UNIVERSIDADE DE SAO PAULO

Instituto de Ciéncias Matematicas e de Computagéo

LEFTOVER -

ADRIANA CRISTINA CHERRI
MARCOS NEREU ARENALES
HORACIO HIDEKI YANASSE

~ THE UNIDIMENSIONAL CUTTING STOCK PROBLEM WITH USABLE
' A HEURISTIC APPROACH

NSO

USK

=y |

&

Sao

V

Carlos - SP

UNIVERSIDADE DE SAO PAULO

Instituto de Ciéncias Matematicas e de Computagdo
ISSN 0103-2577

THE UNIDIMENSIONAL CUTTING STOCK PROBLEM WITH
USABLE LEFTOVER - A HEURISTIC APPROACH

ADRIANA CRISTINA CHERRI
MARCOS NEREU ARENALES
HORACIO HIDEKI YANASSE

N° 90

NOTAS

Série Computagdo

USn,

Iicmoc

%

=2

Sao Carlos — SP
Maio/2007

THE UNIDIMENSIONAL CUTTING STOCK PROBLEM WITH USABLE
LEFTOVER - A HEURISTIC APPROACH

Adriana Cristina Cherri
Marcos Nereu Arenales
Horacio Hideki Yanasse

adriana@icmc.usp.br, arenales@icmc.usp.br

Instituto de Ciéncias Matematicas e de Computagdo — ICMC
Universidade de Sdo Paulo — USP
Av. Trabalhador Sdo-Carlense, 400 - Caixa Postal 668
13560-970 — Sao Carlos ~ SP

horacio@lac.inpe.br

Laboratdrio Associado de Computacio e Matematica Aplicada — LAC
Instituto Nacional de Pesquisas Espaciais — INPE
Av dos Astronautas, 1.758 — Jd. Granja
12227-010 — Séo José dos Campos — SP

Abstract: In this work we consider a one-dimentional cutting stock problem in which the non-used
material in the cutting patterns may be used in the future, if large enough. This feature introduces
difficulties in comparing solutions of the cutting problem, for example, up to what extent a minimum
leftover solution is the most interesting one when the leftover may be used? Some desirable
characteristics of good solutions are defined and classical heuristic methods are modified, so that
cutting patterns with undesirable leftover (not large enough to be used, nor too small to be acceptable
waste) are redesigned. The performance of the modified heuristics is observed by solving instances
from the literature, practical instances and randomly generated instances.

Keywords: cutting stock problems, usable leftover.

1 Introduction

Cutting stock problems (CSP) consist in cutting large pieces (objects), available in stock, into
a set of smaller pieces (ifems) in order to fulfill their requirements, optimizing a certain objective
function, for instance, minimizing the total number of objects cut, minimize waste, minimize the cost
of the objects cut etc. These problems are relevant in the production planning of many industries such
as the paper, glass, furniture, metallurgy, plastics and textile industries.

In the last four decades cutting stock problems have been studied by an increasing number of
researchers. The interest on these problems can be explained by their practical motivation and the
challenge they offer to the academia for, despite their apparent simplicity, they are, in general,
computionally difficult to solve.

Due to the diversity of situations where CSP arise, we are always faced with new constraints
and/or objectives for which the available methods are of limited value. Hence, the use of simple
heuristics has been observed in practice, many without any evaluation of their perfomance.

Although freqiiently arising in practical situations, we could not find many articles in the
literature that consider the situation where the leftover material may be used to cut future demands, if
large enough. We call leftover any piece cut that is not a required item. To the best of our knowledge
only Gradisar et al. (1997), Gradisar et al. (1999a), Gradisar et al. (1999b), Gradisar and Trkman
(2005) and Abuabara (2006) consider this possibility. In 1997, Gradisar et al. proposed a heuristic

(denoted by COLA) to optimize roll cutting in the textile industry with the objective of creating a
cutting plan with reduced letfovers or to concentrate them in a single object. All objects have different
lengths and they propose a bi-objective function that minimizes the number of unfulfilled item
demands and the total loss (sum of the leftover smaller or equal to a pre-defined value). In 1999,
Gradisar et al. proposed a modified COLA (denoted by CUT) and in 2005, Gradisar and Trkman
developed an algorithm to find a solution to general unidimensional cutting stock problems with
distinct objects, starting from the solution obtained by CUT and replanning patterns that do not satisfy
some criteria. In 2006, Abuabara modified the mathematical model proposed by Gradisar et al. (1997),
decreasing its size, that is, reducing the number of constraints and variables in the model.

In this work we present some characteristics of a desirable solution (we avoid “optimal
solution” since a criterion to compare solutions is not defined) to the cutting stock problem with usable
leftover (CSPUL). Modifications on classical heuristic methods to solve CSP are suggested aiming to
find a solution that satisfies those characteristics.

This article is organized as follows. In Section 2, the CSPUL is defined. Some methods to
solve it are presented in Sections 3 and 4. Computational tests are presented in Section 5 and
conclusion remarks and future works are presented in Section 6.

2 Definition of the cutting stock problem with usable leftover

During the cutting process, unavoidable leftover occur that are often discarded. Some
industries, however, have the possibility of using the leftover to cut future demanded items, as long as
their sizes are sufficiently large. In this situation, the simple objective of minimizing the leftover may
not be appropriate.

Many of the solution methods to solve cutting problems aim to minimize leftover (alternative
objectives may be defined but low amount of leftover must also be pursued). Although a low amount
of leftover is an objective to pursue, the possibility of using them introduces a new condition to
evaluate a solution. In this new problem, planning cutting patterns that concentrate the leftover in
fewer patterns seems to be a good alternative to pursue since it increases the chances that these
leftovers will be sufficiently large to go back to stock to be used to cut future demanded items.

Hence, we present the unidimensional CSPUL as:

“A set of pieces (items) must be produced by cutting large units (objects) of standard sizes
(objects bought from suppliers) or non standard (objects that arve leftover of previous cuts). The
demand of the items and the availability of the objects are given. Demand must be met by cutting the
available objects such that the leftover are “small” (denoted by scrap) or “sufficiently large”
(denoted by retail) to return to stock, but in a reduced number”.

This high level definition aims to capture the main elements of the CSPUL but it lacks details
that are going to be completed next.

The “sufficiently large” length or, equivalently, the minimum acceptable length for retail is a
choice of the decision maker. Some possible choices include the length of the shortest demanded item,
the average lengths of the demanded items or the length of the longest demanded item. Gradisar et al.
(1997), Gradisar et al. (1999a), Gradisar et al. (1999b) and Gradisar and Trkman (2005) considered a
retail any leftover with length greater or equal to the shortest demanded item. This choice may not be
interesting in cases where the portfolio of demanded items includes a small item that is not typical
because it is likely that retails that are seldomly used will be stocked. On the other hand a particular
portfolio may include only large items, and retails with sizes smaller than the smallest of the items are
acceptable.

In the classical CSP we find objective functions like minimize the total waste, minimize the
number of objects cut, minimize the costs, and so on. In the CSPUL our objective is to have little or no
scraps (as in the classical problem) and/or a reduced number of retails. Therefore, two solutions with
the same leftover may be different as illustrated in Figure 1. In this example, a leftover piece of size
larger or equal to 4 meters is considered retail.

(a) Objects in stock to be cut. A (b) Required items.

(¢) Solution 1. (d) Solution 2. . (e) ouion 3.
Figure 1: A cutting stock problem data and alternative solutions

For the CSPUL, Solution 2 (Fig 1 - d) is better than Solution 1 (Fig 1 - ¢), since it concentrates
the leftover of a size superior to 4 meters (a retail) in a single object (Solution 1 has 5 m of scrap while
Solution 2 has zero scrap and a retail of 5 m). For the CSPUL we can say that Solution 1 is an
undesirable solution compared to the ideal Solution 2. Another undesirable solution (compared with
Solution 2) is Solution 3, given in Figure 1 - e, for although it does not generate scraps, it generates a
larger number of retails. :

Due to the difficulty in defining a single objective function that differentiates such solutions
we begin qualifying the solutions according to the following definition.

Definition 1: The solutions of a CSPUL are defined as:

- Ideal solution: when a small number of objects have little scraps and none of the objects
have not so little scraps. In case there are retails, they must be concentrated in a very small
number of cut objects;

- Acceptable solution: when a small number of objects present not so little scraps and a small
number of objects present retails;

- Undesirable solution: when several cut objects present not so little scraps or present several
retails.

This definition (that depends on quantifying terms like small, very small or several objects,
little scrap or not so little scrap and retail), tries to incorporate general features of the solutions for the
CSPUL. By not so little scrap we mean a leftover material that is larger than a little scrap but it is not
big enough to be a retail.

The sizes of little scrap, not so little scrap or retail are defined by the user (decision maker).
The decision maker can define these values by his/here experience. Also he/she may use parameters to
define them, like:

= @g: fraction that defines the largest size for a leftover material to be considered a little scrap

for standard sized objects, that is, €L, is the maximum size for a leftover material to be

considered little scrap in a standard object of lenght L,, k=1,..., k, where k is the

quantity of standard object types in stock;
= [3: fraction that defines the largest size for a leftover material to be considered a little scrap
for non standard sized objects, that is, AL, is the maximum size for a leftover material to be

considered little scrap in a non standard object of lenght L, k& = k+1,., K (the objects of

type k +1,..., K are retails),

» J: smallest size of a leftover to be considered a retail (for example, J'is the average length
of the item types demanded). Any leftover larger or equal to & is considered retail,
independent of the object type.

Observe that with the parameters 6 and £ we make the scrap dependent on the object type. The
additional parameter £ allows the decision maker to define larger “little scraps” for non-standard
objects, making them more prone to be used compared to the standard objects.

The quantities “small”, “very small” and “several” in definition 1 are also defined by the user
(decision maker). The decision maker can define them by his/her experience or he/she can use, for
instance, two parameters & and & with 0 < & < &< 1 and set:

- Very small number of objects cut: up to Ffl 1 of the objects cut;

- Small number of objects cut: up to| &n of the objects cut;

- Several objects cut: above |_§2 7ﬂ of the objects cut;
where 771s the total number of objects cut in the solution.

For simplicity, from now on, we use the term acceptable leftover when the leftover is a small
scrap or retail.

With the aim of generating an ideal solution, or at least an acceptable one, we introduce
modifications in some well-known heuristics of the literature to solve the unidimensional CSP so that
solutions with several objects having not so small scraps are avoided. These are described in the next
Sections 3 and 4.

3 Constructive Heuristics
One heuristic used in the solution of the CSP is the exhaustive repetition (Hinxman, 1980):
Algorithm — Exhaustive repetition heuristic

ep 1: Build a good cutting pattern for each object type k, k=1, ..., K;

2: Select one of the cutting patterns generated in Step 1 (a selection criterion, can be, for
example, minimum waste. This selected pattern is associated with an object type);

tep 3: Use the cutting pattern chosen in Step 2 as much as possible, without exceeding the required
demand of the items and the availability of the associated object;

§

ep 4: Update the demand of the items and the stock of the objects;

5

tep 5: If the demand of the items is all satisfyed or there are no more objects available, STOP.
Otherwise, go to Step 1.

3

The exhaustive repetition heuristic relies fundamentally on a procedure that generates “good”
cutting patterns (Step 1). Two very well known procedures to generate cutting patterns are FFD (First
Fit Decreasing) and Greedy.

FFD Procedure

In the FFD procedure we initially cut the largest item as much as possible or until its demand
is satisfied (the largest items are chosen first since they are, generally, more difficult to be combined).

When it is not possible anymore to cut the largest item, the second largest item is considered and, so
on, until we reach the smallest item. When no new item can be cut, the pattern is complete.

Greedy Procedure

In the greedy heuristic the cutting patterns are generated solving a sequence of knapsack
problems of the form:

z(b) = maximize {,a, +{,a, +...+{ ,a, (1)
subject to :
Liag+l,a,+..+0 a,<b (2)
0<ag,<r,,i=1,..,m and integer 3)
where ¢, is the length of item i, i = 1, ..., m, and #; is the residual demand of item i, i = 1, ..., m,

updated in Step 4. Initially, r, = d, i = 1, ..., m, the required number of items type i.

These two classical procedures have distinct phylosophies. In the FFD procedure, there is an
excessive concern in producing the largest items as earlier as possible since they are harder to
combine, while in the Greedy procedure the best possible cutting patterns are generated first, with no
concern about the quality of the future cutting patterns. Next we modify these two procedures to deal
with the case of usable leftover.

