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Abstract
Generalized autoregressive moving average (GARMA) models discussed by

Benjamin et al. [1] is a flexible observation-driven model for non—Gaussian time
series data. GARMA models are based on exponential family models and enable
the fitting of models to a wide range of time series data types. We propose a class
of transformed generalized ARMA (TGARMA) models that extend the GARMA
models and discuss maximum partial likelihood estimation and inference. We
obtain a simple formula to estimate the parameter that index the transformation
of the response variable. The TGARMA model is demonstrated by simulation.
We give an application to a real time series data set.

Keywords: Dispersion parameter, Family of transformations, Generalized ARMA
model, Generalized linear model, Profile likelihood.

1 Introduction
This article considers the problem of extending Box-Cox models to a non-Gaussian
framework to deal with non-Gaussian time series models providing an extension of the
generalized autoregressive moving average (GARMA) models (Benjamin et al., [1])
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Suppose we observe a pair of jointly distributed time series {(xt,Yt),t = 1,...,n},
where Yt is the response time series of interest and mt is a time-dependent random
covariate. We work with a rather general parametric family of transformations from
the response variable Yt to

Y.” = Am; A), (1)

where MY}; A) is a known strictly monotonic real function of Yt depending on an un-
known scalar parameter A defining a particular transformation. Frequently, we use the
Box-Cox [2] power transformation for positive continuous time series, th = (Y? — 1) /A
when A 76 0 or IQ“) = log(Yt) when A = O, and assume that there exists a A value for
the response variable such that Y?) follows a Gaussian autoregressive moving average
(ARMA) time series model. Manly [9] proposed the exponential transformation to deal
with negative Yt’s: Ytu) = (e’wt — 1) / A when A 74 O or 1/2“) = log(Yt) when A = 0. Other
transformations can be defined for count, binary and categorical time series. The Box-
Cox type of power transformations have generated a great deal of interests, both in
theoretical work and in practical applications. Inference procedures for the regression
coefficients and transformation parameter under this model setting have been studied
extensively. The power transformation is only adequate for continuous positive data.
Clearly not all data could be power-transformed to normal. Draper and Cox [5] studied
this problem and conclude in one example that if the raw data follow an exponential
distribution, values of A close to its estimate will yield Weibull distributions for the
transformed data. .

Generalized linear models (GLMs), first introduced by Nelder and Wedderburn [10],
are based on distributions that are exponential family models. GLMs extend the normal
theory linear model, include a general algorithm for computing the maximum likelihood
estimates (MLES) and enable the fitting of different types of models to a wide range
of data types. The main ideas of GLMS (exponential family, link function) can be
extended quite readily to time series and several authors presented special GLMs for
time series analysis. See, for example, the references given in Benjamin et al. [1], Li [8]

and Fokianos and Kedem [6], where Poisson, binomial logistic, negative binomial and
gamma GARMA models are discussed and applied to real time series data.

In this paper, we work with a rather general family of monotonic transformations
(1) (see, for example, Sakia [11]) and incorporate the idea of transforming the response
variable to follow the framework of the GARMA model. The transformed generalized
ARMA (TGARMA) model assumes that there exists some A value in (1) such that the
transformed time series Yto‘),t = 1, ..., n, satisfy the full assumptions of the GARMA
models.

In Section 2 we define the TGARMA model and give a summary of key results for
these models. The maximum partial likelihood estimation is discussed in Section 3 for
continuous TGARMA models. Section 4 considers some special continuous TGARMA
models. Sections 5 deals with partial likelihood inference for these models. In Section



6 we present simulated gamma TGARMA models and provide an application to a real
time series dataset.

