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Abstract

Shmueli et al. (2005) introduced a new discrete distribution, called COM-Poisson-Binomial distribu-

tion, by adding a dispersion parameter to the Binomial distribution. However, they did not study the

mathematical properties of their proposed family of distributions. In this paper, we investigate for this

probability distribution the moments, probability and moment generating functions and how the disper-

sion parameter affects the asymptotical approximation of the COM-Poisson-Binomial distribution to the

COM-Poisson distribution. Inferential problems with two data sets are also considered for illustrative

purposes.

Key words: COM-Poisson-Binomial distribution, dependent Bernoulli variables, Correlation coefficient,

exponential family, Weighted Poisson distributions.

1. Introduction

Usually the binomial and Poisson distributions are used to analyze discrete data. However, it seems

wise to consider flexible alternative models to take into account the overdispersion or underdispersion

(see Hinde & Demetrio (1998)). Thus, the binomial and Poisson distributions have been generalized in

several ways to handle the problem of dispersion inherent in the analysis of discrete data that may arise

with the presence of aggregation of the individuals. For instance:

(i) in plant selection study the association among two plants arises when competing about the quantity

of nutrients;

(ii) in biological study (see Yakovlev & Tsodikov (1996) and Borges et al. (2012)), it is usually assumed

that cells in a tissue are independent. However, the biological independence assumption may

not be true when the dynamics of the cell population of a normal tissue is considered. It is

therefore desirable to construct new models with strong biological interpretation of the dependence

incorporated in the carcinogenesis process.
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The binomial distribution has been generalized in various ways. Rudolfer (1990), Madsen (1993)

and Luceño & Ceballos (1995) have summarized most of these generalizations. Among these extensions,

there are the multiplicative and the additive generalized binomial distributions which were derived by

Altham (1978). The probability mass function (pmf) of the multiplicative binomial distribution is a

multiplication of its pmf by a factor. It makes the variance greater or less than the corresponding binomial

variance depending on the values of the factor. On the other hand, the additive binomial distribution

is a mixture of three conventional binomial models. Altham (1978) developed the correlated Binomial

model by correcting the Binomial model via the method suggested by Bahadur (1961) to encompass

dependent Bernoulli variables. A three-parameter binomial distribution was derived by Paul (1985,

1987), which is a generalization of the Binomial, beta-binomial and the correlated binomial distribution

proposed by Kupper & Haseman (1978). Ng (1989) developed the modified binomial distributions. In

this approach, the binomial distribution is changed and the resulting distribution becomes more spread

out (indicating positive correlation among the Bernoulli variables), or more peaked (indicating negative

correlation among the Bernoulli variables) than the binomial distribution. A four-parameter binomial

distribution was derived by Fu & Sproule (1995). This new distribution assumes values between α and β

for α < β, rather than the usual values 0 or 1. Lindsey (1995) and Luceño & Ceballos (1995) proposed a

generalized binomial distribution which is discussed in details in Diniz et al. (2010). Chang & Zelterman

(2002) generalizes the binomial distribution by considering Bernoulli variables with probability of success

depending on the previous one. Tsai et al. (2003) presented a model that studies the overall error rate

when testing multiple hypotheses. This model involves the distribution of the sum of dependent Bernoulli

trials, and it is approximated thorough a beta-binomial structure. Instead of using the beta-binomial

model, Gupta & Tao (2010) derived the exact distribution of the sum of dependent Bernoulli variables and

not identically distributed. Minkova & Omey (2011) defined a new binomial distribution related to the

interrupted Markov chain. Another extension of the binomial distribution is the COM-Poisson-binomial

distribution (CMPB, for short) introduced in Shmueli et al. (2005), however, they did not study the

mathematical properties of their family which are studied in details in this paper. A recent application

of CMPB distribution can be found in Kadane & Naeshagen (2013).

The CMPB distribution arises as the conditional distribution of a COM-Poisson variable (Conway

& Maxwell, 1962) given a sum of two COM-Poisson variables with the same dispersion parameter. It

generalizes the binomial distribution and can be interpreted as the sum of dependent Bernoulli variables

with a specific joint distribution (see Remark 1). The dispersion parameter governs the correlation among

the Bernoulli variables, overdispersion and underdispersion relative to binomial distribution. The CMPB

distribution is appealing from a theoretical point of view since it belongs to the exponential and weighted

Poisson families (Castillo & Pérez-Casany, 1998, 2005), and the sufficient statistic is defined by the mean

and the log-geometric mean of the data. We refer to Barndorff-Nielsen (1978) for a general theory of

exponential families.