3.1 FFDy, procedure

We modify the FFD procedure aiming to avoid not so small scraps, i.e., trying to obtain at
least, acceptable solutions.

The FFDy procedure applies FFD to generate a pattern and, just after the generation, the
leftover is analysed. If it is an acceptable leftover (a small scrap or a retail) the pattern is accepted.
Otherwise, we take out an item (the largest one) of the pattern. With the resulting empty space we
solve the knapsack problem (1)-(3), with the capacity b equal to the leftover material of the generated
pattern plus the size of the item withdrawn. After solving the knapsack problem, the resulting leftover
is analysed and if it is not acceptable, an additional item (second largest) of the original pattern is
withdrawn. Again, with the space generated a new knapsack problem (1)-(3) is solved. In case we
have withdrawn an item of each size among all items in the pattern, we withdraw again another piece
of the largest item. This procedure is repeated until the leftover obtained is acceptable or the initial
cutting pattern becomes null. In this latter case, the cutting pattern is the solution of knapsack problem

(D-G3).

Next, we present the main steps of algorithm FFD.. We denote by e, the quantity of objects
type k, k=1, ..., K, available in stock.

FFDy, algorithm

k=1

Step 1: {Start}
Ife,=0thenk =k + 1, go to Step 9.
else

Apply the FFD procedure for an object type k and obtain a FFD pattern, whose

. . FFD
associated vector is &,

Step 2: {leftover analysis: FFD pattern}

If the leftover is acceptable (i.e., small scrap or retail) then
Begin

pattern akﬂ D is accepted {temporarily stored in list B}.

k=k+ 1, goto Step 9.
End

Step 3: {ltem to be withdrawn from the FFD pattern}

i = index of the longest item in akF .

Step 4: {Change pattern with undesirable leftover}

Withdraw one unit of item 7 from (ZkF o 3

SPACE = leftover of pattern FFD + £ ;

Solve knapsack problem (1)-(3) with capacity b = SPACE, considering the items that are already
in the pattern FFD and obtain the knapsack pattern, whose associate vector is denoted by a*"#*** ;
Step 5: {Selecting a pattern when all items are withdrawn from the FFD pattern}
If /™" =0, then
Begin
While the leftover is not acceptable do:
Begin

Let p = index of the longest item in pattern a*"*** .

Withdraw one unit of item p of a"*** .
End
If &% % 0 then
Begin
pattern @"?**** is accepted {temporarily stored in list B}
End
Else
Begin
pattern @"#**** obtained in Step 4 is accepted {temporarily stored in list C}
End
k=k+1,gotoStep9
End

Step 6: {New pattern }
New pattern (FFD + Knapsack): & ~ + omapsack .

Step 7: {evaluation of the lefiover material: pattern FFD + Knapsack}
If the leftover is acceptable then
Begin

FFD k
pattern @, + """

k=k+1, gotoStep 9,
End
Step 8: {Item to withdraw from pattern FFD - index update}
i = next item to be withdrawn from a,f P according to Procedure Withdraw_items (the pattern

FFD + Knapsack is disconsidered);
Go to Step 4.

is accepted {temporarily stored in list B};

Step 9: {Determination of the best cutting pattern, frequency, demand and stock update}
If k=K + 1 then
Begin
Iflist B = & then
Begin
Select among the cutting patterns in list C the one that presents the smallest scrap and
store;
End
Else
Begin
Select among the cutting patterns in list B the one that presents the smallest scrap or if
there is no pattern with scrap, the one that presents the smallest retail and store;
End
Determine the frequency of the chosen pattern (under demand and stock restrictions) and store;
Updated,i=1,..,mande, k=1, .., K
Ifd;=0,i =1, ..., m (feasible solution found) or e, = 0, k = 1, ..., K (demand not fulfilled) the
STOP.
Else £ = 1 and empty lists B and C.
End
Go to Step 1.

Procedure Withdraw_items

Withdraw the largest items in non-increasing order, one type at a time. In case one item of
each type is withdrawn, among all item types in the original pattern, withdraw the remaining largest
items in non-decreasing order, one type at a time. Repeat following the same reasoning.

For each object type k in stock, a cutting pattern is built and the one with the smallest scrap is
used with a frequency defined in Step 9. If there is no pattern with scrap, the selected pattern is the one
having the smallest retail. The pattern with the smallest retail is chosen in order to avoid solutions as
observed in Figure 1. e — Solution 3.

3.2 Greedyy procedure

The Greed,, procedure consists in applying the Greedy procedure to obtain a cutting pattern
and observe the leftover. If acceptable (small scrap or retail), the pattern is accepted, otherwise the
largest item in the pattern is withdrawn and the leftover is analysed again. If the pattern is still
unacceptable the second largest item is withdrawn. This process is repeated until we have an
acceptable pattern or a null pattern. If the pattern is null, we choose among the original patterns, the
one that presents the smallest leftover (this is not a typical situation but it can occur, for instance, when
the stock is formed only by retails).

Next, we present the mais steps of the Greedy,, algorithm.

Greedyy, algorithm

k=1
Step 1: {Start}
Ife, =0thenk =k + 1, go to Step 3.
Else
Apply the Greedy procedure for an object type k and obtain a greedy pattern, whose

associated vector is @& .

Step 2: {Leftover evaluation: pattern a¥*®}

If the leftover is acceptable then
Begin
pattern % is accepted {temporarily stored in list B}.

End
Else {modification on Greedy pattern}
Begin
While leftover is not acceptable do:
Begin
Let i = index of the largest item in pattern az®*? .

Withdraw one unit of item i from ¥ .

End
If f"**” # 0 then
Begin
pattern ¥ *? is accepted {temporarily stored in list B}.

End
Else
Begin
pattern ¥ obtained in Step 1 is accepted {temporarily stored in list C}.

End
k=k+ 1, goto Step 3.
End

Step 3: {Determination of the best cutting pattern, frequency, demand and stock update}
Ifk =K + 1 then
Begin
If list B = & then
Begin
Select among the cutting patterns in list C the one that presents the smallest leftover and
store;
End
Else
Begin
Select among the cutting patterns in list B the one that presents the smallest scrap or if
there is no pattern with scrap, the one that presents the smallest retail and store;
End
Determine the frequency of the chosen pattern (under demands and stock constraints);
Updated,i=1,...mande, k=1, .., K
Ifd;=0,i=1, .., m (feasible solution found) or ¢, = 0, k = 1, ..., K (demand not fulfilled)
then STOP.
Else £ = 1 and empty lists B and C.
End
Go to Step 1.

In general, in the FFDy and Greedy,, procedures, the last selected patterns are composed with
large items, that are more difficult to combine with the other items. These patterns generally present
large leftover, that is, retails, that are not totally undesirable.

4 Residual Heuristics

Residual heuristics find an integer solution for the unidimensional CSP from the linear
relaxation of the Integer Programming problem

K Ny
Minimize f(x)= > ¢, X, (4)
k=1 j=I
subject to:
ZZ X = i=1,..,m Q)
k=1 j=1
Ny
D xy<e, k=1,..,K (6)
j=1
>0andinteger j=L1..,N,,k=1..,K N
where
Cix is the leftover material in cutting pattern j for the object type k in stock, given by
a =L Zf % 5J = Loy Ni k= 1,..., K, and
Xk is the dec1snon variable that represents the number of objects type k cut according to pattern j,

j=1.,Nyk=1,.,K

i = (Xjts Cgjis .., Ohm) 1s a cutting pattern, where oy is the number of items type i in cutting pattern j
of objecttype k,i=1,.., m j=1, .. Ny, k=1, ..., K In the unidimensional case, for each
object type £, any cutting pattern must satisfy

®

{Z G+, az.k +..+4,0,, <L,

0<ey <d,,i=l,..,m and a, integer.

In model (4)-(7), the objective function (4) minimizes the total leftover material; constraints
(5) guarantee that the quantity of items cut is exactly the required demand (any piece cut that is not a
required item is considered leffover). Constraints (6) guarantee that the number of objects type k cut
does not exceed its availability e, £k = 1, ..., K and finally, constraints (7) guarantee that the number of
times each pattern is cut is a non-negative integer number.

For simplicity of notation, model (4)-(7) is written in matricial form as:

Minimize f{x) = ¢"x)
subject to
Ax=d (10)
Ex<e (11)
X 2 0 and integer (12)

where A is the cutting patterns matrix in (5) and E is a matrix of 0’s and 1’s on constraints (6).

The integrality condition on the variables x; complicates the solution of the problem as m
increases (it is already difficult when m is of the order of a few dozens). Gilmore e Gomory (1961)
proposed to solve the problem using column generation after relaxing the integrality constraints on the
decision variables xj.. From the optimal solution of the relaxed problem, that usually is not integer, we
determine an integer solution for the original CSP. This integer solution can be determined by
heuristics that have been developed by several researchers, like Wischer and Gau (1996), Poldi and
Arenales (2005), Stadtler (1990), among others. Some of these heuristics are presented in subsections
4.1,4.2 and 4.3.

Definition 2: Let x be an optimal fractional solution for the linear realxation problem (9)-(12) and

let y be a vector of non-negative integer numbers, close in some sense to X, such that:

Ay<d
Ey<e

The vector y, obtained from x, is called an approximate integer solution of x.

A possible way to obtain an approximate integer solution y of x is by a simple truncation:

y=0ald xod, ..., L)

(13)
(14)

(15)

that satisfies (13)—(14) since all coefficients of A and E are non-negative, x satisfies Ax = d and

Ex<e.

Definition 3: (Residual Problem): Let y be an approximate integer solution of X, r = d — Ay the
residual demand and s = e — Ey the residual stock of the available objects. The residual problem is

defined as (9) — (12) withd =r and e =s.

In residual heuristics we solve a linear relaxation of problem (9)-(12) and we obtain an
approximate integer solution. We then solve a linear relaxation of the residual problem (definition 3)
and we obtain an approximate integer solution and, so on successively, until the residual demand is
null or the approximate integer solution is null. In the latter case, we apply some method (heuristic or
exact) to solve the residual problem with just a few items. Next, we present a general structure of these

heuristics.
Residual Algorithm (from Poldi and Arenales (2005))

Step 1: {Start}
Do £=0 r"=4d, s"=¢;

Step 2: {Determining the continuous optimal solution}
Solve the residual problem with r =r‘ and s = s°;
Let x° be the continuous solution (column generation is used);
If x'is integer, then STOP.

Step 3: {Determining an approximate integer solution}
Determine y’, the approximate integer solution of x’.

If y’ is a null vector, then go to the Step 5.

Step 4: {Update}
Determine the new residual demand
=y _A y(;
“=g! _E y(’_
£=/¢+1.
Go to Step 2.

Step 5:

Solve the final residual problem with a few items by some method, heuristic or exact.

10

4.1 Residual Heuristics FFD, Greedy, FFDy, and Greedyy,

In order to completely define the previous residual algorithm, it is necessary to specify how
y‘, the approximate integer solution of x’, is detemined in Step 3, and how to solve the residual

problem in Step 5. We denote the residual heuristics FFD, Greedy, FFD; and Greedy, those obtained
applying the residual algorithm where in Step 3 the approximate integer solution is defined by (15)

(that is, y° is determined by the floor of the fractional numbers obtained) and, in Step 5, if there are
still items with demand to be satisfied, we use heuristics FFD, Greedy, FFD, or Greedy,, respectively.

4.2 Residual Heuristic by Greedy Rounding (RGR)

Poldi and Arenales (2005) developed a greedy rounding procedure to obtain an approximate
integer solution of a continuous solution x in Step 3 of the residual algorithm.

In Poldi and Arenales’s greedy rounding procedure, Step 3 of the residual algorithm is divided
in two parts: Pre-processing Step and Rounding Step. For these heuristics, refered to as RGR
heuristics, the Step 5 of the residual heuristic never occurs for all demand is satisfied since at least for

one pattern its frequency will be rounded up to its nearest integer and, hence, yl will never be null in

Step 3.

In the Pre-processing Step we order the cutting patterns of the continuous solution x°
(obtained in Step 2 of the residual algorithm) according to RGR 1, RGR 2 and RGR 3, described
ahead. To simplify the notation, consider T cutting patterns with non null frequencies obtained in Step
2, enumerated by 1, 2, ..., T and %; the object associated to cutting pattern j,j = 1,..., T.