2 Model Definition
Let {yht = 1, . ..,n} be the observed time series. The transformation (1) applied
to this time series yields the transformed time series {yflt = 1, . . . ,n}. We assume
that the conditional distribution of the transformed response {thflf = 1, . . . , n} given
the past history of the process belongs to the exponential family distribution. The
conditional density function of th is defined given the set Ht = {93m . . . , x1, yt_1, . . . , yl,
pH, . . . , fill that represents past values of the transformed series and their means and
past and possibly present values (when known) of the covariates, meaning all that is
known to the observer at time t, where art is a specified 1 x m (m < n) vector of
explanatory variable. The set Ht then represents covariate and outcome history as a
function of wt, . . . , x1, yt_1, . . . ,y1 and ut_1, . . . ”111. The conditional distribution of the
transformed response given Ht is

w<y§M|Ht> = exp [g {M}. — beg} + act“). at] . (2)

where Ht and (b are the canonical and dispersion parameters, respectively, and b(-) and
c(-, ) are specific functions that define the particular distribution in the exponential
family (2). The notation adopted is the same as for GLMs with independent obser-
vations, but here conditional rather than marginal distributions are modeled. The
conditional mean and variance of th are E{Yt( >|Ht} = at, where W = db(0t)/d9t and
Var{Yt(>‘)|Ht} = gth, where Vt = dut/dfit is the variance function.

As with the standard GLM, the mean [it is related to the predictor 77, by a monotone
link function g() assumed to be known. Unlike the standard GLM linear predictor,
in the systematic component of GARMA models there is an additional component
Tt that allows autoregressive moving average terms to be included additively in the
linear predictor and then the mean pct is given by g(,ut) = m : xtfi + Tt, where fl =
(Q, . . . , fim)T is a set of unknown linear parameters to be estimated and Tt is the ARMA
component given by Benjamin [1]. We propose a general model for the mean M of the
transformed time series defined by the following expression

p q

We) = m = self +Z 901 {g(y§f)j) — art—m} + Z¢j {flit/£2») — my}, (3)
j=1 j=1

which includes many well-known special models. We define the TGARMA(p,q,/\)
model by the equations (1), (2) and (3). GARMA model proposed by Benjamin [1]



is a special case of the TGARMA model when (1) is independent of A and given by
A(Yi§) = Yt-

The class of T GARMA models has potentially wide applications since generalizes
the common ARMA models by considering a more general family of distributions for the
response time series and by including functions of past response and/or past conditional
mean response values and GARMA models by incorporating an extra parameter A.

The aim of the transformation (1) is to ensure that the usual assumptions for GARMA
models hold for the transformed series YQO‘).

The function c(x, gt) in (2) plays a fundamental role in the process of fitting the
TGARMA models. When (2) is a two—parameter full exponential family distribution
with canonical parameters 1/<t and 9/ gt, we have the following decomposition

gas) +d<¢> +dl<x1 (4)

Equation (4) holds for transformed Gaussian, gamma and inverse Gaussian GARMA
models which are discussed in Section 4.

CCU, ft) =

3 TGARMA Model Fitting
We assume that the transformed response lflo‘) for some unknown transformation pa—

rameter A in (1) satisfies the usual assumptions (2) and (3) of the GARMA models.
The m +p+ q + 2 parameters of the TGARMA model to be estimated are then the vec—

tor 7 = (flT,<PT,¢T)T, where fl =(fi1,...,flm)T,w = (sol, . . . , m1", at = (¢1,...,¢q)T
and the scalars gt and A. The main objective in the analysis of TGARMA models is to
make partial likelihood inference on the model parameters. The model fitting procedure
described herein is valid only for continuous time series and exclude count time, binary
and categorical time series.

