hyperbola. The corresponding conditions are given in terms of invariant polynomials

with respect to the group of affine transformations and time rescaling.

Remark 5. An invariant hyperbola is denoted by H if it is real and by
c
H if it is complex. In the

case we have two such hyperbolas then it is necessary to distinguish whether they have parallel or
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non-parallel asymptotes in which case we denote them by Hp (
c
Hp) if their asymptotes are parallel

and by H if there exists at least one pair of non-parallel asymptotes. We denote by Hk (k = 2, 3) a

hyperbola with multiplicity k; by Hp2 a double hyperbola, which after perturbation splits into two Hp;
and by Hp3 a triple hyperbola which splits into two Hp and one H.

Diagram 4: Existence of invariant hyperbolas: the case η > 0

Following [13] we present here the invariant polynomials which according to Diagrams 4 and 5

are responsible for the existence and the number of invariant hyperbolas which systems (3) could
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Diagram 5: Existence of invariant hyperbolas: the case η = 0

possess.

First we single out the following five polynomials, basic ingredients in constructing invariant poly-

nomials for systems (3):

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), (i = 0, 1, 2)

Di(ã, x, y) =
∂pi
∂x

+
∂qi
∂y

, (i = 1, 2).
(5)

As it was shown in [29] these polynomials of degree one in the coefficients of systems (3) are GL–

comitants of these systems. Let f, g ∈ R[ã, x, y] and

(f, g)(k) =

k∑
h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

The polynomial (f, g)(k) ∈ R[ã, x, y] is called the transvectant of index k of (f, g) (cf. [9], [15])).

Theorem 3 (see [32]). Any GL–comitant of systems (3) can be constructed from the elements (5)

by using the operations: +, −, ×, and by applying the differential operation (∗, ∗)(k).

Remark 6. We point out that the elements (5) generate the whole set of GL–comitants and hence

also the set of affine comitants as well as the set of T -comitants and CT -comitants (see [22] for

detailed definitions).

We construct the following GL–comitants of the second degree with respect to the coefficients of
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the initial systems

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

(6)

Using these GL–comitants as well as the polynomials (5) we construct additional invariant poly-

nomials. In order to be able to directly calculate the values of the invariant polynomials we need,

for every canonical system we define here a family of T–comitants expressed through Ci (i = 0, 1, 2)

and Dj (j = 1, 2):

Â =
(
C1, T8 − 2T9 +D2

2

)(2)
/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1) + 6D1(C1D2 − T5)− 9D2

1C2

]
/36,

Ê =
[
D1(2T9 − T8)− 3 (C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ =
[
6D2

1(D2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ê

− 24
(
C2, D̂

)(2)
+120

(
D2, D̂

)(1)
−36C1 (D2, T7)

(1)+8D1 (D2, T5)
(1)
]
/144,

B̂ =
{

16D1 (D2, T8)
(1) (3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)

(1) (3D1D2 − 5T6 + 9T7)

+ 2 (D2, T9)
(1) (27C1T4 − 18C1D

2
1 −32D1T2 + 32 (C0, T5)

(1) )
+ 6 (D2, T7)

(1) [8C0(T8 − 12T9) − 12C1(D1D2 + T7) +D1(26C2D1 + 32T5) +C2(9T4 + 96T3)]

+ 6 (D2, T6)
(1) [32C0T9 − C1(12T7 + 52D1D2) −32C2D

2
1

]
+ 48D2 (D2, T1)

(1) (2D2
2 − T8

)
− 32D1T8 (D2, T2)

(1) + 9D2
2T4 (T6 − 2T7)− 16D1 (C2, T8)

(1) (D2
1 + 4T3

)
+ 12D1 (C1, T8)

(2) (C1D2 − 2C2D1) + 6D1D2T4
(
T8 − 7D2

2 − 42T9
)

+ 12D1 (C1, T8)
(1) (T7 + 2D1D2) + 96D2

2

[
D1 (C1, T6)

(1) +D2 (C0, T6)
(1)
]
−

− 16D1D2T3
(
2D2

2 + 3T8
)
− 4D3

1D2

(
D2

2 + 3T8 + 6T9
)

+ 6D2
1D

2
2 (7T6 + 2T7)

− 252D1D2T4T9
}
/(2833),

K̂ =(T8 + 4T9 + 4D2
2)/72, Ĥ = (8T9 − T8 + 2D2

2)/72, N̂ = 4K̂ − 4Ĥ.

These polynomials in addition to (5) and (6) will serve as bricks in constructing affine invariant

polynomials for systems (3).

Using the above bricks, the following 42 affine invariants A1, . . . , A42 are constructed from the
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minimal polynomial basis of affine invariants up to degree 12. This fact was proved in [5].

A1 = Â, A22 = 1
1152

[
C2, D̂)(1), D2

)(1)
, D2

)(1)
, D2

)(1)
D2

)(1)
,

A2 = (C2, D̂)(3)/12, A23 =
[
F̂ , Ĥ)(1), K̂

)(2)
/8,

A3 =
[
C2, D2)

(1), D2

)(1)
, D2

)(1)
/48, A24 =

[
C2, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/32,

A4 = (Ĥ, Ĥ)(2), A25 =
[
D̂, D̂)(2), Ê

)(2)
/16,

A5 = (Ĥ, K̂)(2)/2, A26 = /36,

A6 = (Ê, Ĥ)(2)/2, A27 =
[
B̂,D2)

(1), Ĥ
)(2)

/24,

A7 =
[
C2, Ê)(2), D2

)(1)
/8, A28 =

[
C2, K̂)(2), D̂

)(1)
, Ê
)(2)

/16,

A8 =
[
D̂, Ĥ)(2), D2

)(1)
/8, A29 =

[
D̂, F̂ )(1), D̂

)(3)
/96,

A9 =
[
D̂,D2)

(1), D2

)(1)
, D2

)(1)
/48, A30 =

[
C2, D̂)(2), D̂

)(1)
, D̂
)(3)

/288,

A10 =
[
D̂, K̂)(2), D2

)(1)
/8, A31 =

[
D̂, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/64,

A11 = (F̂ , K̂)(2)/4, A32 =
[
D̂, D̂)(2), D2

)(1)
, Ĥ
)(1)

, D2

)(1)
/64,

A12 = (F̂ , Ĥ)(2)/4, A33 =
[
D̂,D2)

(1), F̂
)(1)

, D2

)(1)
, D2

)(1)
/128,

A13 =
[
C2, Ĥ)(1), Ĥ

)(2)
, D2

)(1)
/24, A34 =

[
D̂, D̂)(2), D2

)(1)
, K̂
)(1)

, D2

)(1)
/64,

A14 = (B̂, C2)
(3)/36, A35 =

[
D̂, D̂)(2), Ê

)(1)
, D2

)(1)
, D2

)(1)
/128,

A15 = (Ê, F̂ )(2)/4, A36 =
[
D̂, Ê)(2), D̂

)(1)
, Ĥ
)(2)

/16,

A16 =
[
Ê,D2)

(1), C2

)(1)
, K̂
)(2)

/16, A37 =
[
D̂, D̂)(2), D̂

)(1)
, D̂
)(3)

/576,

A17 =
[
D̂, D̂)(2), D2

)(1)
, D2

)(1)
/64, A38 =

[
C2, D̂)(2), D̂

)(2)
, D̂
)(1)

, Ĥ
)(2)

/64,

A18 =
[
D̂, F̂ )(2), D2

)(1)
/16, A39 =

[
D̂, D̂)(2), F̂

)(1)
, Ĥ
)(2)

/64,

A19 =
[
D̂, D̂)(2), Ĥ

)(2)
/16, A40 =

[
D̂, D̂)(2), F̂

)(1)
, K̂
)(2)

/64,

A20 =
[
C2, D̂)(2), F̂

)(2)
/16, A41 =

[
C2, D̂)(2), D̂

)(2)
, F̂
)(1)

, D2

)(1)
/64,

A21 =
[
D̂, D̂)(2), K̂

)(2)
/16, A42 =

[
D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.

In the above list, the bracket “[” is used in order to avoid placing the otherwise necessary up to

five parentheses “(”.

Using the elements of the minimal polynomial basis given above the following affine invariant
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polynomials were constructed in [14].