* RGR 1: the cutting patterns are ordered by their frequencies values in non-increasing order,

thatis, x,, 2X,, 2..2Xp ;

= RGR 2: the cutting patterns are ordered by their leftover values in non-decreasing order,
thatis, ¢, <S¢, S...Scp s

* RGR3:let fj =x; —|_x ij the fractional part of x;. The cutting patterns are ordered by

their corresponding fractional parts in non-increasing order, that is, fl,(l 2 fuz 2.2 kaT.

In the Rounding Step, we start with the first cutting pattern, following one of the previous
orderings, and we round up its frequency, that is, y,, = [x, K 1. The other frequencies are set to 0, that

is, ¥ = 0,7=2, .., T. Conditions (13) and (14) are tested and, in case of violation, y, X is reduced
successively by a unit, that is, y,, =y, —1, unitl we get an approximate integer solution. The value
of yy, is fixed and we repeat the procedure with the second pattern. We determine a new approximate

integer solution y,, , y,,, and y ,; =0,j=3, ..., T. We repeat the procedure for all cutting patterns.

To solve the CSPUL, we adapted this greedy rounding to obtain heuristics RGRy, — versions 1,
2 and 3.

4.3 RGR Heuristics for the CSPUL

In the RGR,, heuristics we use a bound for the maximum acceptable fraction for a scrap, that is
defined from the approximate integer solution obtained using one of the versions of the RGR heuristic
(in the constructive heuristics, this bound is defined by the user, for standard and non-standard
objects).

11

Computation of the Maximum Acceptable Fraction for a Scrap

1. Consider an approximate integer solution obtained by one of the versions of the RGR heuristic

(Section 4.2).
2. Determine the total leftover, excluding the retails (that is, leftover material in a cutting pattern larger

or equal to J):
o= Z Cir, Xk,

ilcy, <0
3. Determine the total length of the objects cut with scraps:

V= z Ly Xik,
iley, <6
4. The maximum acceptable fraction (small scrap) is given by:

o
pP=—
/4

ci- . . PR . .
Let 4, =% e the fraction lost in pattern i, i = 1,..., T of object &; . The main steps of
k.

i

heuristics RGR; versions 1, 2 and 3 are:

RGR;, Algorithm

Step 1: {Start}
Determine an approximate integer solution using the greedy rounding procedure according to
criterion RGR (versions 1, 2 or 3).

Step 2: {Evaluation of the leftover material in the patterns}
Analyse the leftover material of all patterns generated in Step 1;

If the leftover is acceptable, that is, liki < p (obtained from the computation of the maximum

acceptable fraction for a scrap) then
pattern / of object type k; is accepted and stored;

Else
pattern i is rejected and demand of the items in pattern i and stock of the object type k; are
updated;

Step 3:
Apply the FFD; procedure to solve the residual problem formed by the items of the rejected

patterns in Step 2 and the remaining objects.
Other procedures to solve the residual problem (Step 3) can be used to generate different
heuristics. We suggest the FFDy procedure because, as we will see later in the computational test

results, this heuristic generates less scrap when compared with the FFD and Greedy heuristics, and a
smaller quantity of objects cut with retail compared to Greed, heuristic.

5 Computational Tests

To evaluate the heuristics described in sections 3 and 4, 16 classes of instances were
considered. For each class, 20 instances were randomly generated. For these randomly generated

12

classes, we also present the results obtained using the COLA algorithm developed by Gradisar ef al.
(1997). Algorithm COLA minimizes the loss of material and/or tries to concentrate them in an object
so that they become retail. We consider retail any material left with length larger or equal to the
average of the lengths of the required items. Computational tests are also presented with instances
from Trkman (2005) and practical instances from Abuabara (2006).

To classify the solutions (ideal, acceptable, or undesirable) obtained according to definition 1,
we use the values & =0.03 and & = 0.1, except for instances 4 to 6, that present small demand.

To classify the solutions according to definition 1 we require only the number of objects cut
with small scraps, not so small scraps or with retails. But we present other results that may be useful
for the user/decision maker to choose a solution (the concept of ideal, acceptable or undesirable
solution may always be revised by the user/decision maker and include other features). The additional
data we present are: the number of objects cut (standard and non-standard), total length lost (sum of
the scraps) and the total length of the non-standard objects generated (sum of the retails). Note that, it
is desirable that the total length lost is small, but not necessarily this is valid for the total length of the
retails. Observe that with these data it is possible to compute the total length of the objects used which
may be also useful information.

All the heuristics including the COLA algorithm were implemented in DELPHI 6. The
experiments were executed in a Pentium IV (3 GHz, 2 GB RAM) microcomputer. The implicit
enumeration method described in Gilmore and Gomory (1961) was used to solve the knapsack
problems that arise in the heuristics and in the column generation.

5.1 Results using Instances of the Literature

In this section we present numerical instances from Trkman (2005) and practical instances
from Abuabara (2006).

In the instances of Trkman (2005) we have several types of objects in stock but only one of
each type, that is, e, = 1 for all k. This is a very special situation where the variables x; are binary. Due
to the special characteristic of these instances, we treated the objects as non-standards and we set only
the parameter Sto 0.005.

For these instances we have information about the solution given by the CUT algorithm,
therefore, we used the same criteria adopted by Gradisar et al. (1997) for scrap and retail, that is, all
the material left after cutting an object that is greater or equal to the smallest item demanded is
considered retail, otherwise it is scrap.

In the following tables we classify the solutions according to definition 1 and we use ID to
denote an ideal solution, AC to denote an acceptable solution, and UND to denote an undesirable
solution. Also we use Obj.Cut. to denote the quantity of objects cut, Tot.Length to denote the total
length of the objects in stock cut, Total Loss to denote the total length of scraps, Total Ret. to denote
the total length of the retails, OSScrap to denote the number of objects cut with small scrap,
ONSScrap to denote de number of objects cut with not so small scrap, and ORetail to denote the
number of objects cut with retail.

Instance 1. K = 20 types of objects with lengths between 2,200 and 6,000 cm; availability of one unit
of each type of object and m = S items demanded according to Table 1.

Table 1 - Data of instance 1 — Items

Item Length (cm) Demand
1 235 4
2 200 51
3 347 42
4 471 16
5 274 37

From Table 1, 5= 200 cm since this is the length of the smallest item. In Table 2 we present
the computational test results obtained.

13

Table 2 — Solution of Instance 1

Constructive Residual

cur | FFD | FFD, | Greedy | Greedy, | FFD | FED, | Greedy | Greedy, | ® ‘fR R GIRL R ‘Z;R R‘;"‘ R ?R R G3RL
Obj.Cut. 11 11 13 12 12 1t 10 1 11 10 10 10 10 I 10
Tot.Length || 44136 [44027 | 48506 | 44715 46104 | 46243 | 43803 | 46243 46234 | 44079 | 45245 | 44079 | 45245 | 47141 | 46507
TotalLoss| 5 | 639 | 8 | 39 T T N AT 3 o | ol oo || o
Total Ret. 743 0 5110 1288 2715 2524 412 2724 2852 691 1857 691 1857 | 3734 | 3119
osserap | 3 | 1 | 3 i i o | 2 I i ol ool o 0] o
ONSScrap| 0 | 10 | 0 3 0 3 | o I 0 ol o o of 1] o
ORetail | | o | 7 I 4 1] i 2 (| Clo]2 | 2
Solution AC UND | UND | UND UND UND AC AC AC ID ID ID ID AC AC

From Table 2 we observe that the heuristics RGRy, — versions 1, 2 use less objects than the
CUT algorithm but the total length of the objects is longer, that is, they use longer objects compared to
CUT. This was expected since CUT gives priority to smaller objects first. We also notice that similar
to algorithm CUT, heuristics RGRy, — versions 1 e 2 concentrate the leftover in a single object. With
respect to losses, none of these two heuristics generate losses performing better than algorithm CUT
with respect to this criterion. Note that, in general, the derived heuristics with usable leftover perform
better compared to their original version by definition 1. For this instance, the classification of the
solutions obtained by each algorithm is given in the last row of the Table, using definition 1 and the
parameters defined previously.

Instance 2: K = 20 types of objects with lengths between 2,100 and 5,000 cm; availability of one unit

of each type of object and m = 5 items demanded according to Table 3.

Table 3 — Data of instance 2 — Items

Item Length (cm) Demand
1 549 39
2 433 27
3 207 43
4 308 39
5 583 2

For this instance, = 207 cm, the length of the smallest item.

Table 4 — Solution of Instance 2

Constructive Residual

CUT\ ggp | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, R?R RCI;RL R(Z;R RGZRL ng RijL
objCut. | 15 | 15 | 16 | 16 16 5 | 15 s 15 5] 15 16] 16] 16 | 14
Tot.Length | 56302 | 56581 | 58356 | 57100 | 57100 | 56256 | 56256 | 56256 | 56256 | 5686157554 | 57313 | 58159 | 59929 | 56305
TotalLoss | 104 | 925 | 17 | 69 17 a7 | 9 9 9 14 | 6 | 60 | 3 |17 | 7
TotalRet. | 1017 | 475 | 3158 | 1850 | 1902 | 1028 | toes | 1066 | 1066 | 1566 | 2367 | 2063 | 2072 | 4731 | 1207
OSScrap | 7 2 8 8 8 2 5 5 5 4 4 4 4 5 5
onsserap | 3 | 12 | o 1 0 3 0 0 0 1 0 2 0 1 0
ORetail | 1 1 3 1 2 1 1 1 1 2 2 2 3 3 2
Solution | UND | UND | UND | AC AC_JUND | AC | AC AC | AC | AC | AC | AC [UND]| AC

In this instance the residual heuristics Greedy, and FFDy, presented a better solution than
algorithm CUT, according to definition 1. The majority of the solutions generated by the other residual
heuristics proposed also present acceptable solutions.

Instance 3: K = 90 types of objects with lengths between 3,000 and 9,000 cm; availability of one unit
of each type of object and m = 15 item types demanded according to Table 5.

14

Table 5 — Data of instance 3 — Items

Item Length (cm) Demand
1 569 34
2 718 26
3 520 25
4 540 12
5 492 30
6 547 2
7 632 6
8 430 36
9 750 7
10 387 20

11 804 3

12 389 32
13 835 18
14 684 39
15 687 10

For this instance, Jis equal to 387 cm.

Table 6 - Solution of Instance 3

Constructive Residual

CUT | erp | FFD, | Greedy | Greedy. | FFD | FFD, | Greedy | Greedy, R?R RGIRL R‘Z;R R‘;RL RgR R(;RL
Obj.Cut. 27 27 29 30 30 26 26 25 25 22 2 22 22 24 22
Tot.Length | 170504 § 172055 | 170343 | 175473 | 173814 | 174176 | 174176 | 173896 | 173896 | 170621 | 172114 { 170621 | 172114 | 175742 | 170989
Total Loss 2 2009 14 224 0 1350 5 19 0 0 0 0 [0 0
Total Ret. 1456 1000 1283 6203 4768 3780 5125 4831 4850 1575 3098 1575 3098 6696 1943
OSScrap 2 7 9 0 0 0 4 0 0 0 0 0 0 0 0
ONSScrap 0 17 0 4 0 12 0 1 0 0 0 0 0 0 0
ORetail 1 1 1 2 6 1 2 2 3 2 1 2 1 3 1
Solution ID UND | AC UND UND UND | AC AC AC AC 1D AC ID AC iD

For this larger instance, we observe from Table 6 that the solutions presented by the residual
heuristics RGRy, — verions 1, 2 and 3 and by the CUT algorithm were considered ideal, according to
definition 1. Also, if we compare the solutions obtained with the modified heuristics compared with
the ones obtained with the original procedures, we clearly observe improvements in quality, following
definiton 1.

We presented here the computational test results of 3 instances only, although we received and
tested a total of eight instances. In all the 8 instances we observed a similar behaviour, i.e., the
performance of the modified heuristics were better or equivalent to the performance of algorithm
CUT, according to definiton 1. The results of the other instances can be seen in Cherri (2006).

The next set of instances is from Abuabara (2006), whose work is based on the models
proposed by Gradisar ef al. [3]. The instances are from the portfolio of demands of a small Brazilian
agricultural airplane industry that cuts methalic tubes to build its airplanes whose structure are formed
with lattice porticoes.