The partial likelihood introduced by Cox ([4]) is based entirely on the conditional
distribution of the current response, given past responses, and past covariate informa—

tion and functions thereof and can be used for inference. It is used since is conceptually
easy and the profile log-partial likelihood for A could be computed easily in the most
important cases. The log—likelihood for the parameter vector [KTand scalars gt and A

expressed1n terms of the transformed series yw—— (31TH, . . . , gig)?” conditioned on the
first r transformed observations, where r = max{p, q}, leads to the following partial
likelihood

PL<71¢7A) : H 7r(yt(A)|Ht)J(/\iyt)7 (5)
t=r+1

where J (A,y) is the Jacobian of the transformation from yt to yto‘). The log—partial



likelihood for the model parameters is simply

umafiiwe —b()+91} 2M(wasHowe 1111], (6)
t=T+1 t:T+1

and
dA( A)

___
yt;Jo, 11) IT}, ' .

The Box—Cox power GARMA model, termed here PGARMA model, yields log {J (A, yt)} =
(A — 1) 10g Iytl-

We define the local matrices A and B of orders (n — 7‘) x p and (n — r) x q which
are functions of the model parameters by

A ,\go<
>) — xrfl ~- g<y§;1_p)—xr+1-pfi

A : g(yr+)1) _ xT-l—lfi ' ' ' g(yr+)2—p)_ xT+2—p5

,\
. '

A
g(y7(t )1) — xn—lfi ' ' . g(y’r(7, 2p)_ 3:71" 17/6 (n—r) Xp

and
(A) (A)g(yr ) — nr ~~ g(yr+1 q)— 77r+1—q

((/\))_ (W )_B = g yr+1 ”Ti-1 9 yr+2—q 77r+2—q

,\g(yn>\—)
1 — 7711— 1 ' ' ' gyn<( —)q):—

77n—q (n—T)><q

We can write the systematic component (3) of the TGARMA model corresponding to
. (1) (A) - ~the observations yr +1, . . . , yn in matrix notatlon by

K3

= [ X A B ] ga ,

10

where X is the local matrix formed by the rows act for t = 7" + 1, . . . ,n. The systematic
component reduces to 77 : M7, the local model matrix being M = [X A B] of order
(n—r) >< (m+p+q).

For maximizing the log—partial likelihood (6), we assume first that the transforma—
tion parameter Ais fixed and then obtain the partial likelihood equations for estimating
7 and 45 Let 7(’\),77”A” —MW7“) and ¢>(’\ be the maximum partial likelihood estimates
(MPLES) of 7, 77 and d), respectively, for given A. The estimate 7“) does not depend
on the dispersion parameter qb. For fixed A, the MPLE 7(’\)—— (5(WT, QBWT 1/J(’\)T)T can
be obtained from the fitting of the model (72)- (3) to y(’\) by iterativelygo reweighted least
squares

7“) : (Mon/M70) 117W)
”1 Hog/WWW), (7)

5



We can construct easily the iterative algorithm (7) from the weight matrix W =
—2

diag {wr+1, . . . ,wn}, wt = Vfl ($59) and the working variate zo‘) = (zif1,...,zr({\))T
with typical component given by

d
21A)__ m + (yo > _ Ht) 2011),

Ht

where the estimates 779) for t = 7” + 1, . . . ,n are obtained from

q
A A AA A A_$tflA)+ZSO(){(y§_)J~)—xt-jfi3+”)2 w“{g((iii—i») 4753;

and the adjusted means of the transformed series come from If )——g‘1(’\t(’\)) for t——
r+ 1,.. ,n. An initial approximation71“) for the iterative algorithm1s used to evaluate
M (A) WW andz"(7) from which equation (7) can be used to obtain the next estimate
A(/\)
72 . This new value can update M7”, W“) and 2“) and so the iterations continue
until convergence is observed.