γ1(ã) =A2
1(3A6 + 2A7)− 2A6(A8 +A12),

γ2(ã) =9A2
1A2(23252A3 + 23689A4)− 1440A2A5(3A10 + 13A11)− 1280A13(2A17 +A18

+ 23A19 − 4A20)− 320A24(50A8 + 3A10 + 45A11 − 18A12) + 120A1A6(6718A8

+ 4033A9 + 3542A11 + 2786A12) + 30A1A15(14980A3 − 2029A4 − 48266A5)

− 30A1A7(76626A2
1 − 15173A8 + 11797A10 + 16427A11 − 30153A12)

+ 8A2A7(75515A6 − 32954A7) + 2A2A3(33057A8 − 98759A12)− 60480A2
1A24

+A2A4(68605A8 − 131816A9 + 131073A10 + 129953A11)− 2A2(141267A2
6

− 208741A5A12 + 3200A2A13),

γ3(ã) =843696A5A6A10 +A1(−27(689078A8 + 419172A9 − 2907149A10 − 2621619A11)A13

− 26(21057A3A23 + 49005A4A23 − 166774A3A24 + 115641A4A24)).

γ4(ã) =− 9A2
4(14A17 +A21) +A2

5(−560A17 − 518A18 + 881A19 − 28A20 + 509A21)

−A4(171A2
8 + 3A8(367A9 − 107A10) + 4(99A2

9 + 93A9A11 +A5(−63A18 − 69A19

+ 7A20 + 24A21))) + 72A23A24,

γ5(ã) =− 488A3
2A4 +A2(12(4468A2

8 + 32A2
9 − 915A2

10 + 320A9A11 − 3898A10A11 − 3331A2
11

+ 2A8(78A9 + 199A10 + 2433A11)) + 2A5(25488A18 − 60259A19 − 16824A21)

+ 779A4A21) + 4(7380A10A31 − 24(A10 + 41A11)A33 +A8(33453A31 + 19588A32

− 468A33 − 19120A34) + 96A9(−A33 +A34) + 556A4A41 −A5(27773A38 + 41538A39

− 2304A41 + 5544A42)),

γ6(ã) =2A20 − 33A21,

γ7(ã) =A1(64A3 − 541A4)A7 + 86A8A13 + 128A9A13 − 54A10A13 − 128A3A22 + 256A5A22

+ 101A3A24 − 27A4A24,

γ8(ã) =3063A4A
2
9 − 42A2

7(304A8 + 43(A9 − 11A10))− 6A3A9(159A8 + 28A9 + 409A10)

+ 2100A2A9A13 + 3150A2A7A16 + 24A2
3(34A19 − 11A20) + 840A2

5A21 − 932A2A3A22

+ 525A2A4A22 + 844A2
22 − 630A13A33,

γ9(ã) =2A8 − 6A9 +A10,

23



γ10(ã) =3A8 +A11,

γ11(ã) =− 5A7A8 +A7A9 + 10A3A14,

γ12(ã) =25A2
2A3 + 18A2

12,

γ13(ã) =A2,

γ14(ã) =A2A4 + 18A2A5 − 236A23 + 188A24,

γ15(ã, x, y) =144T1T
2
7 − T 3

1 (T12 + 2T13)− 4(T9T11 + 4T7T15 + 50T3T23 + 2T4T23 + 2T3T24 + 4T4T24),

γ16(ã, x, y) =T15,

γ17(ã, x, y) =T11 + 12T13,

γ̃18(ã, x, y) =C1(C2, C2)
(2) − 2C2(C1, C2)

(2),

γ̃19(ã, x, y) =D1(C1, C2)
(2) − ((C2, C2)

(2), C0)
(1),

δ1(ã) =9A8 + 31A9 + 6A10,

δ2(ã) =41A8 + 44A9 + 32A10,

δ3(ã) =3A19 − 4A17,

δ4(ã) =− 5A2A3 + 3A2A4 +A22,

δ5(ã) =62A8 + 102A9 − 125A10,

δ6(ã) =2T3 + 3T4,

β1(ã) =3A2
1 − 2A8 − 2A12,

β2(ã) =2A7 − 9A6,

β3(ã) =A6,

β4(ã) =− 5A4 + 8A5,

β5(ã) =A4,

β6(ã) =A1,

β7(ã) =8A3 − 3A4 − 4A5,

β8(ã) =24A3 + 11A4 + 20A5,

β9(ã) =− 8A3 + 11A4 + 4A5,

β10(ã) =8A3 + 27A4 − 54A5,

β11(ã, x, y) =T 2
1 − 20T3 − 8T4,

β12(ã, x, y) =T1,

β13(ã, x, y) =T3,

R1(ã) =− 2A7(12A2
1 +A8 +A12) + 5A6(A10 +A11)− 2A1(A23 −A24) + 2A5(A14 +A15)

+A6(9A8 + 7A12),

R2(ã) =A8 +A9 − 2A10,

R3(ã) =A9,

R4(ã) =− 3A2
1A11 + 4A4A19,
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R5(ã, x, y) =(2C0(T8 − 8T9 − 2D2
2) + C1(6T7 − T6)− (C1, T5)

(1) + 6D1(C1D2 − T5)− 9D2
1C2),

R6(ã) =− 213A2A6 +A1(2057A8 − 1264A9 + 677A10 + 1107A12) + 746(A27 −A28),

R7(ã) =− 6A2
7 −A4A8 + 2A3A9 − 5A4A9 + 4A4A10 − 2A2A13,

R8(ã) =A10,

R9(ã) =− 5A8 + 3A9,

R10(ã) =7A8 + 5A10 + 11A11,

R11(ã, x, y) =T16.

χ
(1)
A (ã) =A6(A1A2 − 2A15)(3A

2
1 − 2A8 − 2A12),

χ
(1)
C (ã) = θβ1β3

[
8A1(42A23 − 24A2A3 + 59A2A5) +A6(2196A2

1 + 384A9 + 24A10 + 360A11

− 432A12) + 4A7(123A8−61A10−23A11 + 123A12) + 8(2A4A14−34A5A15−19A2A16)
]
,

χ̃
(1)
D (ã) = − 378A2

1 + 213A8 + 40A9 − 187A10 − 205A11 + 317A12,

χ
(2)
A (ã) = A4(5A8 − 18A2

1 −A10 − 3A11 + 9A12),

χ
(3)
E (ã) = 54A2

1A2 + 611A2A9 − 104A2A11 − 140A2A12 + 732A1A14 − 243A31 − 234A33 + 245A34,

χ
(7)
A (ã) = (A3 −A4)(A8 −A10),

χ
(7)
F (ã) = 24A8 − 23A10,

χ
(8)
A (ã) = 5A8 −A9,

We also need here the following additional affine invariant polynomials, constructed in [26]:

H2 =−
[
(C1, 8Ĥ + N̂)(1) + 2D1N̂

]
, H9 = −

[
D̂, D̂)(2), D̂)(1), D̂)(3) ≡ 12D,

H10 =−
[
D̂, N̂)(2), D2)

(1), H11 = 3
[
(C1, 8Ĥ + N̂)(1) + 2D1N̂

]2 − 32Ĥ
[
(C2, D̂)(2) + (D̂,D2)

(1)
]
,

H12 =(D̂, D̂)(2), N7 = 12D1(C0, D2)
(1) + 2D3

1 + 9D1(C1, C2)
(2) + 36

[
C0, C1)

(1), D2)
(1),

Next we construct the following T -comitants (for the definition of T -comitants see [23]) which are

responsible for the existence of invariant straight lines of systems (3):

Notation 1.
B3(a, x, y) = (C2, D)(1) = Jacob (C2, D) ,

B2(a, x, y) = (B3, B3)
(2) − 6B3(C2, D)(3),

B1(a) = Res x (C2, D) /y9 = −2−93−8 (B2, B3)
(4) .

(7)

Lemma 2 (see [22]). For the existence of invariant straight lines in one (respectively 2; 3 distinct)

directions in the affine plane it is necessary that B1 = 0 (respectively B2 = 0; B3 = 0).

At the moment we only have necessary and not necessary and sufficient conditions for the existence

of an invariant straight line or for invariant lines in two or three directions.

Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials p(ã, x, y) and q(ã, x, y). We

obtain p̂(â(a, x0, y0), x
′, y′) = p(ã, x′+ x0, y

′+ y0), q̂(â(a, x0, y0), x
′, y′) = q(ã, x′+ x0, y

′+ y0). Let us

25



construct the following polynomials

Γi(ã, x0, y0) ≡ Res x′
(
Ci
(
â(ã, x0, y0), x

′, y′
)
, C0

(
â(ã, x0, y0), x

′, y′
))
/(y′)i+1,

Γi(ã, x0, y0) ∈ R[ã, x0, y0], i = 1, 2.

Notation 2. We denote by

Ẽi(ã, x, y) = Γi(ã, x0, y0)|{x0=x, y0=y} ∈ R[ã, x, y] (i = 1, 2).

