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Abstract
In this paper, an explicit analytical form of the Bayes estimator

for the normal location parameter using Linex loss function with a
general class of prior distributions is derived. Exact and approximate
results based on Pericchi and Smith’s paper (1992) are given where
the prior is double-exponential or Student t respectively. The results
of this paper provide a link between the robust Bayesian analysis for
the normal location parameter using the Linex loss function and the
squared loss function.
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1 Introduction
For -a normal likelihood with known variance, Zellner (1986) derived an ex~
plicit analytical form of the Bayes estimator for the mean using Linex loss
function and a normal prior. However, a Bayesian estimator is not readily
available when other prior densities are utilized. Pericchi and Smith (1992)
derived, under squared error loss, explicit expressions for the posterior mean
and variance of the mean 9 of a normal distribution with known variance



and an arbitrary prior for 0. The purpose of this paper is to follow the same
ideas of Pericchi and Smith’s paper, but under the Linex loss function. In

Bayesian estimation, the loss function and prior distribution play important
roles. Symmetric loss functions have been used by several authors includ-
ing Berger (1980) and Sinha and Kale (1980). Researchers such as Ferguson
(1967), Zellner and Geisel (1968), Aitchison and Dunsmore (1975), and Var-

ian (1975) have been pointed out that in some estimation and prediction
problems use of symmetric loss functions may be inappropriate. That is,
a. given positive error may be more serious than a given negative error or
vice-versa, e.g. in dam construction, underestimation of a peak water level
is much more serious than overestimation. Varian (1975) introduced, in his
applied study of real estate assessment, a useful asymmetric loss function
known as Linex loss function that rises exponentially on one side of zero and
almost linearly on the other side of zero. The Linex loss function is given by

L(A)=bc°A—cA—b, a,c#0,b>0. (1)

where, A = 0 ~ 0. Also, for a. minimum to exist at A = 0, we must have
ab = c, and thus L(A) can be written as

L(A) = b[e“A — aA — 1], a 75 (Lb > 0. (2)

This loss function reduces to squared error loss function for small values of
| a I. Zellner (1986) used this loss function for estimating the normal location
parameter with normal prior and known variance and for other problems. In

this paper, we consider the double-exponential and Student t-prior for a
normal location parameter with known variance and some aspects of robust
Bayesian analysis in the sense of Pericchi and Smith (1992). Let 1r(0 | D)
denotes the posterior density function of 0 with respect to 1r(0), where D
denotes the sample and 7r(9) the prior density. Let E(- | D) denotes the
posterior expectation with respect to 7:(0 ( D). The posterior expectation of
the Linex loss function in (2) is

Rm?) = mu» 1 D) = bief'tEre-“fl ID) — aré — are l D)) — u, (3)

and the value of d that minimizes (3) is

- 1

03: —(H)108(E(€—“0 lDlli (4)
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provided, of course, that E(c'°9 I D) exists and is finite. This involves
evaluation of moment generating function for posterior density. The main

purpose of this paper is to present. a robust Bayesian analysis similar to
that of Pericchi and Smith (1992), but applicable to the Linex loss function.
The basic results and the Bayes estimator of the normal location parameter
0, taking a, normal and diffuse prior for 0 using Linex loss function (2),
are introduced in Section 2. Section 3 is devoted to the case of a double-
exponential prior and the case of a Student t- prior is examined in detail in
Section 4. In this paper, the influence of the prior on the Bayes estimator 55
is discussed in detail when the Bayes estimator under the diffuse prior and
the prior location parameter are in conflict. The results of this paper provide
a Bayesian analysis for a normal location parameter using the Linex loss
function and non-normal priors and state that the influence of these priors is
not affected, in the sense of Pericchi and Smith (1992), when replacing the
Linex loss function by the squared loss function.