We now move to estimate (1) The MPLE ¢((A) of (15 for fixed A can be obtained by
differentiating (6) with respect to (1). We have

$(A)2 Zn: dc(y§A),¢) _Z {y<A)§t(A) Ell—A5}, (8)
t=r+ 1

d¢
¢=¢A t=r+1

where 59)_— q(g‘1($3“ ))). Given the variance function V(x ) we can easily obtain
= f V(:z:))1da: and b((=:r) f q 1(m)d:v, and then the deviance D“) of the TGARMA

model comes easily as

put—z§j{¢”mw”1— b<a¢M>>}— 2§j{%”fim”> b<fi¢”»}. (mt=r+1t=r+1
The MPLE a“) is a function of the deviance. (9) and using (8) we obtain

" (A)

=Ze<M>—%a m1
¢=$<A> t=r+1

amz i dCQ/tm, ¢)

t=r+1 d¢

where e(a:) : xq(:r) — b(q(:r)). Equation (10) is in general nonlinear except for normal
and inverse Gaussian models.

A
Substituting the MPLEs WW and gbm in (6) yields the profile log—partial likelihood

for /\

1 n

bW=§- MWM—b @%}+Z[m“wW>+mmmmy<m
¢< ) t=r+1t=T+1



which in terms of the deviance of the TGARMA model reduces to
T1

_
1

(A))
n

(<A) ,

lam—figeemit —¢(,’t=w,+22 [ca ,¢<A>+~log{J(/\?/t)l] (12)

For any TGARMA model we can construct equation (12) from the functions e(:1c),

c(x, ¢) obtained from (2), the deviance D(’\)and the Jacobian. Then, the MPLE (15W

and the profile log-partial likelihood lp(/\) can be computed numerically from equations
(10) and (12). The plot of the profile log—partial likelihood lp()\) in (12) against A for
a trial series of values determines numerically the value of the MPLE ;\. Once the ;\ is
obtained from the plot, it can be substituted into equations (7) and (10) to produce the
unrestricted estimates ”31 and d. The process of estimating 7, (15 and A can be carried
out by standard statistical software such as MATLAB, S— PLUS, SAS and R.

For two-parameter full exponential family distribution, the decomposition of the
function c(a:, gb) given in (4) yields the equation for (Jim

A A
n ( )

<n—r>¢<*>2d’(¢<*>) = Z t<y§”>—
DA, (13)

t=r+1
2

where t(:c) = xq(x) — b(q(m)) + a(m), and using (8), we can write

W): (n r>v<1“)+2 {d1(y§) +1ogJ(A ya} (14)
t= r+1

where v(m) = xd’(:r) + d(:1:).
In Table 1 we give the functions d(x), t(:c), v(m) and d1(x) which enable us to

compute a“) in (13) and the profile log-partial likelihood (14) for some TGARMA
models, where I‘() and \Il(-) are the gamma and digamma functions, respectively. For
the power Gaussian ARMA models, (14) is identical to equation (8) given by Box and
Cox [2] and can be viewed as a generalization of this equation for some other continuous
transformed non—Gaussian ARMA models.

Table 1: Special Transformed ARMA Models

Model d(:v) t(ac) v(a:) d1(a:)
1 1 1

Normal —5 logx O —§(1 + log cc) —5 log(27r)

log x 1 1 1 1 1
— — 1 r — —1 —\1/ — — — — — —Gamma

2 0g (cc)
xv (x) x

log Hm) logm

.
1 1 1

3Inverse Gauss1an —§ logo: 0 ——2—(1 + log x) —5 log(27rx )



We can estimate the mean of the untransformed series Yt using Taylor series ex—

pansion of Y} = F (i’;('\);)\), where F(.) is the inverse transformation A‘1(.) of (1).
Conditioning on the set Ht we obtain

AA

Em) w F(ut; A) + 92—51? (Mt; A).

Additional terms can be easily included in this equation since the central moments of
YEW are just given in terms of the derivatives of the variance function. For the Box-Cox
power transformation F”(,ut; A) = (1 — A)(1 + Aut)(1‘2’\)/’\.