Observation 1. We note that the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) are affine comitants of

systems (3) and are homogeneous polynomials in the coefficients a, b, c, d, e, f, g, h, k, l,m, n and non-

homogeneous in x, y and degãẼ1 = 3, deg (x,y)Ẽ1 = 5, degãẼ2 = 4, deg (x,y)Ẽ2 = 6.

Notation 3. Let Ei(ã, X, Y, Z), i = 1, 2, be the homogenization of Ẽi(ã, x, y), i.e.

E1(ã, X, Y, Z) = Z5Ẽ1(ã, X/Z, Y/Z), E2(ã, X, Y, Z) = Z6Ẽ1(ã, X/Z, Y/Z)

The geometrical meaning of these affine comitants is given by the following lemma (see [22]):

Lemma 3 (see [22]). 1) The straight line L(x, y) ≡ ux+ vy + w = 0, u, v, w ∈ C, (u, v) 6= (0, 0) is

an invariant line for a quadratic system (3) if and only if the polynomial L(x, y) is a common factor

of the polynomials Ẽ1(ã, x, y) and Ẽ2(ã, x, y) over C, i.e.

Ẽi(ã, x, y) = (ux+ vy + w)W̃i(x, y), i = 1, 2,

where W̃i(x, y) ∈ C[x, y].

2) If L(x, y) = 0 is an invariant straight line of multiplicity λ for a quadratic system (3), then

[L(x, y)]λ | gcd(Ẽ1, Ẽ2) in C[x, y], i.e. there exist Wi(ã, x, y) ∈ C[x, y], i = 1, 2, such that

Ẽi(ã, x, y) = (ux+ vy + w)λWi(a, x, y), i = 1, 2.

3) If the line l∞ : Z = 0 is of multiplicity λ > 1, then Zλ−1 | gcd(E1, E2).

In order to detect the parallel invariant lines we need the following invariant polynomials:

N(ã, x, y) = D2
2 + T8 − 2T9 = 9N̂ , θ(ã) = 2A5 −A4 (≡ Discriminant

(
N(a, x, y)

)
/1296).

Lemma 4 (see [22]). A necessary condition for the existence of one couple (respectively two couples)

of parallel invariant straight lines of a system (3) corresponding to ã ∈ R12 is the condition θ(ã) = 0

(respectively N(ã, x, y) = 0).

Now we introduce some important GL–comitant in the study of the invariant conics. Considering

C2(ã, x, y) = yp2(ã, x, y)− xq2(ã, x, y) as a cubic binary form of x and y we calculate

η(ã) = Discrim[C2, ξ], M(ã, x, y) = Hessian[C2],

where ξ = y/x or ξ = x/y. According to [28] we have the next result.
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Lemma 5 ([28]). The number of infinite singularities (real and imaginary) of a quadratic system

in QS is determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M 6= 0;

(iv) 1 real if η = M = 0 and C2 6= 0;

(v) ∞ if η = M = C2 = 0.

Moreover, for each one of these cases the quadratic systems (3) can be brought via a linear transfor-

mation to one of the following canonical systems (SI)− (SV ):{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI){

ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII){

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII){

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

Finally, in order to detect if an invariant conic

Φ(x, y) ≡ p+ qx+ ry + sx2 + 2txy + uy2 = 0 (8)

(or an invariant line) of a system (3) has the multiplicity greater than one, we use the notion of k-th

extactic curve Ek(X) of the vector field X (see (2)), associated to systems (3). This curve is defined

in the paper [7, Definition 5.1] as follows:

Ek(X) = det


v1 v2 . . . vl

X(v1) X(v2) . . . X(vl)
. . .. . . . . .. . .

X l−1(v1) X l−1(v2) . . . X l−1(vl)

 ,

where v1, v2, . . . , vl is the basis of the C-vector space Cn[x, y] which is the set of all polynomials

in x, y of degree n , of polynomials in Cn[x, y] and l = (k + 1)(k + 2)/2. Here X0(vi) = vi and

Xj(v1) = X(Xj−1(v1)).

According to [7] the following statement holds:

Lemma 6. Assume that an algebraic curve Φ(x, y) = 0 of degree k is an invariant curve for systems

(3). Then this curve has multiplicity m if and only if Φ(x, y)m divides Ek(X).
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3 Proof of statement (B) of Main Theorem

In this section we provide the proof of statement (B) of our Main Theorem, following the conditions

given by Diagram 5 (the case η = 0).

So in what follows we assume η = 0 and we consider two possibilities: M(ã, x, y) 6= 0 (i.e. at

infinity we have two distinct real singularities) and M = 0 = C2 (when we have an infinite number

of singularities at infinity).

3.1 The possibility M(ã, x, y) 6= 0

According to Lemma 5 there exists a linear transformation and time rescaling which brings systems

(3) to the systems

dx

dt
= a+ cx+ dy + gx2 + hxy,

dy

dt
= b+ ex+ fy + (g − 1)xy + hy2. (9)

For this systems we calculate

C2(x, y) = x2y, θ = −h2(g − 1)/2. (10)

3.1.1 The case θ 6= 0

In this case h(g − 1) 6= 0 and due to a translation we may assume d = e = 0. So in what follows we

consider the family of systems

dx

dt
= a+ cx+ gx2 + hxy,

dy

dt
= b+ fy + (g − 1)xy + hy2

(11)

for which calculations yield:

γ1 =(2c− f)(c+ f)2h4(g − 1)2/32, β2 = h2(2c− f)/2.

According to Theorem 2 for the existence of an invariant hyperbola of the above systems the condition

γ1 = 0 is necessary. So we consider two subcases: β2 6= 0 and β2 = 0.

3.1.1.1 The subcase β2 6= 0 Then 2c − f 6= 0 and the condition γ1 = 0 implies f = −c. Then

we calculate

γ2 =− 14175c2h5(g − 1)2(3g − 1)[a(2g − 1)− 2bh], β1 = −3c2h2(g − 1)(3g − 1)/4

and following Diagram 5 (see Theorem 2) we examine two possibilities: β1 6= 0 and β1 = 0.

3.1.1.1.1 The possibility β1 6= 0. Then the necessary condition γ2 = 0 (for the existence of

a hyperbola) gives a(2g − 1) − 2bh = 0 and setting a = 2a1h (since h 6= 0) we get b = a1(2g − 1).

Therefore keeping the old parameter a (instead of a1) we arrive at the following family of systems

dx

dt
= 2ah+ cx+ gx2 + hxy,

dy

dt
= a(2g − 1)− cy + (g − 1)xy + hy2.

28



We observe that since ch 6= 0 , we may assume c = h = 1 due to the rescaling (x, y, t) 7→ (cx, cy/h, t/c)

and the additional parametrization ah/c2 → a. So we get the following 2-parameter family of systems

dx

dt
= 2a+ x+ gx2 + xy,

dy

dt
= a(2g − 1)− y + (g − 1)xy + y2, (12)

which possess the following invariant hyperbola (with cofactor (2g − 1)x+ 2y):

Φ(x, y) = a+ xy = 0 (13)

and for which the following coefficient conditions (defined by θβ2β1R1 6= 0) must be satisfied:

a(g − 1)(3g − 1) 6= 0. (14)

For systems (12) we calculate

B1 = 4a3(g − 1)2(1− 2g). (15)

1) The case B1 6= 0. In this case by Lemma 2 we have no invariant lines. For systems (12) we

calculate µ0 = g and we consider two subcases: µ0 6= 0 and µ0 = 0.

a) The subcase µ0 6= 0. Then by Lemma 1 the systems have finite singularities of total multiplicity

four. More exactly, systems (12) possess the singular points M1,2

(
x1,2, y1,2

)
and M3,4

(
x3,4, y3,4

)
,

where

x1,2 =
−1±

√
1− 4ag

2g
, y1,2 =

1±
√

1− 4ag

2
,

x3,4 = −1±
√

1− 4a, y3,4 = (2g − 1)(1∓
√

1− 4a )/2.

We detect that the singularities M1,2

(
x1,2, y1,2

)
are located on the hyperbola. On the other hand for

systems (12) we calculate the invariant polynomials

χ
(1)
A = 9(g − 1)2(3g − 1)2(1− 4ag)/64

and by (14) we conclude that sign (χ
(1)
A ) = sign (1 − 4ag) (if 1 − 4ag 6= 0) and we consider three

possibilities: χ
(1)
A < 0, χ

(1)
A > 0 and χ

(1)
A = 0.

a1) The possibility χ
(1)
A < 0. So we have no real singularities located on the invariant hyperbola

and we arrive at the configurations of invariant curves given by Config. H̃.1.

a2) The possibility χ
(1)
A > 0. In this case the singularities M1,2

(
x1,2, y1,2

)
located on the hyperbola

are real and we have the next result.

