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Resumo

Neste artigo, uma abordagem quase— Bayesiana para 05 problemas de es-
timagao niio linear é considerada. As formulas dadas estao baseadas no
procedimento de Gauss-Newton e requerem somente o conhecimento dos
primeiro e segundo mementos das distribuigoes envolvidas. 0 use do pacote
GLIM para resolver os problemas de estimagao é discutido. Aplicagoes sao
feitas para 05 problemas de estimagao em regressao linear inversa, regressao
com erros nas variaveis e estimagao do tamanho da populagao animal. Al—

gurnas ilustragoes numéricas sao apresentadas. Para 0 modelo de regressao
inversa, comparagoes com a inferéncia Bayesiana usual e outras técnicas sao
analisadas.
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Abstract
In this paper, a quasi—Bayesian approach for nonlinear estimation problems is consid-

ered. The formulas given are based on the Gauss-Newton estimating procedure and require
only the first and second moments of the distributions envolved. The use of GLIM pack-
age to solve for the estimation problems considered is discussed. Applications are made
to estimation problems in inverse linear regression, regression models with both variables
subject to error and also to the estimation of the size of animal populations. Some numer-
ical illustrations are reported. For the inverse linear regression problem, comparisons with
ordinary Bayesian and other techniques are considered.

Keywords and Phrases: Animal population sizes; Inverse linear regression; Gauss-Newton
estimation procedure; Nonlinear quasi-Bayesian estimator; Regression models with error in
both variables.

1 Introduction
The discussion in the statistical literature on how to solve the inverse linear regression

problem is characterized by disagreement and confusion. See for example, Krutchkoff (1967),
Hoadley (1970) and Hunter and Lamboy (1981). Dobrigal et a]. (1987) developed an aprox—
imate conditional inference for the problem. Kalotay (1971) presented a structural analysis
(Fraser, 1986) of the linear calibration and Minder and Whitney (1975) advocated the likeli-
hood approach.

In this paper, a quasi-Bayesian approach is proposed for solving the inverse linear regression
and other nonlinear problems. In the case of the inverse linear regression problem the solution
is original in the sense that it is considered as a nonlinear problem and the original variables
are replaced by differences conviniently taken in order to eliminate the intercept parameter.



The estimation procedure suggested in this paper enables the statistician to incorporate
prior information when available about the parameters envolved in the estimation process, a
feature not always shared by the strict Bayesian approaches proposed in the literature. This
weakness of the ordinary Bayesian approach has been pointed out by some authors (Lawless,
1981).

The remainder of the paper is organized as follows. In Section 2, the quasi-Bayesian ap-
proach to nonlinear estimation is proposed. In Section 3, application is made to the inverse
linear regression. Numerical comparisons with standard Bayes and other techniques are re-

pondAWMMMwwnywmnnMMammnmnnmmwmwMaMuMWMWoHM
size of animal populations are considered in Sections 4 and 5.

2 Nonlinear Quasi-Bayesian Approach to Estimation
The usual Bayesian approach to estimation requires a. complete especification ol' the dis-

tributions envolved. Hartigan (1969) proposed an estimation method that requires only the
first and second moments instead of the complete distribution. As in Hartigan (1969), it is
assumed that a set of observations Y’ = (y1,...,yn) satisfies the nonlinear Bayesian model
represented by

flflflzflwzudeMYM=VWL (n
where 0’ = (01,. . .0,,) is a vector of unknown parameters. With respect to the distribution of
0 it is only assumed that

E[0] = 00 and Var[0] : Z , (2)

where 0° and E are known. The n x 1 vector f’(0) = (f1(X1;0),. . . ,ann;l9)) is a vector of
known and twice continuosly differentiable functions in 0, where X; = ($11, . . . , wig) represents
a vector of known explanatory variables. The problem is then how to combine (1) and (2)
to produce sensible estimators of 0. The natural way would be via Bayes theorem. In the
next definitions, the notions of quasi-prior and posterior distributions to solve the nonlinear
estimation problem proposed above are introduced. The first definition was introduced by
Wedderburn (1974).