4 Special Continuous TGARMA Models
For transformed Gaussian and inverse Gaussian ARMA models, (13) yields

A D(")
(A) z¢

n — 7".
(15)

For transformed gamma ARMA models, (13) reduces to Cordeiro and McCullagh’s
equation [3] given by

lager)—w<a<*>*>=2(fit>- 06>

As approximate solution for a“) is obtained from

A 2D(’\)
¢(>\) __

(n—r){1+ <1+%)W}.
For transformed Gaussian and inverse-Gaussian ARMA models, the profile log-

partial likelihood reduces to

(17)

(n—r)
2

[1+10g(27r)l+ i M M (18)
vow)

To maximize the profile log-partial likelihood (18), we only need to find a A value
that minimizes the ratio below

A
{D<A>i7(yo))}”2

/\ = arg min -——~———, (19)
A J (A, y)



where l7(y(’\l) and j(A,y) are the geometric means of V(y,(’\)) and J (A,yt) for t =
r + 1, . . .,n, respectively. For PGARMA models, j(A,y) = flA‘l, where 5 is the ge-
ometric mean of the raw observations yr“, . . . ,yn and, in particular, for transformed
Gaussian ARMA models (V = 1), equation (19) yields a known result given by Yang
and Abeysinghe [12]. For transformed gamma ARMA models, the sum of the first two
terms in (18) is substituted by (n — r)h($), Where

1
h(¢) = 5 [ix (as—1) — 1 — ¢1ogr (¢—1)}.

For small (15, we can obtain to order O(¢3)

_
1 9 _ l _ 1h(¢>) — 3 —

6 210s(27r) 210m
which gives

lp(A) = —(£;—Q {loga— 532}_(n_;r) {1 + log(27r)}+t=rz+1 log $552; . (20)

Clearly, (20) converges to the form (18) when (15 —+ 0 and, therefore, the profile
log-partial likelihood for A for all TGARMA models have the same form for very small
dispersion parameter values.

5 Inference
We can make inference about ¢ and the parametersin 7 conditioning on the transformed
parameter A—— A. Then, the estimated value A is viewed as known, and estimates of
7, m, at and Q3, confidence intervals for these parameters, analysis of the deviance,
likelihood ratio tests, residuals and diagnostics can be carried over routinely to the
TGARMA models in the usual context of GARMA models conditioning on A = A.

Suppose we wish to test whether the estimate of the parameter of the transformation
family (1) conforms to a hypothesized yalue Am). We can easily obtain from (12) a
likelihood ratio (LR) statistic w = 2{lp(A) —lp(A(°))} for testing A = Am) and construct
a large sample confidence interval for A by inverting the LR test. The LR statistic to
has under the null hypothesis an asymptotic x? distribution. Then, an approximate
100(1 — a)% confidence interval for A is given by

{AI MA) > too) — éxrm}.

We can also work with the square root of the LR statistic w1/2, where the sign of the
statistic is that of A — Am), which asymptotically is standard normal, to make inference
about A.



“Thehscaled deviance in TGARMA models is defined conditioning on X by S (X) =
DOV/(13W and can be used for testing the adequacy of a TGARMA model fitted to a
time series data. We can take SW as distributed as x$,_,_m_p_q approximately, but
in general the chi-square approximation may not be effective because the dimension of
the saturated model n — r depends on n and the usual asymptotic argument does not
apply. However, if we are testing two nested TGARMA models, the X2 distribution
could be a good approximation for the difference of scaled deviances conditioned on the
same 5‘. Indeed, consider two nested TGARMA models A and B (A C B) conditioning
on the same A = 5‘ which could be estimated under a well-fitted TGARMA model. For
given 5‘, the systematic component of the model B contains the same parameters of
the model A plus additional parameters, the models being otherwise identical. For 5‘

fixed, let S?) and 5,9) be the scaled deviances of the models A and B with VA and 1/3
linear parameters being fitted. To test model A against model B, the LR statistic is

just equal to the difference between the scaled deviances w(5\) = 52A) — sf?” and has an
asymptotic x38_,,A distribution with an error of order n‘l.