The rest of this paper is organized as follows. In Section 2, we present the CMPB distribution with

its mathematical properties. Section 3 describes the maximum likelihood method for estimating the

parameters. In Section 4, we apply the CMPB distribution to two real datasets and show that this model

provides an excellent fit to both these datasets. Finally, some concluding remarks are made in Section 5.
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2. The CMPB distribution and its properties

The probability mass function (pmf) of the CMPB distribution (Shmueli et al., 2005) is given by

P[X = x|m, p, ν] =

(
m
x

)ν
px(1− p)m−x∑m

k=0

(
m
k

)ν
pk(1− p)m−k

, x = 0, 1, . . . ,m, (1)

for m ∈ Z+ (set of known non-negative integers), p ∈ (0, 1) and ν ∈ <. For ν = 1 we have the binomial

distribution. The values of ν > 1 correspond to underdispersion, whereas the values of ν < 1 represent

overdispersion with respect to the binomial distribution. For ν →∞, the pmf is concentrated at the point

mp and for ν → −∞ is concentrated at 0 or m. Figure 2.1 presents the pmf of the CMPB distribution

for m = 6 and different values of p and ν.
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Figure 2.1: COM-Poisson-binomial for m = 6 and various choices of p and ν.

Remark 1. The CMPB distribution can be interpreted as a sum of equicorrelated Bernoulli variables
Zi (i = 1, . . . ,m) with joint distribution

P[Z1 = z1, . . . , Zm = zm] =

(
m
x

)ν−1
px(1− p)m−x∑1

z1=0 . . .
∑1
zm=0

(
m
x

)ν−1
px(1− p)m−x

, z = (z1, . . . , zm) ∈ {0, 1}m, (2)

where x =
∑m
i=1 zi. The measure of linear association between the Bernoulii variables is given by

ρ =
p(1− p)(1− 4ν−1)

(p+ (1− p)2ν−1)(1− p(1− 2ν−1))
, i 6= j, i, j = 1, . . . ,m. (3)

Thus, for ν > 1, the Bernoulli variables are in different directions, and for ν < 1 in the same direction.
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Remark 2. The COM-Poisson distribution (Conway & Maxwell, 1962) is an approximation to the
CMPB distribution when m is getting large and

λ = mνp, (4)

for ν ≥ 0. In other words, for m→∞ we have that

lim
m→∞

P[X = x|m, p, ν] = lim
m→∞

(
m
x

)ν ( λ
m

)x (
1− λ

m

)m−x∑m
k=0

(
m
k

)ν ( λ
m

)k (
1− λ

m

)m−k
=

λx

(x!)ν
1∑∞

j=0
λj

(j!)ν

, x = 0, 1, . . . , (5)

which is the pmf of the COM-Poisson distribution. This result is a generalization of the Binomial
approximation to the Poisson distribution where the dispersion parameter ν in (4) indicates the influence
of the superdispersion or underdispersion on the approximation to the COM-Poisson distribution. This
is an interesting result not mentioned by Shmueli et al. (2005) and one of the main contribution of this
paper.

In order to obtain a COM-Poisson type structure for the pmf of the CMPB distribution, we divide

the numerator and denominator of (1) by a factor (1 − p)m(m!)ν , and let us consider the following

parametrization:

θ =
p

1− p
. (6)

Under the parametrization (6) the pmf of the CMPB distribution, denoted by

X ∼CMPB(m,θ,ν), is given by:

P[X = x|m, θ, ν] =
1

Z(θ, ν)

θx

[x!(m− x)!]ν
, x = 0, 1, . . . ,m, (7)

where Z(θ, ν) =
∑m
j=0

θj

[j!(m−j)!]ν . Also, the pmf (7) can be rewritten as

P[X = x|m, θ, ν] =
exp
(
x log(θ)− ν log(x!(m− x)!)

)
Z(θ, ν)

. (8)

It follows from (8) that the CMPB distribution belongs to the full exponential family on Z+, where

T (X) =
(
X, log(X!(m − X)!)

)
is the sufficient statistic and (log θ, ν) ∈ R2 its corresponding natural

parameters (see Barndorff-Nielsen (1978)). Also, the CMPB distribution belongs to the family of weighted

Poisson distributions (Castillo & Pérez-Casany, 1998, 2005) defined as follows:

P[X = x|θ, ν] =
w(x; ν)p∗(x; θ)

Eθ[w(X; ν)]
, (9)

where w(· ; ν) is a non-negative weight function with parameter ν, p∗(· ; θ) is the pmf of a Poisson

distribution with parameter θ, and Eθ[·] indicates that the expectation is taken with respect to the

Poisson distribution with parameter θ. Therefore, if we take the weighted function as

w(x; ν) =

{
[x!(m−x)!]1−ν

(m−x)! , if x ≤ m
0 , if x > m

,
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the CMPB distribution (7) can be expressed as the weighted Poisson distribution in (9). So, some

interesting characterizations of the overdispersion and underdispersion for the CMBP distributions can

be derived from the weighted Poisson distributions.