Definition 1 We define, following Wedderburn (1974) and McCullagh (1.983), the logarithm
of the quasi-prior function of 0 by the relation

3. —1

£359 = Zoo—e). (3)

where E and 00 are known.

As mentioned above, the natural. way of combining data and prior information is via Bayes
theorem. Therefore, the logarithm of the quasi—posterior function of 0 combines naturaly, via
Bayes theorem, Wedderburn’s quasi-likelihood function and the quasi-prior (3).
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Definition 2 The logarithm of the quasi-posterior function of 0,H‘(0|y), is defined by the
relation

3_H*(0|y) _§;(a s) + Irv-1mm - a) , (4)

where D = g? is an n x p matrix.

Expression (4) will be represented by U(9) in the sequel.

Definition 3 The quasi-Bayes estimator of 0 is considered to be the value of 0 that maximizes

H*(0|y), that is, the value of 0,46", that satisfies

Egg?!) |0=é, : u(é*) = 0.

By replacing 152?ng by its expected values K(0) = 2—1 +D’V-1(u)D (called the quasi-
information matrix), as recomended by Wedderburn (1974), 0" may be obtained by the iter-
active procedure that results from equation (essentially Fisher’s scoring technique)

_1 —1

é(m+l) = 9(m) + (E “lbw—10013) U(0)|e(,,.)~ (5)

Equation (5) holds iteratively until convergence, that is, until ||0(m+1) —— 0(m)|| S e, for
some fixed 5. Note that if f(0) = X0 and V(()) = V, the usual linear set up, then

9" = 019m +(1 — Coos ,

where I is the identity matrix of appropriate dimension,

A -1 _ -1
em = (xv-1x) x'V‘1y and cl = (Z 1

+x'V‘1x) x’v“x ,

is the usual linear Bayes estimate of 0, which was obtained by Hartigan (1969), among others.
The maximum value 0* has quasi-posterior variance

—1 -1 “1
Coo <9") = —-E [a—géfi] I5. = [Z +D'V—1(u)D] |5.. (6)

3 Using GLIM Package
Another way of presenting the iteractive procedure above suitable for using GLIM is now

described. The iteractive procedure described by (5) may also be written as

K (0m) [9mm — 0m] = U (9070) ~
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We shall assume that D is of full rank r, and that K(()) the quasi-information matrix is
positive definite throughout the parameter space. Thus, (5) is a nonsingular p x p system of
equations for 9(m+1) and we can find a Cholesky decomposition of K(0),K(0) = Q(0)’Q(0),
where Q(0) is an p x 1) upper triangular matrix with all diagonal entries positive. Now, (5)
may be writen as

Q'(9(m))Q(9(m))0(m+1) = Q' (9070) T (9070) ’ (7)

where

fur) =Q(9)9+Q(9)"1U(9)- (s)

It results that 5* can be found using an iteratively weighted least squares algorithm with
working independent variable Q(0) and working dependent variable ‘r(0). The decomposition
of K(0) can be time-consuming, but this way of computing d* has numerical advantages
concerning rounding errors.

Although the algorithm outlined here is applicable to many positive definite quasi-infor-
mation matrices K(0), it is limited in practice since it is much more complicated to handle
the required Cholesky decomposition in statistical packages like GLIM and GENSTAT. It is
to be hoped that the enhanced matrix handling and inversion facilities of GLIM4 will enable
to do a separate Cholesky decomposition followed by the ordinary least squares procedure to
obtain é’“. '

An important special case in which we may easily use GLIM to compute 5“ occurs when
V(u) is a diagonal matrix. When V(u) is diagonal, we use the Cholesky decomposition of
2,2 = P’P, where P is an p x p upper triangular matrix. This yields the following
partitioned quasi-information matrix

KW) = A(6’)'W(6l)A(49), (9)

where

w<o>=(v-‘<u> om)OTX'n ITXT

is a diagonal matrix of order (n — p) with O“, and On“, being n x r and n x n zero matrices,
respectively, Ipxp being the identity matrix of order p and A(0) = (D’P_1)’ being an (n + p) x r
hypothetical local model matrix. The additional p rows to form the augumented matrix A(0)
represent the quasi-information we get from the quasi-prior function proposed for the vector
0.

