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Abstract

In this paper, we present a simple method to get appropriate repa-
rametrization for the reliability function at time to considering cen~
sored lifetime data and a Weibull distribution. With the obtained
reparametrization, we get very accurate aproximate inference results
based on the “normality” of the likelihood or posterior density for the
reliability function.
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1 Introduction

Usually, inferences on R(to) = P(T > to), the reliability function at time
to, assuming different parametrical models and censored lifetime observa-
tions are obtained by using asymptotical methods (see foe example, Lawless,
1982). One of these asymptotical results is given by the asymptotical nor-
mality of the maximum likelihood estimators. Under the Bayesian approach,
we get marginal posterior densities or posterior moments for RUG) based on
numerical or approximation methods. These results, usually depend on an
appropriate transformation of R(t0), to get accurate results. One way to find
an appropriate reparametrization, is to search for an one-to-one transforma-
tion of R(to) that gives close “normality” for the likelihood function (see for
example, Anscombe, 1964; Sprott, 1973, 1980; Kass and Slate, 1992; or Hills
and Smith, 1993).

Assuming a Weibull distribution for the lifetimes in a reliability exper-
iment, we explore the use of a transformation for proportions introduced
by Guerrero and Johnson (1982) and a measure to nonnormality of likeli-
hood functions given by the standardized form of the third derivative of the
logarithm of the likelihood function (see Sprott, 1973; or, Kass and Slate,
1992).

We also check the adequability of the proposed reparametrization, by
using a t-plot proposed by Hills and Smith (1993).

With the proposed reparametrization of R(t0), we get in a simple way,
very accurate inference results for the reliability function at time to.

2 A Reparametrization for R(t0)

Some parametric families of transformations for proportions (see for ex~

ample, Atkinson, 1985) could be used to improve the “normality” of the
likelihood for R(t0).

Among these transformations, an invertible family of transformation which



includes the logit parametrization (in, = In[R/(l — R)], where R = R(to) is

given (see Guerrero and Johnson, 1982) by

¢5J(A)={(l—ffi)A—l}/A. (1)

For a given A, we can consider a modified form of (1) given by

mm = (1—13—11) —1 , (2)

which should not produce different results as considering (I).

The great advantage of transformation (2), is that it is readily inverted.
“lith ¢GJ = ¢GJ(/\), we obtain

(d’GJ + I)!”
=—— . (3)
1+ (48m +1)"A

To find an appropriate value of /\ that gives good “normality” of the
likelihood function for ¢GJ(,\), we choose A in (2) that gives third derivative of
the logarithm of the likelihood function l(¢GJ(A)) at the maximum likelihood
estimator d>61(z\)111 a standardized form,

swam))="”l(¢7awn(acronym (4)

close to zero (see Sprott, 1973; or Kass and Slate, 1992).



3 Reliability Function at Time to Conside-
ring a Weibull Distribution and Censored
Data

Suppose there is a random sample of 11 units with lifetimes T1,T2, . . . , T",
but that associated to each unit is also a fixed censoring time Lg > 0 (type I

censored data). We observe T,- only if T,- S L,- and the data consists of pairs
(fl,6.»),i =l ..... n where T, = min(T,,L.) and 5, = 1 if t, = T. or 6. = 0 if
t,- = L,~.

Considering the Weibull distribution with density,

f(t;o,fl)=§(%>fl—161p{-(i—)fi} (5)

where t > 0;o,fl > 0 and type I censored data, the log-likelihood function
fl

for the reliability function at time 10,12 = R(io) = erp{— (£1) } and B, is

given by

I(R,fl) = dlnfi — dfilnto + dln(—InR)+
(6)

+ (fl —1>z.wlnti+ 74,521an

where T(fi) = 2?=1t?,d = {3:1 6,- is the observed number of lifetimes and D
denotes the set. of units for whom lifetimes are uncensored.

The maximum likelihood estimator for R(to) is given by

A th
Rafi) = 6.121) {_ 0 E} a (7)

n t-i=1 1

where fl satisfies,



i=1
“ £511-—d1nto+zzn¢._w

iED
= o (8)

Q)!

a,

n it"i=l I

For large sample sizes, we can get inferences on fl and R(to) based on
the usual normal limiting distribution for the maximum likelihood estimators
considering the observed information matrix (see for example, Lawless, 1982).
For small or moderate sample sizes, this asymptotic distribution could not
be appropriate.

