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Abstract
The purpose of this paper is to study the Bayesian prediction in

M/M/l queues using the Rubin’s Sampling-lmportance-Resampling(SIR)
to simulate predictive distributions of usual measures of effectiveness,
such as the number of customers and the waiting time in the sys-
tem. The histogam approach as described in Albert (1993) is used
via Minitab to assess the prior information of the intensity of traffic
in M/M / 1 queue in equilibrium. Minitab macros based on SIR algo-
rithm are also developed and illustrated with examples. Some com-
parisons with the conjugate Bayesian analysis introduced by Armero
and Bayarri (1992) are also provided. To apply the sampling proce-
dure formulated in this paper, we only need the prior information of
the intensity of trafiic of the M/M/l queue without worrying about
the arrival rate or the service rate.

Key words: Bayesian inference; measure of performance; SIR-algorithm;
histogram approach.

1 Introduction
The M/M/l queue can be described as follows: customers arrive to the
system where the interarrival times follow an exponential distribution with
the arrival rate A; they may have to wait in line if the single server is busy;
service times follow an exponential distribution with the service rate p; the
service times are assumed to be independent of the arrivals. For an M /M / 1
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queue to be in equilibrium, the parameter p = A/p (the intensity of traflic)
has to be strictly less than one. A good book on the subject is Gross and
Harris (1995). Our interest in this paper is the Bayesian analysis of M/M/]
queue and references for this subject are Armero and Bayarri (l992a.b). In
those papers the conjugate Bayesian for (p, A), p and the prediction of various
measures of performance of the queue in equilibrium are treated in depth.
in this paper, we explore the use of one particular simulation technique.
the Sampling-Importance -Resampling (SIR) algorithm (Gelfand and Smith
1992) and the histogram approach as described in Albert (1993), in studying
the predictive distribution of usual measures of effectiveness in a M/M/l
queue system such as the number of customers in the system and the waiting
time in the system. The SIR algorithm and the histogram approach for
the intensity of traffic p is described in Section ‘2 and can be performed
somewhat automatically for the Bayesian analysis in a M/M/l queue. This
method has various advantages which were discussed in details by Albert
(1993) and in queueing problem we need only the prior information about
p without worrying about the nuisance parameters p and A. Finally. since
the these methods are relatively simple. they can be performed using the
MINITAB macros which are presented in the Appendix. In Section 3. using
theSe sampling methods, we derive the prior and the posterior distribution of
p and some comparisons with Armero and Bayarri's results are considered.
Section 3 derives the predictive distributions for the steady-state number of
customers in the system. Also. in Section 3 . using sampling methods. we
deal with prediction about the steady -state waiting time of a customer in
the system.

2 The SIR algorithm and the histogram ap-
proach in a M /M / 1 queue

The Bayesian inferences in a M/M/l queue can be described as follows: Let
us assume that we observe no interarrival times and 715 service times for fixed
no and 715. Let X,- denote the service time of the i-th customern’ = l, 2. . . . ms
and i] denote the time elapsed between the arrivals of customers j — l and
j, j =' 1,2. . . . .n,,, where Y] denotes the arrival time of the first customer.
Following the assumptions of a M/M/l model. 33 ..... Yna is a random sam-
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ple from an exponential distribution with parameter A and X1. . . . ,X,,, is a
random sample from an exponential dsitribution with parameter in indepen-
dent of Y’s. We represent the observed data by z = (3/1. . . . ,y,,a..r,, . . . .:r,,,)
and the joint density is given by:

gets) = A"°e'“°u"'e“‘". (l)

where 0 = (A./r).ta = [y] and t, = 213. The quantities la and 1, are the
total observed arrival time and the total observed service time. respectively.
Suppose that p. the intensity of traffic, is the parameter of interest, so. we can
reparametrize the joint density (1) in terms of (p. y) obtaining the following

joint likelihood;

fl!L(p,/1) at pm}! e““"’“”°’. (2)

where n, = ms + 770 is the total number of observations. Since we are only
interested in the parameter p, we eliminate the nuisance parameter p in (2)
using the profile likelihood given by

Lp(p l 2) ”PW/WWW)
no

72 77-71— p (News)? ' (3)