The log quasi-likelihood function U(0) becomes

Um) = A(o)'W(0) ( y — u ) . (10)
P"‘(0. - a)

From (4) and (10), it results that



A'(0(m))W(0(m))A(0(m))0(m+1) = A(0(m))'w(o(m,)r(o(m,) , (11)

r(o) = (y - u + D0)
PI—lgo

is an (n + p) x 1 working dependent variable to be regressed on the columns of A(0). It is now
shown that the computations of the iteratively weighted least squares procedure (10) and (11)

may be performed in GLIM with a few modifications.
If we assume that there is a vector of additional observations (Yn+1, . . . ,Y,,+T)’ defined

by P"10° with corresponding variances equal to one, and denoting (Y1,...,Yn+,)’ as the
dependent variable and specifing the columns of A(()) by the FIT directive, it may be seen
that W(0) will work as a modified weighting function and I‘(0) will have the same form as
the modified dependent variable in GLIM. The columns of A(0) must be recalculated in each
iteraction and therefore, we have to use only one step of the GLIM algorithm by declaring
RECYCLE 1. Here, the system vector of the linear predictiors % LP in the mth iteration is
calculated as

Pl—leo

and it should be redefined for the next iteration by replacing Dim)0(m) by f(0(m)) after ex-
tracting 0(m) in %PE. Of course, before the first iteration %LP must contain starting values
defined by replacing D(m) by D(°) and 0(m) by 0(°) in I‘(0), where 00 denotes a initial guess
for 0 and Dan is the value of D at 0(0)°

_

We have to use the OWN directive by setting up the model through 4 macros. In the first
macro we let %FV = %LP. In the second macro, %DR = A and in the third the vector % V
A represents the (n + p) vector of variances (”(Itl), . . . , ”(Mn), 1, . . . , 1)’. In the forth macro we
have to define an analogous of the deviance components to calculate %DI.

We are proposing a nonlinear Bayesian approach based on the quasi-likelihood approach
of Wedderburn (1974), which surely is related to the work of Hartigan (1969). Thus, emphasis
is placed on the relation of the approach with the GLIM Package, which can facilitate the
derivation of these estimators.

where

4 The Inverse Linear Regression Problem.
The discussion in the statistical literature on how to make inference under the inverse linear

regression model is characterized by disagreement and confusion. In this section, we look at
the inverse regression problem as a nonlinear problem and an alternative solution based on
the results of Section 2 is proposed. The usual set up of the inverse linear regression problem



can be stated formally as follows. Two sets of independent random variables ylh... ,yin and
3/21, . . . , yzn are taken, where,

111; = a+fi$i +61i,

3/2j = a + flX + Czj, (12)

elf N (0,02) and elf N (0,02) r

i = 1,...,n and j = 1,...,m. It. is assumed that m1,...,:rn are known constants, 02 is
known and a and [i are unknown. The problem is to make inference about Y based on
y11,. .. , yln,y21,. . . ,y2m. Without loss of generality, the tags may be chosen so that

n n

ng=0 and 2:33:11. (13)
i=l i=1

Ordinary Bayesian solution to this problem are given by Hoadley (1970) and Hunter and
Lamboy (1981), among others. In their papers, the errors 61,- and Eli are considered to be
normaly distributed and a noninformative prior is considered for a and fl. Emphasis was
given on justifying the classical or inverse estimators, rather than on finding more convenient
alternative solutions. The solutions to the estimation_problems most widely recommended in
the literature are the classical estimator, XMLE = 942311, with BMLE = % ELI ‘ylixi, éMLE =
1], also known as the maximum likelihood solutions and the inverse estimator which is given
by

X1 __
"(ii/[LE 92 — 91

_ _ 2 -——-——r
2321 (ya — 1/1) flMLE

where 71 = 2:21 yu/n and 92 = 2321 ij/m.
For a detailed discussion on the properties of the above estimators, we suggest Krutchokoff

(1967). Since the main objective is to estimate X, we may eliminate a from the estimation
context by considering the model 2,- = fl(:r.- —- X) + u;,i = 1,. . . ,n, where z,- = y],- — 52,1” —