The instances presented, which characterize small industries, are not classified according to
definition 1 since the values & = 0.03 and & = 0.1 that we planned to use are not appropriate because
the total number of objects cut is small (small demand) therefore yielding a very small bound for the
quantity of objects with small scraps, not so small scraps and retails. The choice of the best solution
according to definition 1 can be made after the quantities “small”, “very small” and “several” are
defined by the decision maker.

In the following examples, we have a single type of object in stock, that is, e, = 1, £ = 1. Since
the stock has standard objects only we define solely the parameter € and we use & = 0.005. The

minimum size of the retails is § =min{{,,i=1, ..., m}.

Instance 4: The length of the objects in stock is 3,000 cm and there are 10 of them. m =5 item types
demanded according to Table 7.

15

Table 7 — Data of instance 4 — Items

Item

Length (cm)

Demand

L R N N R N

250
273
285
525
1380

A BB NON

Any leftover material on a cutting pattern larger than or equal to 250 cm is considered a retail.

Table 8 — Solution to Instance 4

Constructive Residual

FFD | FFD, | Greedy | Greedy, | FFD | FFD | Greedy | Greedy, | ** RCI;RL RgR ROR. RfR RG3RL
Obj.Cut. 4 5 4 5 4 5 4 5 4 5 4 5 4 5
Tot.Length § 12000 | 15000 | 12000 15000 12000 { 15000 12000 15000 12000 | 15000 | 12000 | 15000 | 12000 | 15000
Total Loss 525 [} 240 0 240 0 240 0 240 1] 240 0 244 4
Total Ret. 1669 5194 1954 5194 1954 5194 1954 5194 1954 5194 1954 5194 1950 5190
OSScrap 0 0 0 0 0 0 0 0 0 0 0 [i 1
ONSScrap 3 0 1 0 1 0 1 0 1 0 1 0 1 0
ORetail 1 3 1 3 1 3 1 3 1 3 1 3 1 3

From Table 8 we observe that the RGR algorithms — versions 1, 2, do not generate scraps but
they present large quantities of retails when compared to the original heuristics. This occurs since the
usable leftover heuristics tend to eliminate the not so small scraps.

In this instance and the next ones, we are faced with solutions where we have loss of material
but a single retail or no loss of material but a larger number of retails. This is a typical situation that
we face when we solve this problem; we rarely obtain a solution that is good considering all the
criteria. So, the choice of the best solution is of the decision maker since he/she knows better the
reality of the firm.

Instance 5: The length of the objects in stock is 6,000 cm and there are 10 of them. m = 4 item types
demanded according to Table 9.

Table 9 - Data of instance 5 — Items

Item Length (cm) Demand
1 370 5
2 905 5
3 910 5
4 930 5

Any leftover material on a cutting pattern larger than or equal to 370 ¢m is considered a retail.

Table 10 — Solution to Instance 5

Constructive Residual

FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, RCI;R RGIRL RgR RC;R‘ R‘;R R‘;RL
Obj.Cut. 3 4 3 3 3 4 3 3 3 3 3 3 3 3
Tot.Length | 18000 | 24000 18000 18000 18000 | 24000 18000 18000 18000 | 18000 | 18000 | 18000 | 18000 | 18000
Total Loss | 250 0 250 0 250 0 250 0 515 150 515 150 515 150
Total Ret. 2175 8425 2175 2425 2175 8425 2175 2425 1910 2275 1910 2275 1910 2275
OSScrap 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ONSScrap 2 0 2 0 2 0 2 0 2 | 2 1 2 !
ORetail 1 4 1 3 1 4 1 3 1 2 1 2 1 2

As we can observe, the original heuristics generate only a single retail to stock but all of them
present larger losses compared to the losses of the modified heuristics. In the RGRy heuristics—

16

versions 1, 2 and 3, it was not possible to eliminate all the not so small scraps, but the quantity of
retails is smaller compared to the other modified heuristics. The choice of the best solution is not
trivial since it involves the simultaneous analysis of several features. The option of generating only a
single retail leads to significantly larger losses while the solutions with no loss have a significant
number of retails. Again, the instance shows the conflicting nature of the objectives and the decision
maker must make his/her choice.

Instance 6: The length of the objects in stock is 6,000 cm and there are 15 of them. m = 7 item types
demanded according to Table 11.

Table 11 — Data of Instance 6 — Items
Item Length (cm) Demand

350 12

540
705
735
760
890
900

N AN BWN -
LW AN WW

Any leftover material on a cutting pattern larger than or equal to 350 c¢m is considered a retail.

Table 12 — Solution to Instance 6

Constructive Residual

FFD | FFD, | Greedy | Greedy. | FFD | FFD, | Greedy | Greedy, | *S* RGIR‘ ROR | KOk RgR R‘;RL
Obj.Cut. 5 5 5 5 5 5 5 5 5 S 5 5 5 5
Tot.Length § 30000 | 30000 { 30000 { 30000 { 30000 | 30000 | 30000 | 30000 | 30000 { 30000 | 30000 | 30000 | 30000 | 30000
Total Loss § 455 30 0 0 455 0 140 0 305 0 105 0 110 0
Total Ret. | 4600 | 5025 | 5055 5055 4600 | 5055 | 4915 5055 4750 | 5055 | 4950 | 5055 | 4945 | 5055
OSScrap 1 2 0 0 0 0 0 0 0 0 0 0 0 0
ONSScrap 3 0 0 0 2 0 1 0 1 0 1 0 1 0
ORetail 1 2 2 2 { 2 1 2 1 2 1 2 1 2

To satisfy all demand only a small number of objects needed to be cut in this instance (at most
5 objects), as can be observed from Table 12. The heuristics modified to deal with unsable leftover
produced solutions with reduced losses compared with the solutions given by the original procedures.

For these instances, solutions with the mathematical models of Gradisar et al. (1997) or
Abuabara (2006) can be obtained. In these models constraints on the number of retails are imposed.
The solutions obtained with these models are, in general, similar to the solutions obtained using the
modified heuristics. When we consider a great variety of object types in stock with large availability
as well as a large variety of item types with large demands, the mathematical models present a large
number of variables and advanced solvers like CPLEX, often are not able to produce a solution.

5.2 Results using Randomly Generated Instances

In this section we present the computational results for randomly generated instances
according to the instance generator program described in Poldi and Arenales (2005). The data for the
instances and for the generator are:

» Number of standard object types: k =2 ;

» Number of non-standard object types: k=3, 5 and 7,
= Total number of object types in stock: K = 5,7 and 9;
= Number of item types: m = 10, 20 and 40;

* Availability of standard object types: e, =e, =100 objects;

17

Availablilty of non-standard object types: e, k = 3, ..., K, are randomly generated in the
interval [1, 10];

Lengths of the standard objects: L; = 1,000 and L, = 1,100;

Length of the items: The lenght £, of item type i is randomly generated in the interval [v,L,

v,L], where L is the average value of L, k = 1, 2, v; = 0.01, v, = 0.2 and 0.8. Combining these
values, classes of instances are generated. For small items we consider v,= 0.2 and for average
sized items v, = 0.8. Obviously, small items can be defined using other parameters;

1 m
Acceptable size of a retail: & = [— Z l, J ;
m

Length of the non-standard objects: Ly, k = 3, ..., K are randomly generated in the interval

7
2
K K
z e.L, Z &L,
Demand: d; is randomly generated in the interval | 0.02 4= ,

e, f l
i=l i=l

Combining these values, we guarantee that the total length of the demanded items does not
exceed the total length of the objects in stock;

Maximum size of small scrap for standard objects: 0.005L;, k= 1, 2, that is, 8 = 0.005;
Masximum size of small scrap for non-standard objects: 0.05L;, k=3, ..., K, that is, f= 0.05.

,i=1, .., m

In the generated instances we defined a larger percentagewise acceptable loss for the non-

standard objects, increasing the number of possible patterns considered acceptable for these objects.
With this, we expect to increase the chances that a pattern using a non-standard object appears in a
solution.

We considered 16 classes of instances combining the parameters K = (5, 7 or 9), m = (10, 20

or 40), v, = 0.2 (small items: S) and v, = 0.8 (average sized items: A). In Table 13 these 16 classes of
the generated instances are described. For example, class 1 contains instances with K = S types of
objects, that are cut to produce m = 10 item types, whose lengths are randomly generated in the
interval [0.01L 0.2L], with L = (L, + Ly)/2 = 1,050. Class 2 instances have the same size of the
instances in Class 1 in terms of number of object types and item types, except the lengths of the items
are randomly generated in the interval [0.01L 0.8L].

Table 13 — Description of the classes

Parameters
Class K m Items
1 5 10 S
2 5 10 A
3 5 20 S
4 5 20 A
5 5 40 S
6 5 40 A
7 7 10 S
8 7 10 A
9 7 20 S
10 7 20 A
11 7 40 S
12 7 40 A
13 9 10 S
14 9 10 A
15 9 20 S
16 9 20 A

18

20 instances of each one of the classes in Table 13 were generated and the average
computational test results obtained for the 320 instances (16 classes X 20 instances) are presented in
the next tables. In these tables we present:

i. The average total number and average total length of non-standard and standard objects used

(Tables 14, and 15);

ii. The average total loss, average total length of the losses in the standard objects and in the non-

standard objects (Table 16);

iii The average total length of the retails, average total length of the retails in the standard objects

and in the non-standard objects (Table 17);

iii. The average number of objects cut with: retail, small scrap, and not so small scraps (Table

18);

iv. The average percentage of objects cut with: small scrap, not so small scrap, and retail (Table

19);

v. The average execution time (Table 20);
vi. The general classification of the heuristics (Table 21).

In each row of the tables, the largest and smallest values obtained are marked in bold and in
italic, respectively. The detailed values of the test results of each table are given in the Appendix.

Table 14 — Average number and average total length of non-standard objects used

Constructive Heuristics Residual Heuristics

coLa | FED | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, R?R R(jRL R(Z;R RiR‘ RgR R(§RL

Average | 294 1 110 | 86 8.4 9.6 9.1 | 538 5.0 48 37| 43 | 40 | 44 | 35| 45
number

Average

length 7065.3 || 2445.0 | 1820.4 | 1865.5 2510.3 | 1827.0 | 1058.1 | 911.9 1014.7 | 841.3 | 10254 | 884.8 | 1041.6 | 800.9 | 1052.5

Different from the modified heuristics developed, in algorithm COLA the objects are ordered
in non-decreasing length and, for each object in this sequence a cutting pattern is built. Therefore,
algorithm COLA gives priority to non-standard objects and uses the largest number and length of
these objects in the solution (Table 14). Among the original and modified heuristics, constructive FFD
and Greedyy are the ones that use more non-standard objects, and RGR — versions 1, 2 and 3 use less
of these objects.

We must point out that the use of non-standard objects was not a priority in the heuristics
developed. Just a larger tolerance for small scraps was considered. In case it is relevant to reduce the
non-standard objects in stock, the heuristics can be revised, possibly in detriment of other desirable
features.

Table 15 - Average number and average total length of standard objects used

Constructive Heuristics Residual Heuristics
coL4 | FFD | FFD, | Greedy | Greedy,| FFD | FFD, | Greedy | Greedy, R‘];R RGIRL ng RGZR‘ R§R RC‘;RL
Average| 140 | 1058 | 1085 | 1090 | 1109 | 1018 | 1027 | 006 | 1029 | 1023 | 102:6 | 1022 | 1025 | 1023 | 10256

number

Al"e“:lgle 105120.9 [109978.1 | 1111619 | 110649.7 | 1131472 § 109886.3 | 110724.1 | 1107209 | 1108169 | 110612.5 | 1109322 | 110589.7 | 110881.9 | 110655.0
eng

110926.9

From Table 15 we note that the constructive Greedy, heuristic uses the largest number and
largest total length of standard objects. This can be explained since in the Greedy heuristic it is more
likely to get good cutting patterns with longer objects. Algorithm COLA presented the least amount of
total length used although it does not use the least number of standard objects. As pointed out earlier,
algorithm COLA gives priority to the shortest objects, therefore, it uses first smaller sized objects.