Following Efron's suggestions (1993). we will use the profile likelihood,
L,,(p I z). asyan approximated likelihood function for p in order to develop a
Bayesian analysis without worring about the parameter 0. At this moment.
we assume that the M/M/l queue is in equilibrium. that is, O < p < 1. From
the Bayesian point of view p is considered as a random variable whose dis-
tribution gets updated, via Bayes theorem, as prior information is obtained.
This prior information about p is quantified by prior distribution 7r(p) which
is updated by the data 2 and quantified by the posterior distribution

rtp I z) = Ix’r(p)Lp(p I s) (4)

where K is a proportionality constant. In the next subsections. we introduce
the histogram approach (Berger. 1985) to take a ‘prior sample' from the prior
distribution .7r(p). and the SIR algorithm to obtain a"posterior sample" from
the posterior distribution 7r(p | :) using the ‘prior sample".



2.1 The histogram approach (Berger, 1985)
One interesting method to construct the prior distribution for p is the his-
togram approach described by Berger (1985) as follows: The interval [0,1]
of possible values for p is broken into subintervals and then one subjectively
specifies likelihoods of the different intervals. Suppose in this setting that
the M /M / l queue is in equilibrium and that the interval [0,1] is broken into
10 equal subintervals l.-,:' = 1,2,. . .,10. After some thought, based on prior
belief about the intensity of traffic p, the likelihoods Lhi = 1, 2, . . . , 10 of the
different subintervals are specified, obtaining the prior distribution histogram
in Table 1.

Table 1: Prior histo ram for the traffic intensity p
I,- L;
I, L,
12 L2

110 Lm

In order to simulate the posterior distribution of p using SIR algorithm which
will be described in Section 2.2, we first generate an approximate prior sample
p1,. .. .pm from the prior histogram showed by Table 1. This prior sample
is easily generated using MlNlTAB commands. The ‘discrete’ subcommand
of ‘random’ chooses an interval 1,- with weight proportional to L; and the
‘uniform’ subcommand of ‘random’ randomly chooses a point p,- inside the
chosed interval 1,~. We suggest the reader to see Albert’s paper (1993) to see
interesting applications of this sampling procedure.

2.2 The SIR algorithm
Suppose that p is the parameter of interest and that a convenient prior sample
(pl. . . . , pm) from the prior distribution 1r(p) is taken via histogram approach.
In this section we formulate the SIR algorithm (Rubin, 1987, 1988) to use this
” prior sample ” to obtain an approximate posterior sample from 1r(p | 2).
Rubin’s algorithm is as follows: Take a prior sample (ph. . . ,pm) from 7r(0)
and compute the sample weights



w(p.~) = 195551 = mm.» 1 z). e=1,...,m.

Then one obtains a new approximate sample (p13 . . . , pt”) with replacement
of (pl, . . . , pm) with unequal probabilities proportional to

(mm u), - . - .Lp(pm | z».

The sample {pf} is approximately distributed from the posterior distribu-
tion 1r(p i z). Fhrthermore, Albert (1993) showed that this method can
be implemented using the MINITAB ‘random’ command with the ‘discrete’
suboommand. It is interesting to note that the prior sample {pg} reflects the
beliefs of the user about the intensity of trafiic p and the second sample {pf}
reflects the beliefs after observing the data z . For the examples described
in Section 3, we the take prior and the posterior sample size m equal to
500. This choice of m was suggested by Albert (1993) because it appears to
be sufficiently large in many problems to provide an accurate description of
1r(p | 2). Since the SIR algorithm is an approximate method, we suggest the
user to read Albert’s paper to know which cautions should be taken in a real
situation. One important problem in the queue theory is to predict the num-
ber N of customers in the system or the total time T that a customer stays
in the system. Then, for a M /M/ 1 queue in steady-state, the distribution of
N, given p, is geometric with parameter (1 - p), that is (see, i.e. Gross and
Harris, 1985)

p(N=nIP)=(1-p)p", n=1,2,... (5)

for p < 1. If the M /M / 1 queue has N future customers in the system, then
the predictive density of N is given by

"(N = n 1 z) = /(1—MW 1 sap. (6)