— - _ 1 m , -- _ 1 m .eii — 62,112 — a 2131 3/2; and 62 - ; Zizl 62:-
Observe that,

Var[u,-] = (1+ 1/m)cr2 and Cov(u,~,uj) = a2/m,

i gé j = 1, . . . , n. To complete the distribution free Bayesian set up, let the prior information
about 0’ = (X, fl) be specified by

00 = (Xmflo) and Z = diag 04,0105) ,

all known.
According to the notation of Section 2, it follows from (1) that



y =(zl,...,zn),f'(0) =(fl(m1-—X),...,,H(:rn,—X)) (14)

and

1+1/m l/m

l/m Hlfm

From (3) and (4), it can be shown, after some tedious algebraic manil'mlations, that the
iterative procedure to obtain 0 = (X ,fl) is given by

A(m)B(m) _ A(m)B(m)
X(m+1)= X(m) _ 21—JAW'L’2— ’ (15)

—A(1m)B(m) + Ag?)B£m)
fl(m+1) = fl(m)— A0") J (16)

where
2

An = 51; + $507.72, A21 = A12, A = All/122 — A12A21,

A12 =fi£77 Ej=1(mj X) mfim) 21:13?(W —X(m)) J

2
A22:

UL%+J%Z?=1($j—X)2nm[21=i(fi
X(m))] ,

= %@(}J+— _(wJ~— X)(zJ- 43m — X»

_ WELAZJ “(30W —X))Z§‘=1(f'7j — X)

and

X°_XBJ= 0X0 —(——m—m+n)022(J— fi<zJ~—fl(wJ-—X))).

Let X“ and £3” be the estimators that follow from the equations (15) and (16) after the
iteractive procedure stabilizes. Estimators for the quasi-posterior variances that follow from
(6) are .



y:(zl,...,zn),f’(0)=(fl(x1-—X),...,,B(xn,—X))
>

(14)

and

1+1/m l/m

l/m 1+1/m
From (3) and (4), it can be shown, after some tedious algebraic manipulations that [in
iterative procedure to obtain 0: (X ,fl)is given by

Ame) -AmeX(m+1) = X(m) —
Am) 1 (15)

-Asr>31m) + Aw”)
fl(m+1) = fl(m) _ A(m) ’ (16)

where

All = l—J’lx— + %, A21 2 A12, A = A11A22 _ A12A21’

A“ 07+??? 2:1:MX) 7——nn+m>fl(m> 2921 (”01 —,X(m))

__ 1 1 n ,
2 2

A22 - (TIE
+ 72 j=1(373 “ X) ‘__2_(n-+_m__) [ij 1 (mi ‘X(m))] ,

Bl = 53??- + $231:ij _X)(z,. 41m —X)>

-m 2321“? “ M531“ “ X))27=1 ($1 — X)

and

X0 — X
32:71“;— (m—r—n)022202]- fi(z,~—fl(xj—X))).

j=l

Let X‘ and [V be the estimators that follow from the equations (15) and (16) after the
iteractive procedure stabilizes. Estimators for the quasi-posterior variances that follow from
(6) are -



var [ff] i —I—Li§ and var [B] i — 5&1 7

where A22,fl11 and A are given as in (15) and (16) with X(m) and mm) replaced by the NBLS
0‘ = (X *,fl*) obtained from the iterative method described above.

The solution to the inverse regression problem was described in detail because as noted
in the last section, it may be complicated to use the GLIM pakage since the matrixI/(n) is
not diagonal. Note also that the above estimators are natural modifications of the MLE and

1nverse estimators which use prior information and information from both stages of the rivers.
linear regression model.
Application 1: In this illustration we analyse two sets of data. One is obtained by computer
simulation of (7) with the x's values as in Hoadley (1970). The other set appears in Hunter
and Lamboy (1981).

Tables 1 and 2 lists the statistics and the 95% confidence interval based on Fieller’s The-
orem, Chebshev inequality and the normal approximation. Table 2 shows how the prior
information improves the NBLS, X, when- the prior information is close to the true values of
X and fl. Note also (Table 2) that to get the inverse estimator as a NBLS estimator, it is
enough to consider X0 = 0,130 = 0.0 and 03 = 2.5, without the t-distribution requirement for
X (Hoadley, 1970). Table 1 provides inferences which are very close to the results in Hunter
and Lamboy (1981), Dobrigal et al. (1987) and Sprott and Viveiros (1984) in the absence of
all assumptions and sophistication they have considered.