Lemma 7. Assume that the singularities M1,2

(
x1,2, y1,2

)
(located on the hyperbola) are finite. Then

these singularities are located on different branches of the hyperbola if χ
(1)
C < 0 and they are located

on the same branch if χ
(1)
C > 0, where χ

(1)
C = 315ag(g − 1)4(3g − 1)2/32.

Proof: Since the asymptotes of the hyperbola (13) are the lines x = 0 and y = 0 it is clear that

the singularities M1,2 are located on different branches of the hyperbola if and only if x1x2 < 0. We

calculate

x1x2 =

[
−1 +

√
1− 4ag

2g

] [
−1−

√
1− 4ag

2g

]
=
a

g
(16)
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and due to the condition (14) we obtain that sign (x1x2) = sign (χ
(1)
C ). This completes the proof of

the lemma.

Other two singular points M3,4

(
x3,4, y3,4

)
of systems (12) are generically located outside the hyper-

bola. We need to determine the conditions when some singular points of the system become singular

points lying on the hyperbola. Considering (13) we calculate

Φ(x, y)|{x=x3,4, y=y3,4} = (2g − 1)
(
− 1±

√
1− 4a

)
+ a(4g − 1) ≡ Ω±(a, g).

Put Ω3(a, g) = Ω+(a, g) and Ω4(a, g) = Ω−(a, g). It is clear that at least one of the singular points

M3(x3, y3) or M4(x4, y4) belongs to the hyperbola (13) if and only if

Ω3Ω4 = a
[
2(1− 2g) + a(1− 4g)2

]
≡ aZ1 = 0.

On the other hand for systems (12) we have χ̃
(1)
D = 54Z1 and clearly due to (14) the condition

χ̃
(1)
D = 0 is equivalent to Z1 = 0. We examine two cases: χ̃

(1)
D 6= 0 and χ̃

(1)
D = 0.

α) The case χ̃
(1)
D 6= 0. Then Z1 6= 0 and on the hyperbola there are two simple real singularities

(namely M1,2(x1,2, y1,2)). By Lemma 7 their position is defined by the invariant polynomial χ
(1)
C and

we arrive at the configuration given by Config. H̃.2 if χ
(1)
C < 0 and by Config. H̃.3 if χ

(1)
C > 0.

β) The case χ̃
(1)
D = 0. In this case the condition Z1 = 0 implies 4g − 1 6= 0 (otherwise for g = 1/4

we get Z1 = 1 6= 0. So we obtain a = 2(2g − 1)/(4g − 1)2. In this case the coordinates of the finite

singularities Mi(xi, yi) (i=1,2,3,4) are as follows

x1 =
1− 2g

g(4g − 1)
, y1 =

2g

4g − 1
; x2 = x3 =

2

1− 4g
, y2 = y3 =

2g − 1

4g − 1
;

x4 =
4(1− 2g)

(4g − 1
, y4 =

2(g − 1)2

4g − 1
,

i.e. all the singularities are real. Then considering Proposition 1 we calculate

D = 0, T = −3
[
2g(g − 1)x+ (2g − 1)y

]2
P,

P =
(4g − 3)2(gx− y)2(2gx− x+ 2y)2

(4g − 1)4
.

β1) The subcase T 6= 0. Then T < 0 and according to Proposition 1 systems (12) possess one

double and two simple real finite singularities. As it is mentioned above, the singular point M3(x3, y3)

coalesces with the singular point M2(x2, y2) located on the hyperbola, whereas M4(x4, y4) remains

outside the hyperbola.

Considering the coordinates of the singular points we calculate

sign (x1x2) = sign (g(2g − 1)), χ
(1)
C =

315g(2g − 1)(g − 1)4(3g − 1)2

16(4g − 1)2
.

Therefore in the case χ
(1)
C < 0 the singular points M1 and M2 = M3 are located on different branches

of the hyperbola and we arrive at the configuration Config. H̃.4.

Assume now that the condition χ
(1)
C > 0 holds, i.e. the two singular points (one double and one

simple) are located on the same branch of the hyperbola. Since on this branch are also located two
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infinite singular points (one double and one simple), it is clear that the reciprocal position of singular

points M1 and M2 (double) on the branch leads do different configurations. So we need to determine

the conditions to distinguish these two situations.

We calculate

x1 − x2 =
1− 2g

g(4g − 1)
− 2

1− 4g
=

1

g(4g − 1)

and hence the reciprocal position of M1 and M2 depends on the sign of the expression g(4g− 1). On

the other hand, the condition χ
(1)
C > 0 implies g(2g − 1) > 0, i.e. we have either g < 0 or g > 1/2.

Since µ0 = g we deduce that these two possibilities are governs by the invariant polynomial µ0.

It is easy to detect that we arrive at Config. H̃.5 if µ0 < 0 (i.e. g < 0) and we get Config. H̃.6 if

µ0 > 0 (i.e. g > 1/2).

β2) The subcase T = 0. In this case due to the condition B1 6= 0 (i.e. 2g − 1 6= 0) the equality

T = 0 holds if and only if P = 0 which is equivalent to 4g − 3 = 0, i.e. g = 3/4. In this case we

obtain

D = T = P = 0, R = 3(3x− 4y)2/64

and since R 6= 0, by Proposition 1 we obtain one triple and one simple singularities. More precisely

the singular points M2, M3 and M4 coalesce and since all the parameters of systems (12) are fixed

we get the unique configuration given by Config. H̃.7.

a3) The possibility χ
(1)
A = 0. In this case we get g = 1/(4a) and the singularities M1,2

(
x1,2, y1,2

)
located on the hyperbola coincide. On the other hand we have Z1 = a 6= 0 and hence none of

the singular points M3,4 could belong to the hyperbola. So we arrive at the unique configuration

presented by Config. H̃.8.

b) The subcase µ0 = 0. Then we have µ1 = −y and by Lemma 1 one finite singular point has

gone to infinity and coalesced with the infinite singular point [1, 0, 0]. In this case we arrive at the

1-parameter family of systems

dx

dt
= 2a+ x+ xy,

dy

dt
= −a− y − xy + y2 (17)

possessing the singular points M ′1(x
′
1, y
′
1) and M2,3(x2,3, y2,3) (the same points for the particular case

g = 0) with the coordinates

x′1 = −a, y′1 = 1; x3,4 = −1±
√

1− 4a, y3,4 = (−1±
√

1− 4a )/2.

We observe that only the singular point M ′1 is located on the hyperbola. On the other hand it was

shown earlier that one of the points M2,3(x2,3, y2,3) belongs to the hyperbola if and only if Z1 = 0

which in this case gets the value Z1 = a+ 2. For systems (17) we calculate

χ̃
(1)
D = 54(a+ 2)

and it is not too difficult to detect that in the case χ̃
(1)
D 6= 0 (i.e. a+ 2 6= 0) we arrive at the unique

configuration given by Config. H̃.9.

Assume now χ̃
(1)
D = 0. Then a = −2 and we get a system with constant coefficients for which the

singular point M2 has coalesced with M ′1. As a result we obtain Config. H̃.10.
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2) The case B1 = 0. Considering (15) and the condition (14) this implies g = 1/2 and we obtain

the following 1-parameter family of systems

dx

dt
= 2a+ x+ x2/2 + xy,

dy

dt
= −y(1 + x/2− y). (18)

These systems besides the hyperbola (13) possess the invariant line y = 0 and four singular points

Mi(xi, yi) with the coordinates

x1,2 = −1±
√

1− 2a, y1,2 =
1±
√

1− 2a

2
,

x3,4 = −1±
√

1− 4a, y3,4 = 0.

We observe that the singular point M1 and M2 are located on the hyperbola, whereas M3 and M4

are situated on the invariant line y = 0, which is one of the asymptotes of the hyperbola (13). For

the above systems we calculate

D = 48a2(1− 2a)(4a− 1), χ
(1)
A = 9(1− 2a)/1024

and it is clear that due to the condition (14) (i.e. a 6= 0) two of the finite singular point could coalesce

if and only if D = 0. So we examine three subcases: D < 0, D > 0 and D = 0.

a) The subcase D < 0. Then (1 − 2a)(4a − 1) < 0 and we observe that if χ
(1)
A < 0 (i.e. a > 1/2)

all the singular points are complex and we get the unique configuration given by Config. H̃.11.

Assume now χ
(1)
A > 0 (i.e. a < 1/2). Then the condition D < 0 implies a < 1/4 and all singular

points are real. We calculate x1x2 = 2a and χ
(1)
C = 316a/4096 and hence this invariant polynomials

governs the position of the singular points located on the hyperbola (on the same branch or not).