With type ll censored data, the form of likelihood function (6) is the
same, but d is fixed and T(fl) = 25:1 ta) + (n — emf”, where t(1),.,.,t(d)
are the first (I ordered observations of a random sample of size n from the
Weibull density (5).

4 The Guerrero - Johnson Transformation
for R(t0) with fl Known

Assuming fl known, the logarithm of the likelihood function for R(t0) is
given by,

[(R) oc dln(—InR) + tZBInR , (9)
o

where T = EL, if.

The maximum likelihood estimator Rug) = exp {-dtg T} has an asymp-
totic normal distribution based on the observed Fisher in ormation, given by

A 0
172207712)?

R N N R; *——d‘——— . (10)



ln the original parametrization R(to), the standardized third derivative
(4) of the logarithm of the likelihood function at R is given by

STD (it) = |d-1/2(31niz + 2)| (11)

Observe that if to is large, that is, R(t0) is small, we could have large values
for STDR), which indicates bad “normality” for the likelihood function.

To improve the “normality” of the likelihood functions we could consider
the reparametrization (2).

The logarithm of the likelihood function for ¢GJ(A) is given by

war) cx dantqsGJ) — 1553an (12)
o

where T = EL] t?,B(¢GJ) = In [1 + (d’GJ +1)—1/A]_

At the maximum likelihood estimator $3.1 = [ad‘s/T — ll-) - 1, the stan-
dardized third derivative (4) of1(d>c_1) locally at $01, is given by

Therefore, we find an appropriate value for A such that STD (5m) = 0,
given by

STD (56.1) = (13)

2 p
A

7
1 (1 -dt° /T) .(3&3 ) e 1 (14)

Whit this value of A, we can consider the asymptotic normality of $6.1“),



A? m 2dt"/Td to e 0

(15)‘
A it v i;—————————¢GJ( ) f {¢GJ( )

T2 (gag/1-1)”m

to get better inferences on R(to).

5 The Guerrero - Johnson Transformation
for Rug) with fl Unknown

When [3 is unknown, we should search for a joint transformation of fl
and RUG) that. gives joint “normality” for the likelihood function. Since this
transformation is not easily obtained and our parameter of interest is R(t0),
an alternative way is to search for a reparametrization of RUG) that gives
close “normality” for the profile likelihood.

The profile likelihood function for R(t0) is given by

LE(R) = elp{l (R,E)} (16)

where I(R, fl) is given in (6) and for each value of R, we find 3 such that

,, t? t d
(InR) 41:1(4) + a = dInto - Int; .§ tg ‘0 19

£123

To improve the “normality” of the profile likelihood, we also could use the
transformation (2). As a special case, we could consider the transformation
(bay and 0 = Infl. The logarithm of the profile likelihood function for ¢GJ is
(from (6)) given by,



lama) = d5- dezlnto-l» 41anan +

A
(17)

+ (ea—])Zieplnt|‘— ZIKQQB(¢GJ) ’

where T(§) = EL, if; and fiis the maximum likelihood estimator of 0 for
each fixed value of (is).

In practical work we should search for a value of A such that the third
derivative of the logarithm of the profile likelihood (17) at the maximum ¢GJ
(see (4))15 close to zero.

6 Some Examples

6.1 An Example Considering an Exponential Distri-
bution

Consider a. type II censoring data. set consisting of n = 12 units where
the experiment terminated when it was observed d = 8 failures (data set
introduced by Lawless, 1982, p. 103). The observed lifetimes (in hours)
are given by 31,58,157,l85,300,470,497 and 673. Assuming the exponential
density given in (5) with 6 = l, we have T = 2,1, t(,-) + 4&3) =. 5063. The
maximumAlikelihood estimator for the reliability function at time to =55 is
given by R(5) = 0.9921. From the normal limiting distribution (11) for R(5),
we find a 95% confidence interval for R(5) given by (0.9867;0.9976).

It is interesting to observe that 2T/0 has an exact chi-square distribution
with 2d degrees of freedom. An exact 9570 confidence interval for 0 is given
,by (351.6;1465.4), which corresponds to a 95% confidence interval for R(5)
given by (0.9859;0.9966).

Considering the Guerrero-Johnson transformation (2), we could improve
the “normality” of the likelihood function considering an appropriate value



for A in ¢cJ(z\). With to = 5 and fl = l, we find from (14), A = -—0.3281.