We end this section by noticing that it should be of interest to a Bayesian (as well as
to non~Bayesian) statistician to use the nonlinear Bayesian least squares approach considered
in this paper. This is so, for its simplicity in combining prior and present data information
without requiring the full Bayesian apparatus and also for the closeness of the inferences. By
using this approach, complex problems such as the linear calibration problem could be handled
in a much simpler way.

5 The Linear Regression Model With Error In Both Vari-
ables

In this section, it is considered the usual regression model with error in both variables, i.e.,

y; = a+fl$i+ei,
where cc,- is not observed directly, but instead

Xi = 93s + at,

i = 1,...,n. We assume that x,- N N(0,au),e,- ~ N(O,aee) and that u; N N(0,ouu), being
all independent.



It can be shown, after some algebraic manipulations that

E[y,~IX¢] = a+flZi = m (17)

and

V617“ lyilxi] = flkao'uu + Gee , (18)

where Z; = um + kz(X,' — ux),i = 1,...,n and [cm = (rm/(ow + on“). For simplicity, it is
assumed that the parameters and“, and (fee are known. But, this assumption may easily be
relaxed.

nor a and A; it is considered a priori that

E[a] = ac, and Var[a] = 0a,

and
'

E[fl] =_ flo, and Var[fl] = (7g,

This situation is easily handled by using the GLIM pakage, by following the steps considered
in Section 3. Of course, the iterative procedure (5) may also be used. It can be shown that it
reduces to the following iterative equations:

A(m)B(m) + A<m)B(m)
“(m+l) Wm) " A0")

(19)
A(m)B(ml +A(m)B(m)

_ _ 21_l___J2__J_fl(m+1) — fl(m) —
AU”) ,

where
v.» z n .

A11=# + Z‘EvliL, A12=A21 = — T,
2'

A22=317+%,Bi = (1°20 + niy—Zx—flz),
01 at

— 1:1_ '_a,— oz.
B2 = floagfi + 2J—1(yJ

v
fiz, J)

’

A = All/422 — A21A12 and U = fl2kz0uu + (fee-

The quasi-posterior variances of a“ and fi“ follows from (6) and are given by

Var[a*]= — £11? and Var[,@*]= — A]: ,

where A’52,A’1‘1 and A“ are given as in (19) with “(7M and fl(m) replaced by a“ and W, the
solutions of the iteractive systhem equations (19).
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6 Estimation of the Size of Animal Populations
In this section, it is presented a simple nonparametric nonlinear Bayes estimation procedure

for estimating the size of an animal population. It has long been recognized that a model
which allows capture probabilities to vary by animals, trap response and time is a complicated
and usefull model. However, from the classical approach, there is no estimation procedure
associated with this model. For a comprehensive material we suggest Ottis et al. (1978)
and Burnhan and Overton (1978). Ordinary Bayesian approach for the estimation of the size
of animal populations is considered in Castledine (1981). However, he did not consider the
possibility of incorporating trap response in the model. An extension of the model considered
by Castledine (1981) that allows for trap response is considered in Rodrigues et al. (1988).
See also Leite et al. (1987). The basic model and the structure of the prior information is
presented next.

Let pij be the probability of capturing the jth animal in the ith ocasion, and define for
j = 1,. . . ,N,i = 1,. . . ,k the indicator variables

1, if the jth untaged animal is captured on the
X;j =» ith occassion

, (20)
0, otherwise.

In order to gain information about the animal population size, N 2
the following assumptions

are considered:
Assumption 1: The animal population is closed and is of size N;

Assumption 2: The random variables X5, are mutually independent for given pi, and

Mi,j=1,...,N _— M” = 1,...,k, where M.- = Z};11Xj and Xj = {EM Xfl. Observe
from (18) that Xj is the number of untagged animals captured on the jth occasion and M,-

is the number of animals seen at least once during trapping untill time i. The basic data is

X1,...,X,,.