Thus we get Config. H̃.12 when χ
(1)
C < 0 and Config. H̃.13 when χ

(1)
C > 0.

b) The subcase D > 0. In this case we have 1/4 < a < 1/2 and therefore the singular points

located on the hyperbola are real, whereas the singularities from the invariant line are complex. As

a > 0 we deduce that the real singularities are located on the same branch of the hyperbola. As a

result, we get the unique configuration Config. H̃.14.

c) The subcase D = 0. Then either a = 1/4 or a = 1/2 and these possibilities are distinguished by

χ
(1)
A . Therefore we get the configuration Config. H̃.15 if χ

(1)
A 6= 0 and Config. H̃.16 if χ

(1)
A = 0.

3.1.1.1.2 The possibility β1 = 0. Then due to θ 6= 0 (i.e. h(g− 1) 6= 0) and to the condition

β2 = 3ch2/2 6= 0, the condition β1 = 0 implies g = 1/3 and γ2 = 0. So we arrive at the following

family of systems

dx

dt
= a+ cx+ x2/3 + hxy,

dy

dt
= b− cy − 2xy/3 + hy2.

We observe that since ch 6= 0 we may assume c = h = 1 due to the rescaling (x, y, t) 7→ (cx, cy/h, t/c).

According to Theorem 2 (see Diagram 2) the above systems possess an invariant hyperbola if and

only if γ4 = 0 and R3 6= 0. Considering the condition c = h = 1 for these systems we calculate

γ4 = 16(a+ 6b)2/3, R3 = 3b/2
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and hence the condition γ4 = 0 gives b = −a/6 6= 0. So we get the following 1-parameter family of

systems
dx

dt
= a+ x+ x2/3 + xy,

dy

dt
= −a/6− y − 2xy/3 + y2 (19)

with a 6= 0 which possess the following invariant hyperbola

Φ(x, y) = a+ 2xy = 0 (20)

and singular points Mi(xi, yi) (i=1,2,3,4) with the coordinates

x1,2 = (−3±
√

3(3− 2a)/2, y1,2 = (3±
√

3(3− 2a)/6,

x3,4 = −1±
√

1− 2a, y3,4 = (−1±
√

1− 2a )/6.

We observe that the singularities M1,2

(
x1,2, y1,2

)
are located on the hyperbola and since χ

(2)
A =

2(3 − 2a)/9 we deduce that these points are complex (respectively, real) if χ
(2)
A < 0 (respectively

χ
(2)
A > 0) and they coincide if χ

(2)
A = 0.

On the other hand we have x1x2 = 3a/2 and χ
(8)
A = 23a/12 and therefore we conclude that the

singular points M1,2 are located on different branches of the hyperbola if χ
(8)
A < 0 and on the same

branch if χ
(8)
A > 0.

Other two singular points M3,4

(
x3,4, y3,4

)
of systems (19) generically are located outside the hy-

perbola. In order to determine the conditions when at least one of these singular points is located

on the hyperbola we calculate

Φ(x, y)|{x=x3,4, y=y3,4} = (a+ 2∓ 2
√

1− 2a)/3 ≡ Ω3,4(a),

Ω3Ω4 = a(12 + a)/9, χ
(3)
E = −9a(12 + a)/8.

It is clear that at least one of the singular points M3 or M4 belongs to the hyperbola (20) if and

only if χ
(3)
E = 0.

Since for systems (19) we have B1 = 2a3/27 6= 0 and µ0 = 1/3 6= 0, by Lemmas 1 and 2 we have no

invariant lines and none of the finite singularities could go to infinity. So we arrive at the following

conditions and configurations:

• χ(2)
A < 0 ⇒ Config. H̃.1;

• χ(2)
A > 0, χ

(8)
A < 0 and χ

(3)
E 6= 0 ⇒ Config. H̃.2;

• χ(2)
A > 0, χ

(8)
A < 0 and χ

(3)
E = 0 ⇒ Config. H̃.4;

• χ(2)
A > 0 and χ

(8)
A > 0 ⇒ Config. H̃.3;

• χ(2)
A = 0 ⇒ Config. H̃.8.

3.1.1.2 The subcase β2 = 0 Then f = 2c and this implies γ1 = 0. By Theorem 2 (see Diagram

5) in this case we have an invariant hyperbola if and only if γ2 = β1 = γ14 = 0 and R10 6= 0.

Moreover, this hypebola is simple if β7β8 6= 0 and it is double if β7β8 = 0. So we calculate

γ2 =− 14175ac2h5(g − 1)3(1 + 3g), β1 = −9c2(g − 1)2h2/16
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and evidently the condition γ2 = β1 = 0 implies c = 0. Then we obtain

γ14 = −80h3
[
a(2g − 1)− 2bh

]
, R10 = −4ah2 6= 0

and as h 6= 0 the condition γ14 = 0 gives a(2g − 1) − 2bh = 0. Then setting a = 2a1h we get

b = a1(2g−1) and keeping the old parameter a (instead of a1) after the additional rescaling y → y/h

we arrive and at the following 2-parameter family of systems

dx

dt
= 2a+ gx2 + xy,

dy

dt
= a(2g − 1) + (g − 1)xy + y2. (21)

These systems possess the invariant hyperbola (13) and we calculate

β7 = 8(1− 2g), β8 = 32(1− 4g), B1 = 4a3(g − 1)2(1− 2g), µ0 = g

and following Diagram 5 (see Theorem 2) we examine two possibilities: β7β8 6= 0 and β7β8 = 0.

3.1.1.2.1 The possibility β7β8 6= 0. In this case for systems (21) the condition

a(g − 1)(2g − 1)(4g − 1) 6= 0 (22)

is satisfied and this implies B1 6= 0. Therefore according to Lemma 2 these systems could not have

invariant lines and as earlier we consider two cases: µ0 6= 0 and µ0 = 0.

1) The case µ0 6= 0. Then systems (21) possess four finite singular points Mi(xi, yi) (i=1,2,3,4)

with the coordinates
x1,2 = ±

√
−a/g, y1,2 = ±

√
−ag,

x3,4 = ±2
√
−a, y3,4 = ±

√
−a(1− 2g).

We detect that the singularities M1,2

(
x1,2, y1,2

)
are located on the hyperbola and they are complex

(respectively, real) if ag > 0 (respectively ag < 0). Moreover since x1x2 = a/g then in the case when

they are real (i.e. ag < 0) these points are located on different branches of the hyperbola (13).

On the other hand considering singular points M3,4

(
x3,4, y3,4

)
we calculate

Φ(x, y)|{x=x3, y=y3} = Φ(x, y)|{x=x4, y=y4} = a(4g − 1) 6= 0,

i.e. for any values of the parameters a and g satisfying the condition (22) these singularities could

not belong to the hyperbola (13).

For systems (21) we calculate µ0R10 = −8ag 6= 0 and hence sign (µ0R10) = −sign (ag). So we

arrive at the configuration given by Config. H̃.1 if µ0R10 < 0 and by Config. H̃.2 if µ0R10 > 0.

2) The case µ0 = 0. Then g = 0 and we calculate

µ0 = µ1 = 0, µ2 = ay2 6= 0

and by Lemma 1 two finite singular points have gone to infinity and both coalesced with the infinite

singular point [1, 0, 0]. As a result we get the unique configuration Config. H̃.17.
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3.1.1.2.2 The possibility β7β8 = 0. Assume first β7 = 0, i.e. g = 1/2 which implies B1 = 0

and systems (21) possess the invariant line y = 0. Since R10 = −8a, considering the coordinates of

the singularities we arrive at Config. H̃.11 if R10 < 0 and at Config. H̃.12 if R10 > 0.

Suppose now β8 = 0 which gives g = 1/4. Then the singularities M3 and M4 coalesce with M1

and M2, respectively. So in this case systems (21) have two double singular points located on the

hyperbola which are complex if a > 0 and real if a < 0. So we obtain Config. H̃.1 if R10 < 0 and

Config. H̃.18 if R10 > 0.

3.1.2 The case θ = 0

According to (10) we get h(g − 1) = 0 and since for systems (9) we have µ0 = gh2 we consider two

subcases: µ0 6= 0 and µ0 = 0.

3.1.2.1 The subcase µ0 6= 0 Then h 6= 0 and the condition θ = 0 yields g = 1. Since h 6= 0 via

the affine transformation

x1 = x+ d/h, y1 = hy + c− 2d/h

we may assume d = f = 0, h = 1 and systems (9) become as systems

dx

dt
= a+ cx+ x2 + xy,

dy

dt
= b+ ex+ y2 (23)

for which we calculate

N = 9y2, β4 = 2, β3 = −e/4, γ1 = 9ce2/16.