From the normal limiting distribution (15) for the maximum likelihood
estimator (Zed-03281) = —0.7955, we find an approximate 95% confidence
interval for (MA—0.3281) given by (-0.8422; —0.7487), which corresponds to
a better 95% confidence interval for R(5) given by (0.9854;0.9964).

We also could check the “normality” of the likelihood function in the
parametrization ¢GJ(—0.3281) considering the t-plot (see Hills and Smith,
1993) T(¢GJ) against some values of (15m, where

T(¢GJ) = 89" (¢cJ — ($0.1) {-21(¢GJ) + 21($GJ)}1/2 (18)

and $61 is the maximum likelihood estimator of day.

Since we observe a straight line (see figure 1), we conclude by the “normal-
ity” of the likelihood function for ¢GJ(—0.3281). In the original parametri-
zation R(5), the plot of T(R(5)) against R(5) is markedly curved (see figure
2), which indicates the nonnormality of the likelihood function for R(5).

-‘ 1 l l l I I T I l I l I l T1 I l I l
l‘ 0.90 ‘038 ‘086 “084 “082 ‘080 ‘O.78 “076-074 -0.72 -O. '0

06.1

Figure l - t-plot for ¢GJ(—0.3281)
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Figure 2 - t-plot for R(5)

In table 1, we have exact and approximate 9570 confidence intervals for

R(to) with to = 5, 30, 500 and 2000, respectively, considering the parametriza-
tions R(t0) and ¢GJ(/\).

Using Exact Asymptotical A Given Asymptotical
to Distribution Normality in (14) Normality

for 2T/0 for fzao) for $530)
5 (0.9859;0.9966) (0.9867;0.9976) 0.3281 (0.9854;0.9964)

30 (0.9182;0.9797) (0.9224;0.9850) 03026 (0.9155;0.9786)

500 (0241207109) (0205403023) 00071 (0233200930)

2000 (0.0034;0.2554) (0050501353) 0.1596 (0.0026;0.2373)

Table 1. 95% Confidence Intervals for R(to)

We also could consider the proposed reparametrization to get a Bayesian
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analysis for the reliability at time to. If the posterior density for R(t0lis close
to “normality”, we could find in a simple way, Bayesian intervals for R(to)
considering normal approximations for the posterior density.

In the original parametrization R(to), an informative prior density con-
sidered in the literature (see for example, Martz and Waller, 1982) is given
by a Beta density,

1

g(r;00,flo) =mm” (1 _ r)6°" (19)

whereOSr S1;00,5o>0and B(ao,fl0)= 2,000 £50) .
0

With 00 = fig = l in (19), we have an uniform prior density for Rug). In
this case, the posterior density for R00), considering type I] censored data
is given by

(l + glib“ (—-Inr)drT/‘°
g,(rldata) = “(1+ 1) , (20)

where 0 S r 5 LT = 2le t“) + (n -— d)t(d) and d is the fixed number of
observed failures.

Considering the GuerreroJohnson transformation (2) with a specified
value of A, the posterior density for ¢GJ(A) is given (from (20)) by,

g’(¢“’dai°) = %{M [(¢GJ+1)"/*+1]}" x

(¢cJ + mi (1750—1

{1+(¢GJ +1)1/"}T/to+2
,

(21)

where —l < ¢GJ < 00 for A 74 0.
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With to = 2000 hours and assuming an uniform prior density for R(t0),
we have in figures 3 and 4, the graphs of the posterior densities for R(2000)
and ¢GJ(0.1596), respectively. We observe good “normality“ for the posterior
density (21) in the parametrization ¢GJ(0.1596).

1 n I

0 0.1 0.2 0.3 0.4 R

Figure 3 - Posterior density for R(2000).

1 l l
-o.7 — 0.5 -o.3 -o.1 ‘sa

Figure 4 — Posterior density for ¢GJ(0.1596).
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Considering the Jefireys noninforrnative prior density for R(to),g(r) or

l/[r(—Inr)],0 5 r S 1 (see for example, Martz and Waller, 1982), the pos-
terior density for R(t0) is given by

_
(—Inr)""‘7"’r¥(:l-1

d i — , 22g7(rl a 0)
tgl"(d)

( )

where 0 S r S 1.

The posterior density for ¢GJ(/\) is (from (22)) given by

_ Td —1/,\ d‘1
g; mandate) - MOW)

{In [Wm +1) + ll} x

(23)T
¢GJ +1 “5—1

{1+(¢cJ + Ill/A}'°+l
X i

where —1 < dJGJ < 00 for X 74 0.