From the posterior sample {p}, . . . ,p’,",,}, “(N = n I z) is approximated by

5:0 ~ mm)". (7)
i=1



Also, for any given values of p and p , for p < 1, the conditional distribution
of T is exponential with parameter p(1 - p) ( see, i.e. Gross and Harris
1985). Then, its density is given by

,

w(t I M) = #(1 — p)6'“""’", t> 0~ (8)

The predictive density of T is given by

”(t I )= -"3‘“"”’Iw(t I u p)l- (9)

To obtain an approximate predictive density for T using the SIR algorithm,
we suggest the following sampling procedure:

0 Generate an approximate prior sample (pl, . . . ,p,,,) using the histogram
’ approach as in previous sections.

0 Generate an approximate posterior sample (p;,. . . , pfin) from the prior
sample using the SIR algorithm.

0 Using the maximum likelihood estimator of p, given p, that is
n' = 10

we generate an approximate joint posterior sample for (mp) which is
given by

“PL fi(Pi)),- - - a (Pin, fi(an))}- (11)

o Fiom the approximate joint posterior sample given in the third step,
1r(t | 2) is approximated by

—Ew(t I WI")m.) (12)
mizl

3 Some illustrative examples
In this section, we apply our sampling procedure described in previous sec-
tions to a real-life example in Vogel (1979) and compare with the results
obtained by Armero and Bayarri (1992) which used a conjugate Bayesian
analysis and a non trivial non--informative prior. Also, some simulated data
via GPSS /His obtained to illustrate the sampling procedure along within-
formative priors. . ,



3.1 Example 1: Becton Dickinson example

In this section, we illustrate the sampling procedures obtained in previous
sections with a real-life example reported in Vogel (1979) and discussed in
details by Armero and Bayarri (1992) using queueing theory. The problem
was the follows: the manufacturing machines seem to suffer jams and the
major function of attendants was clearing these jams. In the optimum as-
signment, a machine operator was responsible for 5 machines. The situation
was modelled as an M /M / 1 queue in which the jammings were considered the
customers and the machine attendant, the server. We suggest the reader to
see Armero and Bayarri’s paper to known how the assumptions of an M/M / l
queue were checked. Earthermore, based on the data, it was estimated that
each machine is called for service at a mean rate of 60 times per hour;henoe
there are 5 machines, the estimated mean arrival rate (expected number of
jams in hour) is A = 300. Also, it was found that the estimated mean service
rate (expected number of jams fixed by an operator per hour) is [2 = 449.82,
so that, it took on operate an average of time of 8 seconds approximately to
fix a jam. I was assumed that nu = n. = 500. Motivated by the conjugate
Bayesian analysis, Armero and Bayarri used the following non-informative
prior:

1

pa — pm (13)

To apply our sampling procedure discussed in previous sections and com-
pare with the Armero and Bayarri’s results, we adopt the following non»
informative prior distribution histogram for p:

mo, u) °<

Table 2: Non-informative prior histogram for p
I, L;
I; 1.0

I; 1.0

110 1.0

The MINITAB macros that were used in this example are listed in the
Appendix. The MINITAB ‘dotplot’ command is used to give parallel graphs



the two simulated samples for p which are presented in Figure l.

‘4’;"""" ’""""" "““““““ t ------- * --------- + ----- priori
0.00 0.20 0.40 0.60 0.80 1.00

4lillllllllilLL"LLL;L-:LLLLLL;LLLL.'LL--lLi-;;l;--l---l---post
0.550 0.000 0.550 0.700 0.750 0.800

Figure lzParallel Dotplots of prior and posterior samples for p.

Table 3 shows a comparison between the results obtained from our sampling
procedure and the conjugate Bayesian analysis introduced by Armero and
Bayarri (1992).

Table 3: Prior mean and posterior mean for p
prior mean posterior mean
p}; = 0.531 ps‘m = 0.669

Emil? I z] = 0.668

The prior mean by , the posterior mean fism and the dotplots suggest that
the performance of the M /M/ 1 queue is greater than the performance re-
flected by the prior. Errthermore, from Table 3, the posterior mean of p
using SIR algorithm is approximately equal to the exact posterior mean ob-
tained by Armerqand Bayarri (1992) using a non trivial conjugate Bayesian

. up.
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analysis. It is important to emphasize that we get only information of p
without worrying about u as in Armero and Bayarri’a approach.