Assumption 3: (Prior assumptions)

(i) pij ~ F (F; unknown distribution) where

E[p,~j] = 1) (unknown), and Var[pgj] = of; (unknown)

for z' = 1,...,k,j = 1,...,N— Mg,

E[p] = po (known) and Var [pij] = 0,2, (unknowu)

(ii) N ~ G(G : unknown distribution), where

Eg[N] = No (known) and Varc[N] = afv.

10



From assumption 2, it is not difficult to see that

Cov[X,-,Xj IM;,M]-]= 0,j 76 i.

As in Hartigan (1969), let us consider the following nonparametric structure with respect
toN:

Prior:

Eg[N] = N0 and Var51[N]= 05,3

Data:

N— M.- N—M; “1

EiXilMi’N pijlz Z pij and V‘” llXilMi,N,pij]_— I: z pij(1‘pij)} -

r j=1 '_

Because the above model is too complicated for our purposes, we are going to simplify it
by using the prior assumption 3(i). After some algebraic manipulations we get the following
simpler model:

Prior:

EF[N]= No and VarF1[N]=aN2,

E[p] =p0 and Var‘1[p] = 03,

all known;

Data:

E[X,'|M;,N,p] = (N _ MOP and Var [XiiMiaNip] : (N — Mi)(1_ p)!"

Now, according to the above especifications, it follows from (4) that the NBLS of p and
N, are given by the iteractive solution of

p(m+1) = p(’”) —
A(m) 7

and

swim) +Assn
N<m+n = Non) —

Ah") 3

given initial values No and po, where, without the superscript m, we have:

11



All—++I‘.inZf=17v‘:1‘M},A12=A21=1-::k—p,

N—M'
A22 = Eli + 2221871715)? , A = All/422 — A12A21 ,

P‘Po
’°

(Xi—(JV‘MJ'W) 7.55.52
’°

(Xi—(N‘Mjh’).+2 ”2 of 5000-0.)
0 j=1

Of course, the NBLS of N and 1) can also be obtained by using the GLIM system as
described in Section 3. The quasi-posterior variance of N * and p“ follows from (6) and are
given by

Var(N*) = A7? and Var (p*) = 14? .

Table 1: Data from a measurement process for amount of molybdenum in samples (Hunter and
Lamboy, 1981).

X = 5.0, fl = 1.0, 62 = 0.072, a} = 3.0, X0 = 0.0, [30 = 0.5, of, = 100 n = 20, m = 1.0
Description

X (NBLS) 5.3

XHL (Hunter/Lamboy, 1981) 5.3
ZRNBLS) 0.98
07”, (Hunter/Lamboy) 0.98
95% Fieller interval for X based on X. (4.536, 6.224)
95% Fieller interval for X based on XIn- (4.761, 5.853)
95% Chebyshev interval for X based on X. (4.07, 6.532)
Posterior variance for X (Hunter/Lamboy, 1981) 0.0766
Var (X) (NBLS) 0.0769
95% Dobrigal interval for X (Dobrigal et al., 1987) (4.808, 5.807)
95% Sprott Interval for X (Sprott/Viveros, 1984). (4.7228, 5.8916)

12



Table 2: Data from a computer simulations of (7) with e ~ N [0, 02]. The X values are as in
‘ Hoadely (1970).

a = 0.0, fl =1.0, o‘2 = 0.47, m = 1.0, X =1.0, - n = 9

Description flo = 0.0, of, = 100 fig = 1.0, of, = 0.5
X0 = 0.0, a} = 100 X0 =1.0, ”if = 0.5

X(NBLS) 0.58 0.82
X; (Inverse Estimator) 0.58 0.58
ML (Maximum Likelihood) 0.65 0.65
H (Hoadley, 1970) . 0.35 ~
fl (NBLS) 1.17 1.14
fiML (Maximum Likelihood) 1.17 1.17
95% Chebyshev Interval for X based on X. (0.186, 1.425) (0.62, 1.02)
95% shortest posterior interval for X
(Hoadley, 1970). (-1.82, 2.52) —
Var X (NBLS) 0.3746 0.227
Posterior Variance for X (Hoadley, 1970). 1.16 —
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