In table 2, we have 95% Bayesian intervals for R(t0), with to = 5, 30, 500
and 2000, respectively, considering the parametrizations RUG) and ¢GJ()‘).
We observe very accurate results, assuming the parametrization ¢GJ(A), by
comparing numerically integrated intervals using Simpson’s rule with the
approximate Bayesian intervals (see table 2).
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Using Simpson’s ’ Normal Normal
to Rule approximation for A approximation for

9i('/d¢110) gi(¢GJ/data)

(i = l) 5 0.98457;0.99595 0.98670;0.99756 03281 0.98453;0.99598

Uniform 30 0.91133;0.97605 0.92238;0.98503 -0.3026 0.91132;0.97618

Prior for 500 0.24249;0.69081 0.20537;0.70228 0.0071 0.24759;0.68444

RUG) 2000 0.01152;0.31180 -0.05047;0.13531 0.1596 0.01146;0.31121

(z = 2) 5 0.98586;0.99660 0.98801;0.99820 03281 0.98581;0.99663

Jeffrey's 30 0.91809;0.97974 0.92949;0.98878 03026 0.91797;0.97985

Prior for 500 0.24067;0.71100 0.20051;0.72826 0.0071 0.24586;0.70294

RUG) 2000 0.00335;0.25555 -0.02470;0.04540 0.1596 0.00305;0.26065

Table 2 - 9570 Bayesian intervals for RUG)

The use of reparametrization ¢GJ(A) also gives good improvements in the
accuracy of Laplace approximations for the posterior momemts E (R(t0) /data)
(see for example, Tierney and Kadane, 1986). In table 3, we have Laplace
approximations for E(R(to)/data) considering both parametrizations R(to)
and ¢GJ(A). Observe that, in this case, the exact posterior moments for
R(to) are given by

E R d t =1( Ice) (“T/to) , (24)

considering the uniform prior for R(to) and,

E2(R|data)=(1+t0/T)'d , (25)
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considering the Jeffreys prior for RUG).

Parametrization Parametrization
to Exact RUG) A ¢GJ(A)

(i = 1) 5 0.99116 0.99116 (070) -0.3281 0.99116 (070)

Uniform 30 0.94851 0.94848 (0.00370) 0.3026 0.94852 (0.00170)

Prior for 500 0.46089 0.45997 (0.2070) 0.0071 0.46109 (0.04370)

RUG) 2000 0.10604 0.12229 (15.3270) 0.1596 0.10530 (0.69870)

(i = 2) 5 0.99213 0.99311 (0.09970) —0.3281 0.99213 (076)

Jeffreys 30 0.95384 0.95949 (0.59270) -0.3026 0.95384 (070)

Prior for 500 0.47075 0.52095 (10.6670) 0.0071 0.47100 (0.0537)

Rug) 2000 0.06972 018043 (158.870) 0.1596 0.06873 (1.4273)

Table 3 - Laplace approximations for E(R(t0)|data) (percentage errors in
parentheses)

6.2 An Example Considering a Weibull Distribution

Consider a type 11 censored data set introduced by Lawless, 1982, p. 152
consisting of n = 40 units where the experiment terminated when it was
observed d = 28 failures (see table 4).
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0.0507 0.0579 0.0784 0.0954 0.1376 0.2249

0.2362 0.2481 0.2501 0.2811 0.3027 0.3091

0.4295 0.5379 0.5621 0.5781 0.7811 0.8228

0.9455 0.9871 1.0060 1.0335 1.0377 1.0471

1.0876 1.2473 1.2776 1.3445

Table 4 - Observed lifetimes (in hours)

Assuming the Weibull distribution with density (5), the maximum li-

kelihood estimators for the parameters a and fl are given by 6 = 1.1692
and 5 = 1.0984. Considering fl = 1.0984 known, we have in table 5, ex-
act and approximate confidence intervals for Rtio), for different values of
to. For the approximate confidence intervals of RUG), we used the normal
limiting distribution (10) for the maximum likelihood estimator 1300). For
the exact confidence intervals, observe that 2 T/ozB where fl is known and
T = 222100 + (n — d)tfd), has a chi-square distribution with 2d degrees
of freedom. Since T = 33.2455 and fl = 1.0984, we find a 95% confidence
interval for a given by 0.858] ; 1.6977) from which, we get 95% confidence
. fl
intervals for R(to) = exp {— (in) }.