19

Table 16 —Average total loss, average total length of the losses in the standard objects and in the
non-standard objects

Constructive Heuristics Residual Heuristics
COLA | FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, RfR RC;’*L R‘;R Rg’“ ng RG3RL
Total loss || 1263 | 5772 | 37.1 | 5755 | 292 {613 | 156 | 739 163 | 60.1 | /7.5 | 653 | 118 | 66.1 | 12.5
Standard | |\, o 1esr 9| 322 | 4563 | 147 J136]| 118 | 147 | 114 |162]| 62 |157] 66 [215] 70
objects
Nonstd |y 4 435 | 49 | 1193 | 144 [371] 38 | 593 49 |434| 53 |496]| 53 [466]| s.1
objects

From Table 16, we observe that the modified residual heuristics present better solutions when
the losses are analysed. A fact that we must point out is that even allowing a larger loss for the non-
standard objects (a way so that they are preferred to standard objects) the solution presented by the
usable leftover heuristics are, among the residual heuristics, the ones that present the smallest losses.
Taking the algorithm COLA, we observe that in almost all the classes (Table AS) this algorithm
present larger losses compared to the usable leftovers heuristics developed. For this algorithm, the best
solutions are in the odd classes that are composed of small items where the limit of the size of retail is
small (the average of the lengths of the items). But the reduction in loss is balanced with an increase of
retails (new non standard objects) that can compromise the quality of the solution, according to
definition 1, becoming an undesirable solution.

Table 17 — Average total length of the retails, average total length of the retails in the standard
objects and in the non-standard objects

Constructive Heuristics Residual Heuristics
coLa | FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, R?R R‘i& RCZ;R RGZRL RER ng‘
Total [6858 [489.6 | 1592.6 | 6525 | 4269.6 |293.1 4017 | 2040 | 4552 | 349 | 5874|390 | 5528 | 496 | 6019
S;‘:)'j'g;’sd 6633 | 488.5 | 1489.2 | 4922 | 3688.0 |267.9 (2227 1086 | 2075 | 44 | 3835 25 | 3420 80 [3838
':ﬁ;‘e::g 00 § 11 | 1035 | 1591 | ss1s | 252 | 1789 | 953 | 2490 | 3051957 365 | 2109 | 416 | 2175

According to definition 1, the total length of the retails does not qualify a solution as good or
bad since a solution is ideal or acceptable, as long as the retails are concentrated in a few objects. The
information about the lengths of the retails in Table 17 are interesting to observe the effect produced
by the heuristics with the modification made to avoid not so small scraps. For example, the construtive
FFD. heuristic reduces the loss, on average, from 577.2 to 37.1 (Table 16), but the total length of the
retails increase, on average, from 489.6 to 1592.6 (Table 17).

From Table 17 we observe that constructive heuristic Greedy; produces on average, the
longest retails. This was expected since in this algorithm, when an undesirable loss in a pattern is
observed, it is transformed into retail.

Algorithm COLA does not generate retails in non-standard objects because these objects are
cut first, when the demand of all or most of the items are not fulfilled yet. Therefore, it is likely that
good patterns for these objects are produced at these earlier stages.

In terms of definition 1, it is more relevant the amount of objects that present retails rather
than their total length. In definition 1 this quantity was assumed relevant because it dictates the
amount of non-standard objects in the future. The choice of the best heuristic to solve the CSPUL is
not trivial since it must consider many conflicting factors simultaneously.

20

Table 18 — Average number of objects cut with: retail, small scraps and not so small scraps
Constructive Heuristics Residual Heuristics

COLA | FFD | FFD, | Greedy | Greedy, | FFD | FFD; | Greedy | Greedy, | ¥ RGR, ROR | ROR Rk | RCR.

Retail 34 1.0 5.6 3.9 17.6 0.7 1.8 0.9 2.5 03 1 26 |03 1] 26 | 05 28

Small
soan | 90 457 | 166 | 85 89 | 67 | 35| 33 34 | 31] 32 (31]32133] 36
NotSml| 43 1935 00 | 114 | 00 {19 06| 22 06 (18| 01 |20/ 01|20/ o1
Scrap

From Table 18, we observe that the modified heuristics present a larger number of objects with
retail compared to their original versions. In general, this occurs because the patterns with not so small
scraps are modified by the modified heuristics. Observe, for instance, RGR heuristic — version 1 that
presents, on average, 0.3 cut objects with retail while the corresponding modified version, RGR —
version 1, presents 2.6 cut objects. Observe that although the modfied heuristics do not eliminate all
the non-standard objects in stock (Table 14), they generate, on average, a smaller quantity of retails
(Table 18) with respect to what was used (except the constructive heuristic Greedy,), hence, the
number of non standard objects tends to decrease.

For the randomly generated instances algorithm COLA presented on average, larger values of
cut objects with retail, larger values of cut objects with small scraps (objects cut with no loss is not
included), and larger values of cut objects with not so small scraps, compared with the values observed
of the residual heuristics.

Percentagewise, the average number of objects cut with retail, small scrap and not so small
scrap for the 320 randomly generated instances are given in Table 19.

Table 19 — Percentage of objects cut with: retail, small scrap and not so small scrap
Constructive Heuristics Residual Heuristics

COLA § FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, R?R RGIRL RgR RGZRL RgR RG3RL

Retail 2.6 0.9 4.8 3.3 14.6 0.6 1.7 0.9 23 031 24 103 24 (05| 26
Small

68 392 | a2 | 72 74 | 60 | 32 | 31 32 |29 30 |20 30 [31] 34
Scrap
NotSml} 55 | 193 | 00 | 97 00 | 17| 06| 20 06 | 17]|<01| 19 |<or1] 19]<o01
Scrap

From Table 19 we observe that the original heuristics present a smaller percentage of objects
cut with retail. The modified heuristics present a larger percentage of retails because they try to avoid
undesirable losses (not so small scraps). This fact can be observed when we analyse the percentage of
cut objects with not so small scraps (line Not Sml Scrap in Table 19), where the modified heuristics
present improved solutions compared with the ones obtained with the original heuristics and the
COLA algorithm.

Table 20 — Average execution time (in seconds)

Constructive Heuristics Residual Heuristicss
COLA | FFD | FFD, | Greedy | Greedy. | FFD | FFDy | Greedy | Greedy, | *S% RGR. RgR ROR. R(;R RG3RL

Average [44.85 |1 0.001]0.073 [0.323 {0.367 1415|1521 | 14.25 | 1425 |22.36|22,55|24.53|22.74 | 81,60 | 81.85

In Table 20 we present the average execution times observed to solve all the 320 randomly
generated instances. We observe that the constructive heuristics are much faster to run than the
residual heuristics but all the execution times observed seem to be acceptable in practice.

From the results presented in the previous tables we can classify the heuristics, according to
definition 1. This classification is presented in Table 21. In this classification we relaxed the no objects
cut with not so small scraps to an percentage of at most 0.1%, for ideal solutions and we used &, = 0.03
and & =0.10.

21

Table 21 — Classification of the heuristics
Constructive Heuristics Residual Heuristics

COLA | FFD | FFD | Greedy | Greedy, | FFD | FFDy | Greedy | Greedy, | %GR | RORt kor ROk kor Rk,

Ideal X X X
Acceptable X X X X X X X X X X
Undesirable X X

We observe that heuristics RGR; — versions 1, 2 and 3 were classified as ideal, while the other
residual heuristics and algorithm COLA were classified as acceptable. Since we have three heuristics
with ideal solutions we can use other criteria, defined by the decison maker, to untie them. This
criterion may be, for example, the total length of the losses generated, the quantity of new retails
generated, etc.

6 Conclusions

In this article we considered the cutting stock problem with usable leftover, that is, if the
resulting leftover material of a cut object is large enough it can be used again to cut future demanded
items. To deal with this problem, we modified some heuristics of the literature that minimizes the trim
loss and we included the possibility of retails (large leftover) that are not computed as losses. A set of
desirable characteristics was used to define solutions as ideal, acceptable and undesirable. Still, there
exist difficulties in pointing out which method performed better for the solutions present important and
conflicting characteristics, like retail, small scrap, not so small scrap, together with their distribution in
the cut objects. Other characteristics like the total length of the losses generated, the quantity of new
retails generated, can also be included.

The use of mathematical models like those proposed by Gradisar et al. (1997, 1999a, 1999b,
2005) and Abuabara (2006) are practically suitable for solving problems with a small quantity of
objects and items of moderate sizes but they are computational time consuming for instances with
large quantities of objects and items with large demands. The modified heuristics can handle these
instances without much effort.

Acknowledgments

The authors are indebted to Dr. Kelly Cristina Poldi for her valuable help on implementations. This
work was partially financed by FAPESP and CNPq.

References

ABUABARA, A, (2006), Otimizagdo no corte de tubos estruturais: aplicacdo na industria
aerondutica agricola. MS Dissertation, DEP - UFSCar, Sdo Carlos, SP, Brazil.

CHERRI, A. C., (2006), O problema de corte de estoque com reaproveitamento da sobras de
material. MS Dissertation, ICMC - USP, Sio Carlos, SP, Brazil.

GRADISAR, M., JESENKO, J., RESINOVIC, C., (1997), Optimization of roll cutting in clothing
industry. Computers & Operational Research, 10: 945-953.

GRADISAR, M., KLJAJIC, M., RESINOVIC, C., JESENKO, J., (1999a), A sequential heuristic
procedure for one-dimentional cutting. European Journal of Operational Research, 114: 557-568.

GRADISAR, M., RESINOVIC, C..KLJAJIC, M., (1999b), A hybrid approach for optimization of one-
dimentional cutting. European Journal of Operational Research, 119: 719-728.

22

GRADISAR, M., TRKMAN, P., (2005), A combined approach to the solution to the general one-
dimentional cutting stock problem. Computers and Operations Research, 32: 1793-1807.

GILMORE, P. C., GOMORY, R. E,, (1961), 4 linear programming approach to the cutting stock
problem. Operations Research, 9: 848-859.

HINXMAN, A., (1980), The trim-loss and assortment problems: a survey. European Journal of
Operational Research, 5: 8-18.

TRKMAN, P., (2005), Private Communication (09/11/2005).

POLDI, K. C., (2003), Algumas extensdes do problema de corte de estoque. MS Dissertation, ICMC -
USP, Sio Carlos, SP, Brazil.

POLDI, K. C., ARENALES, M. N,, (2005), Dealing with small demand in integer cutting stock
problems with limited different stock lengths. Notas do ICMC - Série Computagdo, 85, ICMC — USP,
Sdo Carlos, SP, Brazil. i

STADTLER, H., (1990), 4 one-dimensional cutting stock problem in the Aluminium Industry and its
solution. European Journal of Operational Research, 44: 209-223.

WASCHER, G., GAU, T., (1996), Heuristics for the integer one-dimensional cutting stock problem: a
computational study. OR Spektrum, 18: 131-144.