2 Estimation of mean: Basic results
Consider n observations 1,517 = 1,...,n drawn independently from a nor-
mal distribution with unknown mean 0 and known variance 02. It is known
that 7 = n“](X1 + . .. + X") is a sufficient statistic for 0, so, we replace
our original sample D by X. We shall denote the density corresponding to
Y = 7 ~ N(0, 02/11) by p(y — 0). All the integrals in the following theorem
are assumed to converge over the range (—oo, 00).

Theorem 1. Define

m(-) = / pt- - 0)r(9)d9

for any 7r(0). Further define

Then



(a) 98=y*.'-277-H(y) (5)

(b) RLWB) = bi — (lb-fly) (6)

(c) Hm = 1 fig,” swan (7)

where z = (1207/5211.

Proof.

(3)
It is not hard to see that

m(y)E(e““0 131) = jc—“Bmy —- 0)7r(6’)d0

2

= egg-fil-‘aynl(y ._ if.)
Tl

Hence, from (4) we have that the Bayes estimator is given by

l —aB __GB — —zlogE(6 ) '_ y 2" 210g(
TIT-(y)

)'

(b)
From the theorem given in Pericchi and Smith (1992) we have that

0.2
E(9 I y) = y — —1;S(y)~ (8)

It is easily seen that
m(y - aaQ/n)

E(e’°€ I y) = exp{—a(y — a02/2n)}
m(y) 1

so that, by (3) and (8) the result easily follows.

(C)
The definitions of H (y) and s(y) straightforwardly yield:

1 2 _
1 y.

H(y) ~ ‘;[109(m(y))*109(m(y - ac /n))1—
a (new saw.
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If a diffuse prior ,1r(0) cc const, is employed, the optimal estimator in (5)
and the posterior expectation of the Line): loss function in (6) are given by:

2
e no00 = y— 377- (9)

ELMO) = 52, (10)

as shown in Zellner (1986). Then, as in Pericchi and Smith (1992), the
representation of (is in (5) provides insight into the influence of the prior
distribution on the optimal estimator 93. Thatis, if the prior 7r(0)15 such
that H(y)lS bounded as a function of 0C — p, where 11 is the prior mean
and y is fixed, then 05 -— 00is boundzed

We note that this15 is not true
for the the conjugate prior 7r(0 l 11,7“: ¢(p ] 11, 2), for which H(y )=me—pp) and discrepancies between 00 and prior mean 11 can lead

to unbounded departures of 93 from 00. For this normal prior, the optimal
estimator of 0 can be rewritten as

~

_ y A (102
03 " 1+1+1+A" 2n(1+,\)’ (11)

= E(o|y)-§var(0|y), where (12)
2

-
0

1 - F.
The expression above were obtained by Zellner (1986) without considering

the robustness problem.
The next two results provide an interesting insight into the behavior of the
optimal estimator to the prior distribution using the Line): loss function.

Theorem 2.

(a) If s(t) is continues on J = [y — 002/17, y], (a > 0). then
2

A

H(y) = $4400) and (13)

63 = E[0 | éc].

(b) If s(t) is increasing on J, then there exists a. number c on J such that

Ho) = Eilwcso—aefi/muwhen» whee (14>



c —- y + aa2/n
ao7/n '

Proof.

(a) The results trivially follows from (7) with a. straightforward application
of The First Mean Value Theorem
(b) The result trivially follows from (7) with a straightforward application of
the Second Mean Value Theorem.
These two results provide an important insight into the behavior of H(y).
The first one shows,when the prior mean is in conflict with 90, that the
sensitivity to the prior is the same under the Linex loss function and the
squared loss function. That. is, the parameter a of the Linex loss function
does not affect the influence of the prior. The sec0nd one shows that H(y)
is a weighted average of s(y) and s(y — (102/71). In particular, for all c in J,
we observe from (14) that

8(y — 002/17) 5 HM S Sty),

which states that the influence of prior mean u on 53 is bounded in J. AlSo,
if s(t) is bounded for any t, we see from (7) that H(t) is bounded.