In table 5, we also have approximate 95% confidence intervals for R(to)
considering the parametrization ¢GJ(A) and using the normal limiting distri-
bution (15). We observe very accurate confidence intervals considering the
parametrization ¢GJ(A).
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Using Exact Using Asymptotical AGiven Using Asymptotical
Distribution Normality in Normality

40 For 2T/cr" For Bag) (14) For ¢cJ(,\)

0.001 (0999409997) (0.999409997) 0.3330 (0.999409997)

0.010 (0992509964) (0992709966) 03298 (0992409964)

0.100 (0909909564) (0911809583) 0.2903 (0909209558)

0.400 (0.648908151) (0651208188) 0.1612 (0646608125)

1.000 (0.3063;0.5717) (0.296405651) 0.0198 (0.3037;0.5662)

2.000 (0.079403020) (0054702748) 0.1440 (0.077802960)

2.500 (0039302166) (0.014601850) 0.1606 (0038102114)

3.000 (0019201543) (0002601224) 0.1627 (0018401501)

5000 (0.000900378) (0005900204) 0.1269 (0000900365)

Table 5 - 95% Confidence intervals for RUG) assuming fl = 1.0894 known

We also could consider the reparametrization 416 J(A) assuming fl un-
known. We observe in figure 5, a markedly curved form for the t—plot (see
(18)) in the parametrization R(t0) with to = 2.5, indicating nonnormality of
the profile likelihood function L5(R) (see (16)).
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Figure 5 - t-plot for the profile likelihood of R(2.5)

To find an appropriate value for /\ in the parametrization ¢GJ(/\), we ob-

serve that A = 0.1606 givesAthird derivative of the logarithm of the profile
likelihood at its maximum ¢GJ close to zero (see (4)). Therefore, we con-
sider the reparametrization ¢GJ(0.1606), where we observe in figure 6, close
linearity for the t-plot (see (18)) indicating good “normality” of the profile
likelihood for ¢GJ(0.1606).
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Figure 6 - t-plot for the profile likelihood of ¢cJ(0.1606)

7 Overall Conclusions

The use of reparametrization ($610) could be of great practical interest,
since we get very simple and accurate approximate inference results for the
reliability function R(to) at time to. The proposed method introduced in this
paper, to find the appropriate value of A in the parametrization (35610), also
could be extended to other invertible parametric family of transformations for
proportions (see for example, Atkinson, 1985). One of these transformations
given by moo) = [12A - (1 - Ry] / [RA + (1 - mi], where R = Rug), was
introduced by Aranda-Ordaz (1981). We also could consider other lifetime
distributions to get similar results.

References
ANSCOMBE, FJ. (1964). Normal likelihood functions, Ann. Inst. Stat.

Math, 16, 1-19.

19



ARANDA-ORDAZ, FJ. (1981). On two families of transformations to
additivity for binary response data, Biometrika, 68, 351363.

ATKINSON, A.C. (1985). Plots, transformations and regression. Ox-
ford: Clarendon press.

GUERRERO, V.M.;JOHNSON, R.A. (1982). Use of the Box-Cox
transformation with binary response models, Biometrika, 69,309-314.

HILLS, S.E.;SMITH, A.F.M. (1993). Diagnostic plots {orimproved pa-
rametrization in Bayesian inference, Biometrika, 80,1,61—74.

KASS, R.E.;SLATE, EH. (1992). Reparametrization and diagnostics
of posterior nonnormality. ln Bayesian Statistics 4, Ed. J.M. Bernardo,
J.O. Berger, A.P. Dawid and A.F.M. Smith, p. 289-306. OxfOrd Uni-
versity Press.

LAWLESS, J.F. (1982). Statistical models and methods for lifetime data.
New York: John Wiley & Sons.

MARTZ, H.F.;WALLER, R.A. (1982). Bayesian Reliability Analysis.
New York: John Wiley 81 Sons.

SPROTT, D.A. (1973). Normal likelihoods and their relation to large
sample theory of estimation, Biometrika, 60, 457-465.

SPROTT, D.A. (1980). Maximum likelihood in small samples: estima-
tion in the presence of nuisance parameters, Biometrika, 67, 515-523.

TIERNEY, L.;KADANE, J.B. (1986). Accurate approximations for
posterior moments and marginal densities, J. American Statist. ‘As-
soc., 81, 82-86.

20