‘ I I j j ' l 1 | m

.3 —

i‘ "'"'°" CONJUGATE fl

. —— SIR : )

.

1"? " 1c .2 b -“E b .
P‘ -|

.1 '- —.

Z I
l- c-

0
0 2 4 G l 10

N

Figure 2: Predictive distributions of N using the SIR algorithm and the
conjugate Bayesian analysis

Figure 2 presents the predictive distributions of N, number of machines
in the system, using the sampling method discussed in (8) and the conjugate
Bayesian analysis (Armero and Bayarri, 1992). In this example, a machine is
in the queueing system when it is inactive because either it is waiting for the
attendant to clean up the jam, or because the attendant is already working
in it. From Figure 2, we observe that these predictive densities are quite
closed showing a very nice performance of our sampling procedure by using
only an approximate uniform prior information for the intensity of traffic p.
Also, the probability that the system is empty ( that is, all machines are
working) can be easily computed from this distribution and is summarized
as follows:

v Pr(N = 0 I z) = 0.342 (Armero and Bayarri)
15r(N =o | z) = 0.330 (SIR algorithm)

Figure 3 shows the predictive distributions of T, the time that a machine
spends in the system to be fixed, using the sampling procedure introduced in
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Figure 3: Predictive distributions of T, time a machine spends in the system,
using the SIR algorithm and the conjugate Bayesian analysis

the previous section and the Armero and Bayarri’s method. The distribution
appearing is not actually that of T, but the one of U = T/f" where f, = 8
seconds, is the average time needed to fix the 500 jams. Also, the predictive
distributions are quite closed and the means and variances are :

EIT I z] = 2.9605. (Armero and Bayarri)
Var[T I z] = 9.229tf (Armero and Bayarri)
sum] = 3.1052, (SIR algorithm)

varu‘ | 2] = 9.93723 (SIR algorithm)

3.2
0

Example 2: Predictive distributions for the num-
ber of customers and the waiting time in the sys-
tem: Informative prior

In this example, we undertake a Bayesian analysis of a simulated experiment
in which n“ = 28, n, = 25, p = 0.8, t, = 20.1558 and t,I = 27.4949 along
with an informative prior. The sample prior for p was generated from the
prior histogram given by

10



Table 4: Prior histogram for p

. L;

10

I; 20

I; 30
13 40

19 90
110 95

Note that the subinterval of highest likelihood is (0.9, 1.0), indicating that
the Bayesian statistician expects a strong intensity of traffic in the system.

20 1 r T l r i 1 1 7
p .
P -
n d

15 "' —4

' "i
" “i

: - i
Z .10 - _vQ. " ..

b -
.os ~ —

r. J

r
G

O J I 1 1 J I r l 1

0 2 I B O 10

N

Figure 4: Predictive distributions of N using SIR-algorithm

Figure 4 shows the predictive distribution of N , the number of customers
in the system obtained from the SIR~ algorithm. To see how the statistician’s
prior opinions about p can be modified by the data, some quantiles of the
prior and the posterior distribution of p are given in Table 4.

Quantiles of theJarior and the osterior distributions of p
order 0.25 0.50 0.75 0.95

prior quantiles 0.500 0.724 0.991 0.999

,,
posterior quantiles 0.705 0.826 0.915 0.997
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Figure 5: Predictive distributions of T using the SIR algorithm.
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Appendix

aaaaaaauonaunaelaaalaasaaaaaaa!a!aoutatautaaauaaaellaout!alaaaualaaaaaataaaaaaa Minitab macro ‘data- setup'
a Example 2