23

Appendix

Table Al — Average number of non-standard object used

Constructive Heuristics Residual Heuristics
coLa | FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, | RER RCR. | ROR | ROR. ng RG3R‘
Ci 177 {110 80 | 75 86 |89] 77 5.4 5.8 28 | 48 | 39 | 49 | 34 | 45
C 160 | 85| 45 | 43 45 | 49 | 45 4.7 5.1 38 | 42 |42 | 44 | 32 | 43
Cs 18.1 9.2 8.8 7.8 8.7 9.5 6.0 4.8 4.6 39 45 4.3 4.5 38 4.5
Cq 18.0 | 8.7 | 8.0 8.1 4.4 7.1 4.7 4.0 29 3.7 4.1 39 42 24 35
Cs 18.1 | 88 6.7 6.7 5.5 7.8 5.6 54 4.6 32 3.9 3.5 39 39 42
Cs 155 [100] 7.0 | 89 6.1 64 | 43 3.7 3.6 23| 34 | 28| 34 | 28] 30
C; 304) 108 7.0 8.1 11.7 9.5 5.9 4.8 5.1 48 4.6 5.2 4.6 3.8 4.8
Cs 265 ([11.2]| 10.6 8.8 11.2 9.2 6.0 438 4.8 38 6.2 4.1 6.1 35 5.4
Gy 301 [11.3] 7.1 7.9 99 |95 76 | 50 5.1 42 | 42 | 45 | 42 | 35 | 43
Cio 300 §11.6] 103 6.2 11.6 1.1 | 5.7 2.6 4.1 3.8 4.1 38 42 2.7 35
Cu 301 | 74 6.9 7.0 8.7 6.8 7.1 54 6.4 3.1 38 33 3.7 4.7 6.2
Ci2 289 | 142] 99 7.8 10.1 10.7] 3.7 4.6 49 23 2.6 2.2 2.6 3.1 3.8
Cis 428 y11.1{ 8.0 9.0 12.0 9.7 5.7 54 55 42 44 4.6 44 4.2 3.6
Cis 39.6 | 146 | 12.5 10.5 13.5 104 54 4.2 4.8 48 5.6 4.8 6.0 4.2 6.8
Cis 439 [1t6]| 94 1.1 13.5 9.7 6.7 49 49 39 40 43 42 4.2 5.0
Cis 437 1152] 12.6 14.6 14.3 13.9] 64 9.7 5.0 4.1 4.9 4.1 49 3.1 3.8
Average] 28.1 §11.0| 8.6 8.4 9.6 9.1 5.8 5.0 4.8 3.7 4.3 4.0 4.4 3.5 4.5
Table A2 — Average total length of non-standard objetcs used
Constructive Heuristics Residual Heuristics
coL4 | FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, RfR RGIRL ROR RGZRL R(;R RG3RL
C. [30009 [15194 | 9833 | 11703 | 14759 |1184.2| 8733 | 3864 | 7336 | 589.0 | 796.5 | 661.1 | 840.9 | 7582 | 900.8
o} 5050.7 1 2853.0 | 1662.5 | 1492.6 | 17657 | 1626317456 1609.2 | 2006.1 | 1342.5) 1581.5 | 1486.1 | 1622.2 | 11134 | 1595.5
Cs | 3447.0 [14963 | 1165.4 | 10540 | 16205 12563 | 604.9 | 5931 | 669.7 | 6533 | 718.1 | 686.5 | 761.9 | 701.1 | 796.5
Co | 58127 [2934.7| 2778.5 | 2858.5 | 17402 | 2228817156 | 1403.1 | 1076.7 | 12245 1448.4 | 13187 | 15153 | 836.7 | 1276.6
Cs | 34743 J11753 | 7029 | 9690 | 12254 | 10043] 681.6 | 6599 | 7460 | 5423 | 6463 | 5448 | 6a9.1 | 5932 | 6212
Cs | 55095 [| 3456.6 | 24463 | 24463 | 2630.1 |2088.1]1392.1 | 1247.9 | 15045 | 7355 | 1152.1 | 897.8 | 1152.1 | 902.7 | 10939
C, | 7585.0 §1998.5| 6445 | 13935 | 23131 | 14120 6073 | 4967 | 5477 | 6784 | 683.7 | 6814 | 6786 | 7088 | 837.4
Cs || 7653.4 30423 | 3074.8 | 24438 | 3877.8 |2333.4|1703.8 | 1287.7 | 1488.1 7071318742 | 11758 | 18105 | 1117.8 | 16445
Gy 6414.6 | 1655.6 | 629.1 1076.7 1651.2 11349) 761.7 540.1 578.5 7322 | 7815 | 742.6 | 783.2 | 6282 | 668.1
Co [8637.5 [[3472.7 | 2899.3 | 1997.2 | 43622 2861216062 [7975 | 1417.4 | 11163 | 1319.4 | 11057 | 1356.7 | 770.3 | 1139.1
Cu 49753 || 812.4 | 4986 | 645.3 1369.1 | 670.5 | 488.7 | 417.7 506.4 | 449.5 | 5112 | 485.4 | 4946 | 727.6 | 871.1
Cn | 94543 [4533229973 27612 | 3948.4 [33653]1033.3 | 13729 | 17252 | 6829 | 776.6 | 681.4 | 7860 | 10373 | 1217.1
Cu 110433.4 1489.0 | 8390.4 | 13236 | 18283 |13120] 5793 | 4154 | s153 | 673.0 | 6742 | 685.5 | 6756 | 7095 | 738.8
Cu (11072633473 | 3824.1| 28259 | 41150 | 2331412499 | 9688 | 11200 |1266.6|1522.7 | 12706 | 1615.0 { 1103.4 | 1678.7
Cs 9559.6 [17058 | 1058.4 | 15129 | 2057.0]14086] 6185 | 4399 461.7 | 646.8 | 689.6 | 658.8 | 694.0 | 586.1 | 738.1
Cis 10964.1 § 3627.1 | 2921.5 | 3876.4 4185.0 3015.1 | 1267.9] 1754.6 1137.6 1056.8] 12304 | 1075.2{ 12304 | 5/82 | 1023.0
Average | 7065.3 | 24450 | 1820.4 | 18655 | 25103 | 1827.0 | 1058.1 | 911.9 | 1014.7 | 841.3 | 10254 | 884.8 | 1041.6 | 800.9 | 1052.5
Table A3 — Average number of standard objects used
Constructive Heuristics Residual Heuristics
COLA | FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, R?R R?RL RCZ;R R‘;RL RgR R‘;’*L
G 1085 { 107.7| 1083 | 1103 | 1103 | 7025|1029 103.0 | 103.0 | 102.6 | 102.6 | 7025 | 1026 | 102.6 | 102.7
C, 1142 | 1110|1233 | 1167 | 1205 | 7703 1106 | 1104 | 1107 | 1104 | 1137 | 1703 [1133 | 1105 | 1136
G 107.3 105.5| 108.0 | 109.6 | 109.4 | 101.5] 102.1 | 102.1 | 102.1 | 702.3} 1015 100.3 | 101.5) 1013 | 1015
Ce 102.5 1005|1039 | 1058 | 1164 | 997 | 100.1 | 100.1 | 1010 | 100.0 | 1014 | 99.9 | 101.1 | 100.3 | 1015
Cs 99.35 11039 106.0 | 1063 | 1062 | 985 | 988 [9838 98.8 | 98.0 | 980 | 98.0 | 98.0 | 979 | 98.0
Cs 106.7 | 1056 | 109.0 | 1087 | 1132 | 70201030 1028 | 1030 | 102.6 | 1025 1025 | 1025 | 102.6 | 1028
(o} 103.1 §1056| 1079 | 108.6 | 1082 | 7019|1028 | 1029 | 1029 |1022 {1024 | 1022|1024 | 102.3 | 1023
(o} 1073 f1090) 1114 | 1130 | 1144 | 10671075} 1079 | 1078 | 107.7 | 107.5 | 107.6 | 1075 | 107.8 | 107.6
G 1049 [107.7| 109.8 | 1096 | 1094] 1019|1023 | 1026 | 1027 | 1018 | 101.8 | 101.8 | 101.8 | 101.8 | 1019
Cio 98.1 §100.0{1020| 1052 | 1042 | 963 { 977 | 983 980 | 976 | 976 | 976 | 976 | 98.0 | 979
Cy 105.1 §107.5| 108.7 | 108.6 | 1083 | /013 | 101.6| 101.6 | 101.8 | 100.7 | 100.8 | 100.7 | 100.8 | 1004 | 100.4
Ci 101.1 1020|1055 107.2 | 1072 | 986 | 101.0 | 1008 | 100.6 | 100.5 | 100.5 | 100.5 | 100.5 | 100.3 | 100.3
Cis 1042 {109.8 | t11.8 | 1124 | 1125 | 705.7 | 1063 | 1064 | 1066 | 1058 106.0 | 1058 | 106.0 | 705.7 | 105.8
Cu 923 1990 | 98.1 | 99.1 1010 | 934 | 951 | 953 953 | 947 | 946 | 94.7 | 946 | 949 | 947
Cs fr10e7 1100|1119 1121 | 111.9 | 1049|1058 | 1060 | 1060 | 1050|1051 | 1050} 1051 | 1050 | 105.1
Ci 1039 §108.1{ 1103 | 1106 | 1127]103.7)1055] 859 | 1057]105.2 1053] 105.2 [1053 | 105.5 | 105.4
Average | 104.0] 105.8] 108.5 | 109.0 | 1109 | 10181027 /01.6 | 1029 | 1023] 102.6 | 102.2 [102.5 | 102.3 | 102.6

24

Table A4 — Average total length of the standard objects used

Constructive Heuristics Residual Heuristics
coLa § FFD | FFD, | Greedy | Greedy,| FFD | FFD, | Greedy | Greedy, R?R ’“;RL RgR RgRL ng RC;RL
C, |[709545 [111380 [111525 | 111630 | 111750 || 111360 | 111695 | 111705 | 111705 | 111570 | 111620 | 111525 | 111625 | 111450 | 111530
C, | 116025 | 117590 | 127955 | 120065 | 135655 | 116680 | 116900 | 116665 | 116985 | 116725 | 120010 | 116605 | 119495 | 116945 | 119875
C; 108170 § 110175 | 110460 | 110600 110495 110300 { 110855 | 110690 110740 110480 | 110680 | 110480 | 110630 | 110465 | 110605
C, | 703440 § 106350 | 107545 | 108010 | 120930 | 105940 | 106885 | 106770 | 107760 | 106870 | 108195 | 106760 | 107920 | 107285 | 108370
Cs || 104765 || 107085 | 107620 | 107130 | 107090 | 107160 | 107385 | 107165 | 107215 | 107220 | 107270 | 107220 | 107270 | 107185 | 107285
C, | 107510] 109870 | 110980 | 110295 | 115945 | 110830 | 111675 | 111435 | 111710 | 111910 | 111755 | 111750 { 111755 | 111775 | 112025
C, | 104190 | 109705 | 111170 | 110270 | 109910 | 110040 | 110975 | 110940 | 110940 | 110570 [110770 | 110570 | 110770 | 110545 | 110590
Cs 108640 | 114310 | 115065 | 115170 | 116995 { 113205 | 113980 | 114375 | 114270 | 114235 | 113995 | 114140 | 114010 | 114235 | 114115
Cy, 705515] 110335 | 111430 | 110815 | 110540 f 110655 | 110965 | 111125 | 111275 | 110840 | 110890 | 110840 | 110890 | 110930 { 111030
Cpo 98455 || 104440 | 104505 | 106895 107045 103885 | 105230 { 105735 105485 105375 | 105380 | 105380 | 105385 | 105735 | 105590
Cu | 705885 | 110010 | 110285 | 109620 | 109290 | 109935 | 110155 | 109950 | 110150 | 109880 | 109980 | 109880 | 110030 | 109595 | 109645
Cw | 101590 | 106600 | 107855 | 108440 | 108575 { 107370 | 109650 | 109285 | 109135 | 109815 | 109815 | 109815 | 109815 | 109520 | 109520
Cn [105155 § 114130 | 114750 | 114030 | 114195 [114110 | 114755 | 114745 | 114945 | 114435 | 114635 | 114435 | 114635 | 114425 | 114475
Cis 92775 (| 101790 | 100645 | 101270 103440 100935 | 102115 | 102315 102320 101860 | 101750 | 101865 | 101710 | 102045 | 101780
Cis 105655 || 113610 | 114230 | 113655 113505 113610 | 114535 | 114485 114485 114150 | 114200 | 114200 | 114200 | 114220 | 114320
Cis || 104620 || 112270 | 112570 | 112500 | 114995 | 112165 | 113830 | 114150 | 113950 | 113865 | 113970 | 113970 | 113970 | 114125 | 114075
Average | 105/20.9 § 109978.1 | 111161.9 | 110649.7 113147.2 109886.3 | 110724.1 | 110720.9 110816.9 110612.5 | 110932.2 { 110589.7 | 110881.9 | 110655.0 | 110926.9
Table AS — Average total loss
Constructive Heuristics Residual Heuristics
COLA | FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, | RF RciRL ng ROR, ROR Rg’“
C 175 | 2843 | 264 | 1586 150 [299 s4 | 207 4.3 160 78 [319f 71 | 223] 66
(o} 9259 |2406.4 | 98.7 | 2712.7 | 402 3263|1572 331.7 | 1563 |[3233| 876 |379.1| 97.3 | 3289 93.8
G 42 | 105.1 | 12.7 | 163.5 126 } 1091 3.7 | 471 2.6 286 | 32 |315] 33 | 222 34
Cs 371.5 | 889.5 [69.4 | 1850.9 | 323 §168.7| 356 | 2174 | 279 |1388] 188 (123.0| 787 |1659| 244
Cs 08 | 445 | 62 | 1324 8.5 7.1 17 | 64.0 42 259 | 35 [325] 35 | 260 1.7
Cs 240 | 3549 | 284 | 5310 745 {479 | 57 | 1334 1.9 |716| 74 | 758 | 74 (1147 6.7
G, 64 | 1188 | 31.6 | S5.1 110 152 19 8.9 14 184 | 24] 191 | 24 | 123 | 33
Cy 297.0 {1630.9 102.5 | 795.6 543 1893 94 | 634 109 | 697 | 194 | 792]| 17.0 | 849 | 21.4
Gy 23 § 571 | 216 | 423 1.t f1oo| 3.1 17.3 3.3 123} 12 | 137] 12 1 96 | 19
Cuo 1369 | 951.9 | 564 | 11242 | 20.1 {1200| 7.1 58.6 4.4 96.7 | 8.1 | 987] 74 | 840 | 88
Cn 0.2 13.0 9.1 44.7 11.7 3.6 1.5 20.5 2.5 94 1.6 10.1 1.7 | 223 39
Ci 13.5 § 169.5 | 11.9 | 294.1 378 | 264] 23 | 923 6.8 395 | 40 | 3637 38 |452| 28
Cis 58 f 980 | 17.1 | 760 16.3 82 | 1.8 15.7 3.1 8.3 1.1 | 84 | 10 | 104] 1.1
Cua 155.0 | 1460.3| 63.0 | 5934 | 496 |s21| 65 | 436 7.7 509 | 11.5 | 46.1 | 120 | 55.0 | 12.5
Cis 15 | 366 | 95 | 421 20.9 42 | L1 9.7 1.9 9.1 14 | 11.2] 13 | 106 20
Cis 58.2 | 614.4 | 29.0 | 592.0 506 | 61.7] 6.1 33.8 113 | 434 | 43 [485 | 43 | 443 | 56
Average | 1263 | 5772 | 37.1 | 5755 292 le613] 156 739 163 [60.1] 175 [653 118 | 66.1] 125
Table A6 — Average total length lost in the standard objects
Constructive Heuristics Residual Heuristics
COLA § FFD | FFDy | Greedy | Greedy, | FFD | FFDy | Greedy | Greedy, R?R RGIR" RgR RGZR" RgR RG3RL
C 173 [27112] 215 | 892 8.0 38 | 03 0.4 0.0 35] 02 [20 | o1 1.9 | 04
C, 8403 [2339.1] 93.1 | 2481.4 | 345 J1158]153.6 | 1649 | 1516 |[2025{ 81.8 | 2088 885 {2247 87.4
G 42) 1003 | 101 | 66.1 74 28 | 00 0.0 0.0 00| 00 | 00 | 00 | 03 | 0.
C, 3532 § 8375 | 57.2 [13978 | 246 | 537 257 | 314 243 | 31810 115 12691 11.6 | 740 | 157
Cs 08 | 439 | 54 10.5 29 35 | 02 0.0 0.0 00| 00 | oo | 0o | 00| 00
Cs 240 [3372 | 212 | 3146 | 312 07 | 07 5.2 1.5 67 { 01 | 13| 01 156 06
G 57 | 1122 | 314 | 202 0.4 03 | 03 0.0 0.0 00| 00 | 0o | 00 | 03} 04
Cs 263.6 §1592.7| 88.7 | 7108 | 418 42 | 42 5.4 36 1.7 32) 98 | 33 | 171 | 65
G, 23 | 546 | 207 | 132 0.5 1.7 | 03 0.0 0.0 00| 00 | 00| 00 | 00 | 00
Cuo 124.1 § 913.5 | 50.1 | 1094.0 { 154 1.1 1.1 14.0 0.5 14 0112 02]29] 04
Cu 02 | 127 | 84 8.4 2.1 13 | 07 0.0 0.0 00 | 00 | 00| 00 | 01 | 00
C 135 11567 | 65 | 1741 20.9 44 | ol 12.2 0.6 00| 00 | 00| 00 {o02] 00
Ci 58 § 914 | 154 | 388 44 .t | 05 0.0 0.0 00| 00 | 00| 00| 01] 01
Cu 1304 §1354.2] 56.7 | 4490 | 201 124 07 0.7 0.0 18 | 14 16| 14 | 32| 10
Cis 1.5 | 323 | 81 16.2 1.8 08 | 07 0.0 0.0 00 | 00 | 00| 00 | 00 | 00
Cis 50.9 | 583.9 | 209 | 416.2 19.6 98 | 03 0.2 0.2 00 | 01 [00} 01 |43] 00
Average | 114.9 | 552.1 [32.2 | 4563 147 [136 11.8] 147 114 [162] 62 [157] 66 | 21.5] 7.0