Since Nβ4 6= 0 following Diagram 5 (see Theorem 2) for the existence of an invariant hyperbola

the conditions γ1 = γ2 = β3 = 0 are necessary. Therefore we have e = 0 and this implies γ1 = γ2 = 0

and

γ8 = 42(9a− 18b− 2c2)2.

So setting for simplicity c = 3c1 and a = 2a1 the condition γ8 = 0 yields b = a1− c21 and keeping the

notation for the parameters c and a we arrive at the 2-parameter family of systems

dx

dt
= 2a+ 3cx+ x2 + xy,

dy

dt
= a− c2 + y2. (24)

These systems possess the following invariant hyperbola and two invariant lines:

Φ(x, y) = a+ cx+ xy = 0, L1,2 = y ±
√
c2 − a = 0 (25)

and singular points Mi(xi, yi) (i=1,2,3,4) with the coordinates

x1,2 = −c±
√
c2 − a, y1,2 = ±

√
c2 − a,

x3,4 = −2(c±
√
c2 − a), y3,4 = ±

√
c2 − a.

The singularities M1,2

(
x1,2, y1,2

)
are located at the intersection points of the hyperbola with invariant

lines, whereas the singularities M3,4 are located only on the invariant lines. More precisely, the
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singular point M3 (respectively, M4) is located on the same invariant line as the singularity M1

(respectively, M2). Since χ
(7)
A = (c2 − a)/4 we deduce that all these finite singular points as well

as the invariant lines L1,2 are complex if χ
(7)
A < 0 and real if χ

(7)
A > 0. In the case χ

(7)
A = 0 ( then

a = c2 6= 0) we obtain that the singular point M1 (respectively, M3) coincides with M2 (respectively,

M4) and moreover, in this case invariant lines coincide, too. So we consider three possibilities:

χ
(7)
A < 0, χ

(7)
A > 0 and χ

(7)
A = 0.

3.1.2.1.1 The possibility χ
(7)
A < 0. Then c2 − a < 0 (this implies a > 0) and all the singu-

larities and the invariant lines are complex. As a result we arrive at the unique configuration given

by Config. H̃.19.

3.1.2.1.2 The possibility χ
(7)
A > 0. In this case the finite singularitiesM1 6= M2 andM3 6= M4

are real and we observe that the singular points M3,4 of systems (24) generically are located outside

the hyperbola. We calculate

Φ(x, y)|{x=x3,4, y=y3,4} = 3a+ 4c(−c± 2
√
c2 − a) ≡ Ω3,4(a, c), Ω3Ω4 = a(9a− 8c2).

On the other hand by Theorem 2 (see Diagram 5) the hyperbola (25) is simple if δ4 = 3(9a−8c2) 6= 0

and it is double if δ4 = 0. So we conclude that at least one of the singularities M3,4 belongs to the

hyperbola if and only if the hyperbola is double (i.e. when δ4 = 0). So we consider two cases: δ4 6= 0

and δ4 = 0.

1) The case δ4 6= 0. Then all four finite singularities are real and distinct. In this case in order to

detect the different configurations we need to distinguish the position of the branches of the hyperbola

(which depends on the sign of the parameter a) as well as the position of the singular point M3 on

the line y =
√
c2 − a with respect to M1 and the position of M4 on the line y = −

√
c2 − a with

respect to M2. So considering the coordinates of the finite singularities we calculate

x1x2 = a, (x1 − x3)(x2 − x4) = 9a− 8c2, R7 = −3a/4, χ
(7)
F = 9a− 8c2.

So the singularities M1 and M2 are located on the same branch of the hyperbola if R7 < 0 and on

different branches if R7 > 0. To determine exactly the position of M1 and M3 as well as of M2 and

M4 we observe, that due to the rescaling (x, y, t) 7→ (−x,−y,−t) we may assume that the parameter

c ≥ 0. This means that x1−x3 = c+ 3
√
c2 − a > 0 (due to c ≥ 0 and c2− a > 0) and hence the sign

of x2 − x4 is governed by the invariant polynomial χ
(7)
F .

Thus in the case χ
(7)
A > 0 and δ4 6= 0 (then χ

(7)
F 6= 0) we arrive at the following conditions and

configurations:

• R7 < 0 ⇒ Config. H̃.20;

• R7 > 0 and χ
(7)
F < 0 ⇒ Config. H̃.21;

• R7 > 0 and χ
(7)
F > 0 ⇒ Config. H̃.22;

2) The case δ4 = 0. Then a = 8c2/9 6= 0 and by Theorem 2 (see Diagram 5) the hyperbola (25)

is double. Moreover in this case the singular point M4 coincides with M2, located on the hyperbola.

Since c 6= 0 (i.e. no other singularities could coincide) we get the unique configuration Config. H̃.23.
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3.1.2.1.3 The possibility χ
(7)
A = 0. Then a = c2 6= 0 and this implies the coalescense of the

singularity M2 with M1 and of M4 with M3. Clearly in this case we get the double line y2 = 0 and

since c 6= 0 we obtain Config. H̃.24.

3.1.2.2 The subcase µ0 = 0 Then the condition θ = µ0 = 0 gives h = 0 and for systems (9) in

this case we calculate

N = 9(g − 1)(1 + g)x2, γ1 = γ2 = β4 = 0, β6 = d(g − 1)(1 + g)/4.

We next consider two possibilities: N 6= 0 and N = 0.

3.1.2.2.1 The possibility N 6= 0. In this case by Theorem 2 (see Diagram 5) for the existence

of at least one hyperbola the condition (C1) are necessary and sufficient, where

(C1) : (β6 = 0, β11R11 6= 0) ∩
(
(β12 6= 0, γ15 = 0) ∪ (β12 = γ16 = 0)

)
.

So the condition β6 = 0 is necessary. Since N 6= 0 we get d = 0 and moreover as g − 1 6= 0, due a

translation, we may assume e = f = 0. Therefore we arrive at the family of systems

dx

dt
= a+ cx+ gx2,

dy

dt
= b+ (g − 1)xy,

for which following Diagram 2 we calculate:

β11 = 4(2g − 1)x2, R11 = −3b(g − 1)2x4, β12 = (3g − 1)x,

γ15 = 4(g − 1)2(3g − 1)
[
a(3g − 1)2 + c2(1− 2g)

]
x5.

So according to Theorem 2 the condition β11R11 6= 0 is necessary for the existence of a hyperbola

and considering Diagram 2 we have to consider the two cases: β12 6= 0 and β12 = 0.

1) The case β12 6= 0. By Theorem 2 in this case there exists one hyperbola if and only if γ15 = 0.

We observe that due to b 6= 0 (since R11 6= 0) we may assume b = 1 due to the rescaling (x, y, t) 7→
(bx, y, t/b). Since (3g− 1) 6= 0, setting c = (3g− 1)c1 the condition γ15 = 0 yields a = c21(2g− 1) and

renaming the parameter c1 as c again we arrive at the 2-parameter family of systems

dx

dt
= (c+ x)

[
c(2g − 1) + gx

]
,

dy

dt
= 1 + (g − 1)xy (26)

for which the condition Nβ11β12R11 implies

(g − 1)(g + 1)(2g − 1)(3g − 1) 6= 0. (27)

These systems possesses the following invariant hyperbola and invariant lines:

Φ(x, y) =
1

2g − 1
+ cy + xy = 0, L1 = gx+ c(2g − 1) = 0, L2 = x+ c = 0. (28)

On the other hand for systems (26) we calculate

µ0 = µ1 = 0, µ2 = c2g(g − 1)2(2g − 1)x2, γ16 = c(g − 1)2(1− 3g)x3/2 (29)
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and by Lemma 1 in the case µ2 6= 0 these systems possess finite singular points of total multiplicity

two. Other two points have gone to infinity and coalesced with the singularity [0, 1, 0]. So we consider

two cases: µ2 6= 0 and µ2 = 0.

a) The subcase µ2 6= 0. Then c 6= 0 and due to the rescaling (x, y, t) 7→ (cx, y/c, t/c) we may

assume c = 1. In this case the 1-parameter family of systems (26) possess the finite singular points

Mi(xi, yi) (i=1,2) with the coordinates

x1 =
(1− 2g)

g
, y1 =

g

(g − 1)(2g − 1)
, x2 = −1, y2 =

1

g − 1
.

We detect that the singular point M1 is located at the intersection point of the hyperbola with

invariant line L1 = 0 (see (28)) whereas M2 is located on the line L2 = 0 outside the hyperbola.