Finally, consider a set of arbitrary TGARMA models J = A, - - - ,I with log-partial
likelihoods [A] obtained by maximizing (6) over all 1/J + 2 parameters, 1/J parameters
in the systematic component of the model J, and over the scalar parameters d) and A.

Evaluation and selection among TGARMA models A, ..., I may be based on Akaike
information criterion (AIC) defined for the TGARMA model J by AICJ = 2(1/ J+2—lJ).

6 Application to simulated and real data
6.1 Simulated data
We assume W = 0 for j = 1, . . .,q and fi = 0 and consider the transformed gamma
autoregressive (denoted here by TGAR) model with reciprocal link function

In this case T = p and the matrix A reduces to

(A) (A)
y yi L,\ . . . A

A 2 95,31 yd )

(A) (A)
yn—1 y.._,, (HM

10



The estimates C5“) can be obtained from the fitting of the model matrix A to y(’\) by
iteratively reweighted least squares

A —1 AAA AAT ,\ AA AAT ,\ A
90/231 = (A2) ”15 )AI(<:)) Aic) ”15 P256 ):

where W = diag{77p_+21, . . . W722} and the working variate zw has components given by

,\
(A) _

(yi )
— Mt)

Zt ~ 771: ——2 -

fit

The estimate A comes as the solution of (19).
We simulate this TGAR model assuming a simple power transformation yto‘) =

y? and p = 2 for specific values of the autoregressive parameters and the dispersion
parameter (15. We aim to illustrate the use of the profile log-partial likelihood to estimate
the transformation parameter A for different values of the dispersion parameter. First,
we consider a time series of small size n = 50 and take A = 2, (p1 = 0.01 and W = 0.8.
The simulated data was obtained with a statistic tool box of the Matlab and all the
estimates were calculated with an structural programming made in Matlab environment.
The time series yt)‘, yt)‘ and the predicted values fit obtained from the fitted TGAR model
are shown in Figures 1 and 2 when the dispersion parameter (15 is equal to 1/10 to 1 / 20,
respectively. The MPLEs of the model parameters are given in Table 1 and the profile
log—partial likelihood for A under theses two models are shown in Figures 3 and 4.

Q8

0.7 - —°— y“’(True)+ V‘W Estimated)
_ — u (Estimated)

Figure 1: Simulated TGAR model, n = 50, (15 = 1/10, A = 2, (p = (001,08)
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25 v |+ y‘WTrue)+ v“)(Esfimatea)

20 _ ——— p (Einmated)

15 '
:I.

3 .
>.

10 -

5 _

0 v I
'

I | | |

0 5 10 15 20 25 30 35 40 45 50

Figure 2: Simulated TGAR model, n = 50, ¢ = 1/20, /\ = 2, go = (0.01, 0.8)

Table 1: True and parameter estimates for a small TGAR time series model
sample size True parameters Parameter Estimates

n ¢ A w (15 A <2

50 0.10 2 (001,08) 0.165 2.415 (0.070,0.690)
50 0.05 2 (001,08) 0.041 2.188 (0.058,0.728)

—284.42

—284.46-' '

454,49-”
E

E
—254.5 > >

v _

5
—284.54' . . .

—284.56-

48458-..” , .,

‘284'61 15 2 zis 3 35 4
A

Figure 3: Profile likelihood for the TGAR model,
n = 50, (b : 1/10, A = 2, (p : (001,08)
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—-307.61

—307.63'

- —307.64 -

Profile

leelihood

—307.65-~- ,. .

'

.. ........ .. .. ...

—307.GB

—307.671

Figure 4: Profile likelihood for the TGAR model,
n = 50, ¢ 2 1/20, A = 2, go = (001,08)

Second, we consider a time series with large sample size n = 300 and take A = 1 /2.
Figures 5 and 6 present the simulated and predicted values from the fitted of the TGAR
model with p z 2, different values of the autoregressive parameters and the dispersion
parameter gt = 1/10 and 1 / 20, respectively. The estimates of the parameters of these
two models are given in Table 2 and the profile log-partial likelihoods for A under these
models are shown in Figures 7 and 8, respectively.