25

Table A7 —Average toal length lost in the non-standard objects used

Constructive Heuristics

Residual Heuristics

COLA | FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, R?R ROk, Rg;R RGZRL R(;R R‘gRL
ol 02 [131] 49 | 694 70 26271 51 | 204 43 1251 77 | 299] 67 [469 | 62
C, 856 | 673 | 56 | 2313 57 [1158(3.7 | 166.8 47 [1209] 58 [1703| 95 [1043| 64
G 00 [49 | 26 | 974 5.2 81 | 37 | 471 26 | 286 32 |315] 33 (219 34
Cs 183 | 52.0 | 123 | 453.1 7.7 {1150] 100 | 186.0 37 1107.0] 73 [961]| 72 | 920 87
Cs 00 § 06 | 08 | 1219 56 36 | 15 | 640 42 | 259 35 |325| 35 | 260 1.7
Cs 00 1178 73 | 2165 | 433 | 17.1] 50 | 1283 105 650 | 73 {745 73 |1042] 6.1
(o 075 | 67 | 03 | 349 106 | 122] 16 8.9 1.4 184 | 24 [190] 24 | 120 3.0
Cs 334 [382 138 | 849 125 | 664 | 52 | 581 74 | 580 162 1694 | 137 | 679 | 149
Co 00 § 25| 09 | 291 106 | 83 | 29 | 173 33 123 12 [137 12 | 96 | 19
Cio 128 [384 63 | 302 47 | 940 | 6.1 | 446 40 (953 80 | 976 | 72 |8L1| 84
Cu 00 § 03 | 1.1 | 363 9.6 23 | 08 | 205 25 16 | 1.6 101 1.7 {222 39
Ci 00 128 54 1 1200 { 169 [220! 23 | 841 62 | 395 40 | 363 | 38 [451] 238
Ci 00 | 67 | 1.7 | 372 120 | 71 | 13 | 157 3.1 83 | 1.1 | 84 | 10 | 103 11
Cu 246 (1062 64 | 1444 | 295 [397] 59 | 429 7.7 | 491 | 101 | 446 | 106 | 518 | 6.1
Cis 00 | 43 | 14 | 259 19.1 § 35 | 04 9.7 1.9 91 | 14 {112 13 | 106 20
Cis 73 1 35] 82 | 1758 | 310 [520 58 | 336 1.1 1434 | 42 | 485] 42 [401] 56
Average| 114 | 235 49 | 1193 | 144 [37.1[38 | 593 49 [43471 53 496 | 53 [466 5.1
Table A8 — Average total retail
Constructive Heuristics Residual Heuristics
COLA | FFD | FFDy | Greedy | Greedy, || FFD | FFD. | Greedy | Greedy, R?R R‘iRL RER RCZ"RL Rg;R RGf‘
G 4794 [[566.1 4329 | 592.7 | 1161.9 4652|5139 221.7 | 3853 [94.0 | 359.6 [105.2] 409.8 | 136.9 375.1
C, |[2437.8]324.611806.8| 1132.9 | 19668.5 § 268.0 | 776.4 | 230.5 | 1122.8 | 32.2 [3791.9| 0.0 |33076| 17.5 | 3664.7
G 536.9 |490.3 | 5369 | 414.6 | 1027.0 | 469.6 3803 | 160.1 | 331.2 [289 319.1 | 59.1 | 312.7 | 68.0 | 32222
Cs 8583 479.5(22984 | 1061.9 | 14682.2 | 44.4 | 6123 | 0.0 8530 | 0.0 | 166881 0.0 }1460.8] 0.0 | 1666.5
Cs 530.0 [[508.3] 609.2 | 259.1 | 599.4 |449.7]3574] 534 | 2493 | 289 2053 | 24.8 { 208.0 | 44.7 | 197.0
Cs 5158 [|492.1| 9183 | 576.7 | 6021.0 |390.6|581.7| 69.9 | 7229 |94.3 | 4201 | 92.4 | 420.1 | 83.4 | 6326
o 577.1 §393.2| 591.5 | 417.0 | 1020.7 {2453 | 389.0 | 2364 | 2949 | 385 | 259.9 | 40.9 | 254.8 | 50.1 | 232.6
Cs 633.8 [523.9| 2939.8 | 1620.7 | 5621.0 {251.6]|476.9 | 401.8 | 549.7 | 39.1 | 6524 | 39.1 | 606.0 | 70.4 | 540.6
Co 4102 [|4164 | 5204 | 3323 | 6629 |262.7| 2064 | 130.7 | 3332 |427| 1532 | 51.7 | 1548 | 315 | 179.1
Co 5686 [5738(961.0 | 1381.0 | 5000.1 §239.3|442.1| 869 | 511.0 | 7.7 | 3044 | 0.0 | 347.3 | 344 | 3333
Cn 5710|5203 4854 | 2315 | 3583 §312.8]353.1| 58.1 | 3648 | 30.9(2005 [39.1 | 2338 | 72.2 | 223.1
Cp | 6173 §5502(4268 | 4936 | 2072.1 | 2953|2674 | 148.0 | 4399 | 44.8 | 174.0 | 46.6 | 183.6 | 98.5 | 320.7
Cis || 5005 [|439.0(4903 | 1956 | 925.0 §331.9{2505| 1227 | 3552 | 17.7]| 226.1 | 30.0 | 227.6 | 42.1 | 1306
Ci | 628.0 §612.3] 1341.4 | 437.8 | 4440.7 1 149.6| 293.7 | 1755 | 367.6 | 11.1] 1965 | 24.8 | 248.3 | 28.8 | 3815
Cis [4612 15274 5270 | 3740 | 7893 2625|3006 | 163.4 | 1929 [359 1364 | 457 | 1408 | 43.6 | 2042
Cis 647.2 1 416.0| 5959 | 917.8 | 4262.8 §251.8] 2252] 1004.2 { 209.6 | 7.8 329.5 | 25.1 | 329.5 | 32.2 | 22538
“Average | 685.8 [1489.6 | 1592.6 | 652.5 | 4269.6 [293.1]401.7]| 204.0 | 4552 [34.9] 587.4 | 39.0 | 552.8 | 49.6 | 6019
Table A9 — Average total length of the retail generated in the standard objects
Constructive Heuristics Residual Heuristics
COLA | FFD | FFD, | Greedy | Greedy, | FFD | FFD; | Greedy | Greedy, | RG% | RGR: ng ROR. R?R RO,
o 4794 §1566.1| 4198 | 5553 | 889.4 [460.3| 381.7 | 206.4 | 2448 | 38.7 | 183.6 | 39.9 | 2228 | 469 | 2336
C: [2419.1]324.6{11709.6] 11329 | 19129.3 § 2680 | 404.1 | 2305 | 5424 | 32.2 |34348(0.0 |2999.9| 17.5 | 32774
G 536.6 §490.3| 5009 [3472 | 630.2 §458.0(3202| 141.1 | 1826 | 0.0 {1504 | 00 | 1343 | 0.0 | 1541
Cs 3532 [479.5 | 2144.5 | 767.5 | 140909 | 18.9 | 285.0 | 0.0 607.0 | 0.0 [1406.2] 0.0 |[1160.6] 0.0 |13623
Cs 531.0] 508.3| 5933 | 2204 | 3202)446.5(298.1 | 405 858 | 00| 470 | 00 | 470 | 00 | 66.7
Cs 5145 [492.1] 7492 | 3954 | 5988.7 [367.8|2074| 478 | 2642 | 00 | 619 | 00 | 619 | 339 2304
G 577.1 3915} 5750 | 4153 | 6169 [226.7]|335.6| 2169 | 2074 | 00 | 160.7 | 0.0 | 1556 | 0.0 | 1344
Cs 795.0 {516.0 | 2550.1 | 1045.8 | 4509.3 | 188.6 | 102.6 | 1107 | 1178 | 0.0 | 2615 | 0.0 | 2235 | 188 | 2436
Gy 4100 |416.4| 517.0 | 3152 | 3959 [246.6| 16041 1012 | 2242 | 0.0 | 488 | 00 | 488 | 00 | 857
Ciw | 565.6 §573.8| 8763 | 672.8 | 34167 223.3]| 782 | 0.0 0.0 00| 194 | 00| 77 [113] 113
Cn 5710 5189 4835 | 2272 | 1508 |3014)3321| 47.8 | 2314 | 00 } 987 | 00 | 1458 | 0.0 | 869
Cuo | 6146 5502] 2276 | 2015 | 11572 §2138(179 | 53.7 528 [00| 00 | 00| 00 | 00 | 541
Cis [497.7 1439.0| 4860 | 1463 | 647.7 1309.8|217.6| 107.9 | 287.1 | 0.0 | 1720 | 0.0 | 1733 | 0.0 | 432
Cw | 628.0 [606.6| 10584 | 412.4 | 3300.7 | 949 [1204 | 1252 | 1324 | 00 | 00 | 00 | 00 | 00 | 651
Cis | 4612 15274| 5203 | 325.0 | 613.5 | 2450|2729 | 1414 | 1400 | 0.0 | 510 | 0.0 | 51.0 | 0.0 | 91.7
Cis 659.3 1416.0| 4150 | 694.5 | 31504 §217.3] 29.6 | 167.2 0.0 00 | 402 | 00| 402 | 00| 00
Average | 663.3 §488.5| 1489.2 | 492.2 | 3688.0 §267.9]222.7| 1086 207.5 44 | 3835 | 2.5 | 3420 | 80 | 3838