On the other hand taking into account (29) for systems (26) with c = 1 we have γ16 6= 0 (due to

(27)) and hence by Theorem 2 (see Diagram 5) the hyperbola (28) is a simple one. So considering

the condition (27) and looking at all the intervals given by this condition we arrive at the unique

configuration presented by Config. H̃.25.

b) The subcase µ2 = 0. Then considering (29) and condition (27) we get cg = 0 and we consider

two possibilities: γ16 6= 0 and γ16 = 0.

b1) The possibility γ16 6= 0. Then c 6= 0 (and we may assume c = 1) and this implies g = 0. So we

arrive at the system with constant coefficients

dx

dt
= −(1 + x),

dy

dt
= 1− xy

possessing one finite singular point M1(−1,−1), the invariant hyperbola xy + y − 1 = 0 and the

invariant line x + 1 = 0. On the other hand following Lemma 3 we detect that the line at infinity

Z = 0 is double for these systems because Z is a common factor of degree one of the polynomials

E1(X,Y, Z) and E2(X,Y, Z). Moreover, since µ0 = µ1 = µ2 = 0 and µ3 = −x2y, according to Lemma

1 we deduce that another finite singular point has gone to infinity and coalesced with [1, 0, 0]. We

observe that M1 belongs to the invariant line and it is outside the hyperbola, i.e. we get Config. H̃.26.

b2) The subcase γ16 = 0. In this case c = 0 and we get the systems

dx

dt
= gx2,

dy

dt
= 1 + (g − 1)xy,

for which g 6= 0 (otherwise we obtain a degenerate system). For these systems we calculate

µ0 = µ1 = µ2 = µ3 = γ16 = 0, µ4 = g2x4, δ6 = (g − 1)(4g − 1)(x2)/2

and by Lemma 1 we deduce that all four finite singular points have gone to infinity and coalesced

with [0, 1, 0]. Moreover, for the above systems we calculate

Ek(X) = gx3(1 + g − xy + gxy)

and by Lemma 6 the invariant line x = 0 is a triple one.

According to Diagram 2 the hyperbola is simple if δ6 6= 0 (i.e. 4g−1 6= 0) and it is double if δ6 = 0

(i.e. 4g − 1 = 0). So we arrive at Config. H̃.27 if δ6 6= 0 and at Config. H̃.28 if δ6 = 0.
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2) The case β12 = 0. Then g = 1/3 and we calculate γ16 = −2cx3/9. Since by Theorem 2 in

the case under consideration the condition γ16 = 0 is necessary for the existence of an invariant

hyperbola, we obtain c = 0 and we arrive at the 1-parameter family of systems

dx

dt
= a+ x2/3,

dy

dt
= 1− 2xy/3.

For these systems we calculate γ17 = 32ax2/9 and following Theorem 2 we conclude that for γ17 < 0

or γ17 > 0 or γ17 = 0 we obtain three different configurations due to the number and types of

hyperbolas. Since sign (a) = sign (γ17) setting a new parameter k as follows: a = sign (a)k2/3 after

the rescaling (x, y, t) 7→ (kx, 3y/k, 3t/k) (in the case k 6= 0) or the rescaling x → 3x if a = 0, the

above systems become
dx

dt
= x2 + ε,

dy

dt
= 1− 2xy, (30)

where ε = sign (γ17) if γ17 6= 0 and ε = 0 if γ17 = 0, i.e. ε ∈ {−1, 0, 1}.
These systems possess the following invariant hyperbolas and invariant lines:

Φ1,2(x, y) = 3±
√
−εy − xy = 0, L1,2 = x±

√
−ε = 0. (31)

We detect that these systems possess the finite singularities M1,2

(
±
√
ε, 3± 1/(2

√
ε)
)

(if ε 6= 0) and

each one of the lines intersect only one of the hyperbolas.

On the other hand for systems (30) we calculate

µ0 = µ1 = 0, µ2 = 4εx2, µ3 = 0, µ4 = x2(x+ 2εy)2.

Therefore by Lemma 1 we conclude that in the case ε 6= 0 only two finite singularities of these

systems have gone to infinity and coalesced with [0, 1, 0] and we get Config. H̃.29 if γ17 < 0 and

Config. H̃.30 if γ17 > 0.

Assume now γ17 = 0 (i.e. ε = 0). Then µi = 0 for i = 0, 1, 2, 3 and µ4 = x4 and by Lemma 1 all

the finite singularities of this system have gone to infinity and coalesced with [0, 1, 0].

We observe that the two lines coincide and we get the invariant multiple line x = 0. Considering

Lemma 6 for systems (30) with ε = 0 we calculate

Ek(X) = 2x3(2− 3xy)

and by this lemma in the case under consideration the invariant line x = 0 is a triple one. Since by

Theorem 2 (see Diagram 5) the hyperbola (31) in the case γ17 = 0 (i.e. ε = 0) is double, we arrive

at the same configuration given by Config. H̃.28.

3.1.2.2.2 The possibility N = 0. Then (g − 1)(g + 1) = 0 and as β13 = (g − 1)2x2/4 we

consider two cases: β13 6= 0 and β13 = 0

1) The case β13 6= 0. Therefore the condition N = 0 gives g = −1 and we can assume e = f = 0

due to a translation. So we get the systems

dx

dt
= a+ cx+ dy − x2, dy

dt
= b− 2xy,
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which by Theorem 2 (see Diagram 5) possess an invariant hyperbola if and only if γ10 = γ17 = 0

and R11 6= 0. Calculations yield

γ10 = 14d2 = 0, γ17 = −8(16a+ 3c2)x2 + 4dy(14cx+ 9dy) = 0,

R11 = −6x(2bx3 − cdxy2 − d2y3) 6= 0

and therefore we obtain d = 0, a = −3c2/16 and b 6= 0 and we may assume b = 1 due to the rescaling

y → by. So we arrive at the 1-parameter of systems

dx

dt
= −3c2/16 + cx− x2, dy

dt
= 1− 2xy

possessing the invariant hyperbolas and the invariant lines

Φ1,2(x, y) = 4 + 3cy − 12xy = 0, L1 = 4x− c = 0, L2 = 4x− 3c = 0. (32)

We observe that for c = 0 the lines coincide and this phenomenon is governed by the invariant

polynomial γ16 = −2cx3. So we consider two subcases: γ16 6= 0 and γ16 = 0.

a) The subcase γ16 6= 0. Then c 6= 0 and we may assume c = 4 due to the rescaling (x, y, t) 7→
(cx/4, 4y/c, 4t/c). So we obtain the system

dx

dt
= (x− 1)(3− x),

dy

dt
= 1− 2xy (33)

which possesses the following invariant hyperbolas and invariant lines:

Φ1,2(x, y) = 1/3 + y − xy = 0, L1 = x− 1 = 0, L2 = x− 3 = 0 (34)

and two finite singularities: M1(1, 1/2) and M2(3, 1/6). Since µ0 = µ1 = 0 and µ2 = 12x2 by

Lemma 1 we conclude that two finite singularities of this system have gone to infinity and coalesced

with [0, 1, 0]. So considering the position of the hyperbola, invariant lines and of the finite singularities

we arrive at Config. H̃.25.

b) The subcase γ16 = 0. Then c = 0 and we get the system

dx

dt
= −x2, dy

dt
= 1− 2xy,

for which

µ0 = µ1 = µ2 = µ3 = 0, µ4 = x4.

So by Lemma 1 all the finite singularities of this system have gone to infinity and coalesced with

[0, 1, 0].

On the other hand we observe that the invariant line x = 0 is a multiple one. For the above system

we calculate Ek(X) = 2x4y and by Lemma 6 we deduce that the invariant line x = 0 has multiplicity

four. So considering the invariant hyperbola (34) (for c = 0)we arrive at the configuration given by

Config. H̃.31.

2) The case β13 = 0. Then we have g = 1 and we can assume c = 0 due to a translation. So we

get the systems
dx

dt
= a+ dy + x2,

dy

dt
= b+ ex+ fy,
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and by Theorem 2 (see Diagram 5) these systems possess an invariant hyperbola if and only if

γ9 = γ̃18 = γ̃19 = 0. Calculations yield

γ9 = −6d2 = 0, γ̃18 = 8x2(ex2 − 2dy2) = 0, γ̃19 = 4(4a+ f2)x+ 4dfy = 0

and evidently this implies d = e = 0 and a = −f2/4 which leads to the 2-parameter family of

systems
dx

dt
= −f2/4 + x2,

dy

dt
= b+ fy.