It will be shown in the next. two sections, that the lack of robustness
property of the normal prior is not shared by the double-exponential and
Student t-priors. We see that (5) and (6) exhibit the modification of dc and
RL(GC) due to the prior input. To study the sensibility of the prior input
we consider H(y) or s(y) as a function of (50 — y or y - p, respectively.
The sensibility of the prior distribution is quantified by the behavior of H (y)
when using the Linex loss function and by s(y) when using the squared loss
function. Result (7) provides an interesting link between the sensibility of
the prior input under the Linex loss function and the squared loss function.
We show in the next two sections, from (13) and Pericchi and Smith’s results
(1992), that the sensibility of the double-exponential prior and the Student
t—prior is not affected when replacing the squared loss function by the Linex
loss function. In conclusion, the robustness for these non-normal priors with
respect to 03 is not affected by the parameters a and b of the Linex loss
function (2).



3 Exact representation of 93 with double-
exponential prior

Pericchi and Smith (1992) derived, under regularity conditions, explicit ex-
pressions for the posterior mean and variance of the normal mean parameter
0 with known variance 07 and a double-exponential prior for 0 with mean
and variance p and 112, respectively, that is, a prior distribution for 0 with
density function

fM) = fawn-72 WW I}.

These authors, in a straightforward manipulation established that
01

m(y) = yfi{F(y)+G(y)}, (15)

my) = exam/unfit — y — In},

CD A f: v H exr{—C(y)}¢{--;‘/E(u — y + b*)},

, i _
07x/5 \/§

a = eXPi b‘ 604) = 7(y ~ fitnix2 ' n 1/
’

where (l>( ) denotes the standard normal acuniulative density function. In
particular, they established that

n17

-b*—, s sty) < b’ (16)
a _ 57

From (7) or (13), a straightforward computation yields

-b* S H(y) S b‘, or,
—b*+éc S éB 5 ”+50

which establishes that the influence of y. is bounded. Assuming a squared
loss function, Pericchi and Smith (1992) obtained the same b" bounds for
E[0 | y] — y. Using (5) and (15). the optimal estimator relative to the Linex
loss function (1) and the double-exponential prior is

— — l F(y — (102/11) + G(y — 0.02/17)
0 = 0 — —I

.B C
a
0“ F(y) + Gm

}.
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4 Approximate representation of dB with a
Student t-prior

If we chose a Student t-prior for 0, with location and scale p and 1, and
degrees of freedom 0, then the prior density has the form

(0 T “Yr-22”-
01'2 '7r(0)o< {1+

It will be convenient to denote this density by t(0 | o,y,1'2). Assuming the
squared loss function, Pericchi and Smith studied the model

y ~ N(0,02/n),
0 ~iWImflJL

where the parameters p,’r,o and 02 are supposed known. These authors
developed an insightful approximation to s(y) given by

. (o + 1)(y — Ill
s = ————————-. 17(y)

0T2+(y—I1)2
( )

Thus, using (5), (7) and (17), the optimal estimator relative to the Linex
function and the Student t-prior t(0 I o,;1, T) is

- 0.02 (0+ 1) 07 20(y —— 007/277 — p)a — — — I —— ——————————OB y 211 20 09“
n 072+ (y—u)?

}- (18)

Also, from (13) we observe that H(y) in (18) behaves like s(éc) in (17)
and is not affected by the parameter a. Figure 1 shows the influence of the
discrepancy, computed from (18), between the prior mean y and the optimal
estimator dc on the optimal estimator (18) for, o = 9, n, =: 10, T =
a = 1 and different values for a. The figure shows that the qualitative
form of this influence is equal to that obtained by Pericchi and Smith and
that this influence measured by H (y) is not affected by the value of a. In
conclusion, the sensibility of this prior for the normal mean parameter is
not affected when replacing the squared loss function by the Linex function.
Future extensions of the results of this paper, when the likelihood has an
exponential family form and any prior using the Line): loss function, will be
given elsewhere.
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