8 Set up data columns and enter histogram for traftic intensity
name ct 'vat’ c2 'hts' c3 'p' c4 'rvat' cs 'unif' cs 'priori'
name c7 ’loglike’ ca ’post’ c9 ’probs’

set ’vat’
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
and
set 'hts’
10 20 30 40 50 60 70 80 90 95

and
let kt = 500 8 number of simulated values
lat k2 = 0.1 a width of each histogram
let k3 = 28 a total the interarrival times
let k4 = 53 8 total of the observation
let k5 = 27.4949 a total time of the interarrival
let k6 = 20.1558 t total time of the service

flafifl§#8§flfl#fifi#“fl88fl88fl'fifififil'flSQ”flfifififlfifiwfiflflfitfiflflfififlfiflt8#fi#fi#8¢¢fl§fltfififlfiflflflttfl

aaaaesweeaa8388anacease«etcatawaaaaweesaaaaavaaaeaaweaxeweaaacaeueaesewacoaaaa
a MINITAB macro ‘priori.sim’
let ’p' = ’hts’/sum('hts’) a
random kt ’rvat; a
discrete 'vat' 'p’. a Simulate from
random kl ’unif’; a prior histogram
uniform 0 k2. a
let ’prior’ = ’rvat’ + ’unif’ - k2/2 a

awaeewaaaeeewaawaeweeewaessaceauwaaaaan:«aaaannex:neeeaeaaaaeeeaaaaeaanueaaaae

¢##8¢¢#8#368838#888a####“8&8“flfi#######“Sh“flfiflfltflfiflfiflflflfi“fififlwflflfififififiwafihfififlctnk
8 MINITAB macro 'post.sim'
u Simulate of posterior
let ’loglike' = k3'log(c6)+k4‘log(k3)- k3'log(c6'k5+k5)--k4 : Compute likelihood
let 'probs‘ = & exp(' loglike’-max(’ loglike’ ))/ at prior sample

sum(’ loglike’ —max(’ loglike’ ))) w and normalize
e likelihood values

random kt ’post’; a Simulate posterior
discrete ’prior' 'probs’. # sample
let 'servi’: k4 / (’post" k5 + k6) a maximum likelihood estimator

. e of service rate
8“flfififlfit“flfiflflfifiSfl##Q##$#“8&83&08###38888#8#Q83###fiflfifififlflflflflfl“fifilfilflfifififlfiflfifiltfi



l!!!IlfiullfiflIO!flOllfifillfllllflflfllfifllfilflfll'lflfl...fll'IGQOOQQOOQOIGQQOOOOOQOQQIOIOG
a MINITAB macro ’prednu.sim'

0 Compute predictive probability of number the custormers in the system

name c13 ’predn’
let k7 = 0 t number of custormers in the system
let c12 = (1- ’post’) ' (‘post"' kl) 0 distribution geometric
let ‘predn = sum(c12)/k1 a predictive prob
print 'predn’

«use»aswhe«werandathanwawsaauata«atraraaawhaveananotawetwaaflwaawhaaaaaahaoocsa
n MINITAB macro ‘predsi.sim’
a Computes predict the total time T that a customer stays in the system

name c15 'predsi’
let R12
let c14

T 8 time
’servi"(1—'post')‘exp(-’servi"(l-'post’)‘k12) a density the waiting

a time in the system
let ’predsi’= sum(c14)/k1
print 'predsi'
canawnandthetaflaevade«whenaawanaaaasrawaaawaaaw:wwetheafiawwuecwaaaawuwwaaaearr

h MINITAB macro ’meanvar.num’

a Computes the mean and variance of the distribution of the
a number custormes in the system

name c17 ’mean’ C19 'var'
let c18 = ’post’/ (1— ’post’)
let ’mean’ = sum(c16)/k1
let C18 = (’post"' 2 )/(( 1 - 'post’) " 2)
let ’var’ = sum(c18)/k1
print ’mean’ 'var‘

fiwfi#t#####fl##8#flflwfiflfifit'fifififitfi'fiflfl'fl'flfifififlflfififlfi'flfi'flfiflflfififlflfltttfiflfifllflflfifltflttat
8 MINITAB macro ’meanvar-syste'
# Computes the mean and variance of the distribuition
a the waitaing time in the system

name c21 'meansy' c223 ’varsy‘

let c20 =1 / ( ’servi" (1 — ’post’))
let ’meansy’= sum(c20)/ kl
let c22 = 1 / (('servi"' 2) ~ (( 1 - 'post')" 2))
let ’varsy’= sum(c22)/k1
print 'meansy’ ’varsy’

3&0flflfifififi“wfififlfifl”a6flflfifififlfifitfifi#8###0#fiflfiflfiflflfifllfififlfifi“Q“fififififififitfiflfififififitflfilfi'ffi
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