For these systems we calculate µ0 = µ1 = 0, µ2 = f2x2 and we consider two subcases: µ2 6= 0 and

µ2 = 0.

a) The subcase µ2 6= 0. Then f 6= 0 and we may assume f = 1 and b = 0 due to the transformation

(x, y, t) 7→ (fx, y − b/f, t/f). So we obtain the system

dx

dt
= (2x− 1)(2x+ 1)/4,

dy

dt
= y (35)

which possesses the 1-parameter family of hyperbola:

Φ(x, y) = −q/2 + qx+ y + 2xy = 0, q ∈ C \ {0}

as for q = 0 we get a reducible conic.

On the other hand system (35) possesses the following invariant lines and finite singularities:

L1 = 2x− 1 = 0, L2 = 2x+ 1 = 0, L3 = y = 0, M1,2(±1/2, 0).

Following Lemmas 3 and 6 for this system we calculate

gcd
(
E1(X,Y, Z), E2(X,Y, Z)

)
= Y Z(2X − Z)2(2X + Z), Ek(X) = (1− 2x)2(1 + 2x)y/4

and we deduce that the invariant lines L2 = 0 and L3 = 0 are simple, whereas the line L1 = 0 as

well as the infinite line Z = 0 are double ones.

So considering the fact that other two finite singular points have gone to infinity and coalesced

with [1, 0, 0] we arrive at Config. H̃.32.

b) The subcase µ2 = 0. In this case we have f = 0 and as b 6= 0 (otherwise we get degenerate

system) we may assume b = 1 due to the change y → by and we get the system

dx

dt
= x2,

dy

dt
= 1 (36)

which possesses the 1-parameter family of hyperbola:

Φ(x, y) = 1 + rx+ xy = 0, r ∈ C

and has no finite singularities. Calculations yield

µ0 = µ1 = µ2 = µ3 = 0, µ4 = x4, gcd
(
E1(X,Y, Z), E2(X,Y, Z)

)
= X3Z2, E1(X) = 2X3

and considering Lemma 1 we conclude that all the finite singularities of these systems have gone to

infinity and coalesced with [0, 1, 0]. Moreover by Lemmas 3 and 6 the invariant line x = 0 as well

as the infinite line Z = 0 are of multiplicity 3. As a result we arrive at the configuration given by

Config. H̃.33.
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3.2 The possibility M(ã, x, y) = 0 = C2(ã, x, y)

In this section we consider the configurations of invariant hyperbolas and invariant lines of quadratic

systems with C2 = 0, taking into account Theorem 2 (see Diagram 5). Then the line at infinity is

filled up with singularities and according to [26] in this case via an affine transformation and time

rescaling quadratic systems could be brought to the following systems

ẋ = k + cx+ dy + x2, ẏ = l + xy. (37)

Following [26] we consider the stratification of the parameter space of the above systems given by

invariant polynomials H9 −H12 in [26, Table 1 on page 754] according to possible configurations of

invariant lines. So for systems (37) we calculate H10 = 36d2 and we consider two cases: H10 6= 0 and

H10 = 0.

3.2.1 The case H10 6= 0

Then d 6= 0 and as it was shown in [26, pages 748,749], in this case via some parametrization and

using an additional affine transformation and time rescaling we arrive at the following 2-parameter

family of systems

ẋ = a+ y + (x+ c)2, ẏ = xy. (38)

for which we calculate

N7 = 16c(9a+ c2), H9 = 2304a(a+ c2)2

and by Theorem 2 (see Diagram 5) for the existence of invariant hyperbola the condition N7 = 0

is necessary and sufficient. So we have either c = 0 or 9a + c2 = 0. However in the second case the

condition a ≤ 0 must hold and in the case a = 0 we get again c = 0. In the case a < 0 we may

assume a = −1 and c > 0 due to the rescaling
(
x, y, t) 7→ (sign (c)

√
−a x,−ay, t/(sign (c)

√
−a)

)
,

therefore we set c = 3. Moreover the transformation

(x, y, t) 7→
(
2(x− 1), 4(y − x− 1), t/2

)
.

sends the system (38) for a = −1, c = 3 to the system (38) with a = −1 and c = 0. Thus we assume

c = 0 and we get the systems

ẋ = a+ y + x2, ẏ = xy (39)

which possess the following 1-parameter family of hyperbolas

Φ(s, x, y) = a+ 2y + x2 −m2y2 = 0 (40)

as well as the following invariant lines and finite singularities:

L1 = y = 0, L2,3 = ax2 + (a+ y)2 = 0; M1(0,−a), M2,3(±
√
−a, 0).

We observe that the two lines L2,3 = 0 as well as the singular points M2,3 are real if a < 0; they are

complex if a > 0 and they coincide if a = 0. Moreover these three possibilities are distinguished by

the invariant polynomial H9 = 2304a3.

So, considering that all the hyperbolas from the family (40) intersect invariant line y = 0 at the

singular points M2,3 we arrive at the configuration Config. H̃.34 if H9 < 0; Config. H̃.35 if H9 > 0

and Config. H̃.36 if H9 = 0.
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3.2.2 The case H10 = 0

In this case we have d = 0 and we distinguish two subcases: k 6= 0 and k = 0. Since for systems

(37) with d = 0 we have H12 = −8k2x2 it is clear that this invariant polynomial governs these two

subcases.

3.2.2.1 The subcase H12 6= 0. Then k 6= 0 and as it was shown in [26, page 750] in this case

via an affine transformation and time rescaling after some additional parametrization we arrive at

the following 2-parameter family of systems

ẋ = a+ (x+ c)2, ẏ = xy. (41)

For these systems the condition H12 = −8(a + c2)2x2 6= 0 must hold and according to Diagram 5

the condition N7 = 16c(9a+ c2) = 0 must be satisfied for the existence of invariant hyperbolas. On

the other hand for these systems we have H2 = 8cx2 and we consider two possibilities: H2 = 0 and

H2 6= 0.

3.2.2.1.1 The possibility H2 6= 0. Then c 6= 0 and in this case we get 9a + c2 = 0, i.e.

a = −c2/9 6= 0. Therefore due to the rescaling (x, y, t) 7→ (2cx, y, t/(2c)) systems (41) could be

brought to the system

ẋ = (1 + 3x)(2 + 3x)/9, ẏ = xy. (42)

This system possesses the 1-parameter family of the hyperbolas and three invariant lines

Φ(x, y) = 4 + 12x+ 9x2 +my + 3mxy = 0; y = 0, 3x+ 1 = 0, 3x+ 2 = 0, (43)

as well as the singularities M1(−1/3, 0) and M2(−2/3, 0). It is not too difficult to convince ourselves

that in this case we get the configuration given by Config. H̃.37.

3.2.2.1.2 The possibility H2 = 0. Then c = 0 and we get the systems

ẋ = a+ x2, ẏ = xy, a 6= 0, (44)

which possess the following family of conics and the invariant lines:

Φ(x, y) = a+ x2 −m2y2 = 0; L1 = y = 0, L2,3 = x2 + a = 0 (45)

as well as two finite singularities: M1,2(±
√
−a, y).

On the other hand we calculate H11 = −192ax4 and therefore sign (a) = −sign (H11). So conside-

ring the position of the invariant lines and of the hyperbolas given in (45) we obtain the configuration

Config. H̃.38 if H11 < 0 and Config. H̃.39 if H11 > 0.

3.2.2.2 The subcase H12 = 0. Then k = 0 and we arrive at the family of systems (37) with

d = k = 0 for which we have N7 = −16c3 and by Theorem 2 (see Diagram 5) we have to force the
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condition c = 0. Since l 6= 0 (otherwise we get a degenerate system) due to the change y → ly we

may assume l = 1 and we arrive at the system

ẋ = x2, ẏ = 1 + xy, (46)

which possesses the following family of hyperbolas

Φ(x, y) = 1 +mx2 + 2xy = 0

and the invariant line x = 0. We remark that by Lemma 6 this line is triple since for this system

we have E1(X) = X3. So considering the absence of finite singularities of system (46) we obtain the

configuration given by Config. H̃.40.

This completes the proof of statement (B) of Main Theorem.
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The first and the fourth authors are partially supported by FP7-PEOPLE-2012-IRSES-316338. The

second author is supported by CNPq-PDE 232336/2014-8 grant. The third and fourth authors are

partially supported by the NSERC Grant RN000355. The fourth author is also supported by the

project 15.817.02.03F from SCSTD of ASM.

References

[1] S. Abhyankar What is the difference between a Parabola and a Hyperbola?, The Mathematical

Intelligencer, Volume 10, Number 4, 1988, pp. 36–43.
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