2.5 + ym(True)+ Y(”(Estimated)
—— u (Estimated)

0 so 100 150 200 250
.

300

Figure 5: Simulated TGAR model, n = 300, qS = 1/10, A = 0.5, (p = (0.087 0.85)
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.

—"— y(")(T rue)
4.5 (A) .""9“"Y (Estlmated)

4 _ — p, (Estimated)

Figure 6: Simulated TGAR model, n = 300, 45 = 1/20, A = 05, (p = (005,09)

Table 2: True and estimates parameter for a large sample TGAR model
sample size True parameters Parameter Estimates

0 ¢ /\ 90 ¢ /\ 85

300 0.10 0.5 (008,085) 0.119 0.54 (0065, 0.872)
300 0.05 0.5 (005,090) 00672 0.57 (0045,0.888)

1242.4

1242.2, .. .. a.
v . .. . . . . . f

1242

512413-.. .. . . .. ..
5.

. . I.
E . . .

E 5 z 5
:

312415» .. H, .. ,.._ .. ,_

g
“a 5

r

;

C: 1241.4- . . .. .. . ,. .

1241_2_. ...1241, . .
; ,.

i ; i . i .‘ .

0.2 0.3 0.4 0.5
0716

0.7 0.3 0.9 1

Figure 7: Profile likelihood for the TGAR model,
n = 50, (15 21/10, A z 0.5, (p = (008,085)
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—2997.9 "

4998...

4998.1 , . , . i 5 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

Figure 8: Profile likelihood for the TGAR model,
n = 300, (15 = 1/20, A z 0.5, 90 = (0.05, 0.90)

We analyse other TGAR models fitted to time series data generated for different
sizes n = 50, 100, 200, and 300, by taking the ARMA parameters in the intervals 0.01 5
(pl 3 0.08 and 0.80 S (pg 5 0.95 and for d) = 1/10, 1/20 and 1/30. The values of
the parameter A were taken as 0.5, 1.0, 1.5 and 2.0. These values were chosen to
provide simulated series With good graphical visibility. The simulations were analyzed
and the results were similar to those presented here. The MPLE of the transformation
parameter /\ is usually more accurate for long series. The dispersion parameter gb also
affects the estimates of the parameter A but to a less extent than the sample size of the
series. The MPLEs of the parameters are usually more accurate when the dispersion
parameter qi decreases.

6.2 Real data
The TGAR model proposed in this paper was applied to analyze a real time series
representing the population of the common named American Black Bears, (species
name: Ursus amerz'canus) living in Manitoba, Canada, in the period of 1919 to 1981.
The real time series is shown in Figure 9 and an complete description of this data set
can be find in the Global Population Dynamics Database (GPDD, [7D
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Figure 9: Population of American Black Bears ( Ursus amem’canus)
in Manitoba, Canada, of the 1919 to 1981

After fitting TGAR models of orders p = 1, 2 and 3, we choose the TGAR model of
order p = 1 which yields a good adjustment. The MPLEs of the model parameters are
presented in Table 3. The profile log—partial likelihood for A is shown in Figure 10 and
the transformed data yt)‘ jointly with the adjusted means [It are given in Figure 11.

Table 3: TGAR model adjusted to the Population data
of the Ursus americanus

p A <2 <Z>

1 0.573 0.945 0.061

A future line of research will aim to obtain the variance of the estimate of the
parameter A. Making an analogy with the classical ARMA models, it is interesting to
establish a criterion for selecting the orders p and q of the model and conditions for
choosing the distribution in (2) for a given observed time series and also to know how
to predict future observations.
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Figure 11: Transformed time series and adjusted means of the TGAR model
to the Ursus americanus population data series
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