Rodrigues et al. (2009) have shown that the probability generating function (pgf) of the weighted

Poisson variable is given by

AX(s) = E[sX ] =

∞∑
x=0

sx
w(x; ν)p∗(x; θ)

Eθ[w(X; ν)]

= exp
(
−θ(1− s)

)Eθs[w(X; ν)]

Eθ[w(X; ν)]
, for 0 ≤ s ≤ 1. (10)

From (10), the pgf of the CMPB distribution is given by

AX(s) = exp
(
−θ(1− s)

)Eθs [ [X!(m−X)!]1−ν

(m−X)!

]
Eθ
[
[X!(m−X)!]1−ν

(m−X)!

] (11)

=
Z(θs, ν)

Z(θ, ν)
, for 0 ≤ s ≤ 1. (12)

3. Maximum likelihood estimation of the parameters

Let X = (X1, . . . , Xn)> be a random sample size of n with observed values x = (x1, . . . , xn)> from a

CMPB distribution with parameters θ and ν. Let us define

t1 =
1

n

n∑
i=1

xi and t2 =
1

n

n∑
i=1

log (xi!(m− xi)!) .

Note that, t1 and t2 are, respctively, the sample mean and the log-geometric mean.

The log-likelihood function for the CMPB model based on the obseved sample x is

`(θ, ν; x) = n
(

log(θ)t1 − νt2 − log
(
Z(θ, ν)

))
. (13)

The likelihood equations may be written as{
θ ddθ log

(
Z(θ, ν)

)
= E[X] = t1

− d
dν log

(
Z(θ, ν)

)
= E

[
log
(
x!(m− x)!

)]
= t2

. (14)

As mentioned in Section 2, the CMPB distribution is a member of the full exponential family on

Z+, and T (X) =
(
X, log(X!(m − X)!)

)
is its corresponding sufficient statistic. Since S = T (Z+) is

not included in an affine subspace of R2, T̄ = (T1, T2) is a minimal sufficient statistic for the CMPB

distribution (see Barndorff-Nielsen (1978)). Let T be the interior of the convex hull of S. As the CMPB

is a regular exponential distribution, it is well-known that there is a one-to one transformation from R2

to T expressed in terms of τ(α, ν) = E(α,ν)(T ) =
(
τ1(α, ν), τ2(α, ν)

)>
(see Barndorff-Nielsen (1978)). So,

if (t1,t2) belongs to T , the maximum likelihood estimates (MLEs) of the parameters θ and ν are unique

solution of the system equations (14). Since these equations cannot be solved analytically, an iterative

method such as the Newton-Raphson method can be used (see Gelman et al. (1995), pages 272-273). In
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each iteration, the expectations, variances and covariances of X! and log(X!(m−X)!) are computed by

plugging the estimates for θ and ν obtained from the previous iterations in the expression

E[h(X)] =

m∑
x=0

h(x)
1

Z(θ, ν)

θx

[x!(m− x)!]ν
. (15)

The MLEs of the parameters can also obtained by direct maximization of the log-likelihood function (13)

by using the SAS (PROC NLMIXED) or MaxBFGS routine of the Ox program (Doornik, 2013) or optim

routine of the R package (R Development Core Team, 2013).

4. Fitting the COM-Poisson-binomial distribution

To illustrate the usefulness and flexibility of the CMPB distribution, we consider two real datasets. In

the first example, the dataset consists of the number of male children in families taken from the hospital

records in the nineteenth century Saxony (Sokal & Rohlf, 1994), and in the second example the secondary

association of chromosomes in Brassika (Skellam, 1948). Furthermore, the binomial and beta-binomial

(BB) distributions were also fitted in both examples by using the maximum likelihood method. The pmf

of the BB distribution is given by

P[X = x|m,α, β] =

(
m

x

)
B(x+ α, n− x− β)

B(α, β)
, x = 0, 1, . . . ,m,

where α > 0, β > 0 and B(·, ·) denotes the beta function.

Example 1: The data in this example refer to the number of male children among the first 12 children

of family size 13 in 6115 families taken from the hospital records in the nineteenth century Saxony (Sokal

& Rohlf (1994), Lindsey (1995), p. 59). The thirteenth child is ignored to assuage the effect of families

non-randomly stopping when a desired gender is reached. Thus, m = 12 is the family size and X is the

number of male children. The expected frequencies, maximized kernel of the log-likelihood and estimates

of the parameters under the binomial, BB and CMPB distributions are given in Table 4.1. The chi-square

goodness-of-fit, the likelihood ratio (2Λ) and the kernel of the log-likelihood values are showed in Table

4.1 describing how well the CMPB and BB fit to the data.

Table 4.1: The goodness of fit of the binomial, BB and CMPB distributions
No. of males 0 1 2 3 4 5 6 7 8 9 10 11 12 Kernel of the Parameter Chi-square values:
children log-likelihood Estimates Goodness-of-fit 2Λ
Observed 3 24 104 286 670 1033 1343 1112 829 478 181 45 7 -12485.67 — — —
frequency

Binomial 0.9 12.1 71.8 258.5 628.1 1085.2 1367.3 1265.6 854.2 410.0 132.8 26.1 2.3 -12534.17 p̂=0.5192 105.9498 —

Expected BB 2.3 22.6 104.8 310.9 655.7 1036.2 1257.9 1182.1 853.6 461.9 177.9 43.8 5.2 -12492.87 α̂=34.0350 13.9281 82.60

frequency β̂=31.5160

CMPB 2.7 23.3 104.7 308.8 653.6 1037.6 1262.3 1184.0 850.8 458.6 177.5 45.0 5.9 -12492.35 θ̂=1.0682 13.1681 83.64
ν̂=0.8433

The kernel of the log-likelihood is obtained as follows: Let Px = P[X = x] and Ox = observed

frequency of X = x. Then, the kernel of the log-likelihood of any model is given by
∑m
x=0Ox log(Px) =∑m

x=0Ox log
(
nP̂x
n

)
=
∑m
x=0Ox logEx − n log(n), where n =

∑m
x=0Ox (total frequency) and Ex is the
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expected frequency of X = x. Thus, it follows immediately that the kernel of the log-likelihood is∑m
x=0Ox log(Ox)− n log(n).

The BB and the CMPB distributions give almost identical fits to the data (the CMPB distribution

gives slightly better fit than the BB distribution). The likelihood ratio chi-square values of the BB and

COMPB distributions are −2(−12485.67 + 12492.87) = 82.60 and −2(−12485.67 + 12492.35) = 83.64,

respectively. These values show that both the BB and CMPB models give significant improvements over

the binomial distribution (the best fit is evident especially among the tails).

Example 2: The data in this example refer to 337 observations on the secondary association of

chromosomes in Brassika; m = 3 is the number of chromosomes and X is the number of pairs of bivalents

showing association. Skellam fitted the BB distribution showing a remarkable improvement fit over the

Binomial distribution. We fit the CMPB distribution to these data and obtained a similar result. The

observed frequencies, the expected frequencies, the kernel of the log-likelihood and the estimates of the

parameters are presented in Table 4.2.

Table 4.2: The goodness of fit of the binomial, BB and CMPB distributions for the Skellam’s Brassika data

No. of Observed Expected frequency
associations frequency Binomial BB CMPB

0 32 24.86 33.43 33.99
1 103 103.25 97.56 97.02
2 122 142.94 128.53 127.98
3 80 65.96 77.47 78.00

Kernel of the -436.44 -440.38 -436.82 -436.84
log-likelihood

Parameter — p̂ = 0.5806 α̂ = 6.5375 θ̂ = 1.3190

estimates β̂ = 4.7213 ν̂ = 0.7026
Chi-square values:
Goodness-of-fit — 8.10 0.78 0.82
2Λ — — 7.12 7.08

Looking at the expected frequencies and the maximized kernel, we see that both the BB and CMPB

models give significant improvements over the Binomial model.

5. Concluding Remarks

We study and discuss here the mathematical properties of the CMPB distribution proposed by Shmueli

et al. (2005) as a two-parameter extension of the binomial distribution. The main advantage of this model

is its flexibility to handle overdispersion or underdispersion commonly encountered in count data sets. The

CMPB distribution is appealing from a theoretical point of view since it belongs to the exponential family

as well as to the weighted Poisson distributions family. Various statistical and probabilistic properties were

derived such as moments, probability and moment generating functions. It is showed how the dispersion

parameter affects the approximation of the CMPB distribution to the COM-Poisson distribution as

the sample size gets large. Applications of the CMPB distribution thorough the maximum likelihood

estimation to a real datasets show that the CMPB distribution can yield a better fit than some well-

known models. Since the CMPB distribution belongs to exponential family we believe that is possible
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to develop a subjective or objective Bayesian analysis for this model. Work in this direction is currently

under progress and we hope to report these findings in a future paper.
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