26

Table A10 — Average total length of the retail generated in the non-standard objects

Constructive Heuristics Residual Heuristics
COLA | FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, | RG% | ROt RgR RO, | ROR| RGR:
o 0.0 0.0 13.1 374 272.5 50 11322 15.3 140.5 553 | 46.1 | 65.4 | 187.0 | 90.1 | 141.6
C; 0.0 0.0 97.3 0.0 539.2 0.0 | 3723 0.0 580.4 0.0 | 3572 | 0.0 | 307.7 | 0.0 | 3874
G 0.0 0.0 36.0 67.5 396.8 11.6 | 60.1 19.1 1486 | 28.9 | 168.7 { 59.1 | 178.5 | 68.0 | 158.2
Cq 0.0 0.0 1539 | 2944 591.3 | 25.6 | 327.6 0.0 246.1 00 | 2626 | 00 | 3003 | 0.0 | 3042
Cs 0.0 0.0 15.9 38.8 279.2 33 59.3 129 163.5 289 1 1584 | 248 | 161.1 | 44.7 | 130.3
Cs 0.0 0.0 | 169.1 181.3 323 22.8 3744} 221 458.7 94.3 | 358.2 | 92.4 | 358.2 | 49.5 | 402.3
G, 0.0 1.7 16.5 1.7 403.8 18.6 | 53.4 19.5 875 38.5 | 993 | 409 | 99.3 | 50.1 | 98.3
Cs 0.0 79 | 389.8 | 5549 1111.7 | 63.0 { 3744 | 291.1 4320 | 39.1 § 3909 | 39.1 | 382.6 | 51.6 | 297.1
Co 0.0 0.0 34 17.1 267.0 16.1 | 46.1 29.5 109.0 4271 1044 | 51.7 | 106.0 { 31.5| 934
Cio 0.0 0.0 84.7 708.2 1583.5 f| 16.0 | 364.0 86.9 511.0 7.7 |1 2850 0.0 | 339.6 | 23.1 | 322.0
Cyy 0.0 24 1.9 43 207.5 114 21.0 95 1334 30911019] 391 880 | 11.2] 136.2
Cp 0.0 0.0 199.3 293.1 9149 81.2 | 2495 94.3 387.1 448 | 174.0 | 46.6 | 183.6 | 98.5 | 266.6
Cy 0.0 0.0 4.1 49.3 2773 22.1 | 329 14.8 88.1 17.7 | 540 {300 544 | 42.1} 874
Ciq 0.0 5.8 | 283.0 255 11400 | 54.8 | 1734 | 50.3 2353 11.1 | 196.5 | 24.8 | 248.3 | 28.8 | 316.5
Cis 0.0 0.0 6.7 48.9 174.8 17.5 | 257 220 529 359} 854 | 457 | 899 | 436 | 1125
Cie 0.0 0.0 1809 | 2233 11124 { 345 | 1956 | 837.0 209.6 11.8 {2893] 251) 28931} 322] 2258
Average| 0.0 1.1 103.5 159.1 581.5 25.2 1 178.9 95.3 249.0 3051 195.7 1365 | 2109 | 41.6 | 217.5
Table A11 —~ Number of objects cut with retail
Constructive Heuristics Residual Heuristics
COLA | FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, R(17R RG]R,_ RgR RgRL RgR RC;RL
C 3.0 1.0 1.6 2.7 10.1 0.8 2.5 0.6 22 06| 22 06| 23 1.0 2.0
C; 13.1 0.6 36.0 4.2 53.6 0.4 24 0.4 34 0.1 11.3 | 00| 93 0.1 10.8
(0 2.2 1.0 1.6 2.1 8.6 0.9 LS 0.5 20 0.3 22 0.5 22 0.8 25
Cy 43 0.8 8.0 4.1 36.8 0.2 1.9 0.0 23 0.0 | 49 00 | 48 0.0 | 4.7
Cs 1.1 1.0 1.2 1.6 4.8 0.9 1.5 0.3 2.1 0.5 2.1 0.3 22 0.6 2.0
Cs 5.1 0.9 2.9 1.8 17.8 0.9 2.1 0.2 2.6 0.4 1.6 0.4 1.6 0.3 2.1
C, 2.0 0.9 1.5 3.9 11.8 0.8 1.8 0.6 2.0 0.5 2.1 06 | 2.1 0.6 1.6
Cs 4.2 0.9 16.7 9.0 275 0.7 2.8 2.0 2.8 0.3 3.1 0.3 30 105 33
Cy 1.2 1.0 1.1 2.6 78 0.8 1.3 0.6 2.8 06 | 1.5 |06 | 1.5 |06 | 1.8
Cio 24 0.9 3.1 7.2 26.6 04 | 2.0 0.6 28 0.1 15 (00| 1.7 102 16
Cu 1.1 1.0 1.0 0.6 5.4 0.9 1.1 0.4 3.7 0.5 1.8 0.6 1.7 0.2 2.6
Ciz 53 0.9 1.8 2.8 93 0.8 1.6 1.0 24 0.3 1.1 0.3 1.2 | 06 1.7
Ci 3.2 1.0 1.6 3.2 114 0.8 1.5 0.5 2.6 0.3 1.7 0.4 1.7 0.6 1.5
Ci 3.0 1.4 74 1.3 22.7 0.6 1.7 0.7 2.3 0.1 1.8 0.2 2.1 0.3 2.8
Cis 1.2 1.0 1.1 3.0 7.6 0.8 1.1 0.6 1.6 0.5 13 0.5 14 0.6 2.2
Cis 2.5 0.9 2.3 4.1 20.5 0.5 1.7 5.9 1.6 0.1 2.1 0.2 2.1 0.3 1.5
Average| 34 1.0 5.6 3.9 17.6 0.7 1.8 0.9 2.5 0.3 2.6 0.3 2.6 0.5 2.8
Table A12 — Average number of objects cut with small scrap
Constructive Heuristics Residual Heuristics
COLA | FFD | FFD, | Greedy | Greedy, | FED | FFD, | Greedy | Greedy, RfR R‘j’“ R‘;R Ri"‘ R‘;R R gRL
C 335 | 688 | 13.0 6.1 6.2 5.8 22 2.1 2.2 1.3 2.1 1.5 2.0 1.5 23
C; 23.8 1348 | 388 14.2 14.5 25.1] 25.2 242 24.3 242 1 262 | 237] 265 | 25.0 | 26.2
Cs 1.75 567 7.1 4.2 4.4 5.1 1.2 13 1.3 1.1 1.0 1.0 1.1 0.8 1.4
Cs 183 | 48.6 | 27.8 11.0 1.5 1191 9.1 7.6 7.7 8.2 7.6 8.1 7.2 8.8 8.9
Cs 04 [32.1| 34 2.1 2.1 3.7 1.2 0.8 0.9 1.0 1.0 1.0 0.9 0.8 0.8
Ce 54 1649 120 15.3 17.0 7.1 2.0 2.0 2.2 0.8 1.2 1.0 1.2 1.5 14
C, 32 |508) 17.0 23 25 37 1.1 0.6 0.6 1.0 0.9 1.0 0.9 1.2 1.4
Cs 25.6 1399 37.2 16.7 17.2 7.7 3.6 2.8 2.9 3.1 32 32 3.0 43 4.8
Cy 1.0 §3811¢ 10.7 2.6 3.0 33 1.5 1.0 1.1 0.6 0.6 0.6 0.6 0.9 0.8
Cio 12.6 | 484 | 25.0 7.2 13 7.7 2.1 1.1 1.2 1.2 1.5 1.2 1.4 1.1 1.5
Cn 0.2 116 | 4.6 35 4.0 1.6 1.0 1.0 1.0 0.5 0.6 0.6 0.7 1.1 1.4
Ciy 52 644 | 49 11.8 11.9 4.8 0.7 1.7 1.7 0.7 09 0.7 0.8 0.7 0.7
Ci3 28 15047 112 5.2 5.5 3.2 0.8 1.6 1.7 0.7 05 0.5 0.4 0.8 0.7
Cua 22.7 1370 | 316 15.6 16.1 6.9 2.0 1.9 1.9 24 24 24 23 1.9 3.1
Cis 0.8 §274| 58 4.7 5.5 1.1 0.7 1.0 1.0 0.7 0.8 0.8 0.8 0.8 0.8
Cis 11.7 1574 152 | 13.7 13.7 79 | 1.9 2.2 2.3 1.4 13 13 13 13 1.3
Average| 9.0]45.7] 16.6 8.5 8.9 6.7 | 3.5 3.3 3.4 3.1 3.2 3.1 3.2 3.3 3.6

27

Table A13 — Average Number of objects cut with not so small scrap

Constructive Heuristics

Residual Heuristics

COLA{ FFD | FFD, | Greedy | Greedy, | FFD | FFD, | Greedy | Greedy, RCI;R ’“iRL Rg’* Ri’“ ng RG3RL

C 14 [165] 00 | 64 | 00 |16 00] 13 | 00 |06] 00 | 14] 00 |09 [0.0
G 1290304772] 00| 366 | 00 [11] 78 | 102 | 78 [106] 10 |110] 19 |108] 23
G lo1 l1olaool 60 | 0o lo3|oo| 17| 00 13| 00| 17] 0ol 10]| 00
Co | 141 lars| oo | 262 | 00 Jao| 12| 38 | 12 |29] 00 {27 00 |3s]| o0
Cs 100 o1 oo)] a5 | oo Jor]oo| 27 | 00 |11 oo | 1s]| 00|12/ 0o
Co [21 l220] 0o 160 | 00 J19|o0o| 24 | 00 |10] 00| 10] 00| 15| 0o
G lool27]00| a9 | 00 |11lool 11 | 0o [16] 00|20 0007/ 00
G I 97 1609|060 | 153 00 [17] a0 11 | 0o | ti|oo| 1] aol22]| 00
G o1 foilaool 39| 0o loszloo| 22 | 0o | 1] ool12]00]07] 00
Co | 38 lazo| 0o | 151 | oo J26]00] 1t | 00 [17] 00| 18] 0o |12/ 00
o Hooloolaol 39 | oo lot|oo| 22| 00 |09 0o |08 0ol ts| oo
Co 104 13900 a3 | 00 Jo3|ao| 13| 60 [07]| 00 |o6]| g0 |07]| 00
Cs | oolreloo| s5 | 00 Jor]oo| 19| 00 |1to]loo|13]| a0l 1al 00
Co 1 53 0s35] 00 170 00 Yoo oo 12] 00 |12] 00|11l 0ol 7] a0
s L oolosloo| 31| 00 Jo2]|oo]| 09 | 60 09| 00| 10| 00|12/ 00
Co | 17 1287] 00 | 147 | 00 |20 00 07 | 00 | ti]| oo |11 00| 10] 00
Average]| 43 [225] 0.0 | 114 | 00 |19 06 | 22 | 06 | 18] 01 [20] 0.1 | 20] o1

28

089/2007

088/2007

087/2005

086/2005

085/2005

084/2005

083/2005

082/2004

081/2004

080/2004

NOTAS DO ICMC

SERIE COMPUTACAO

TOLEDO, F.M.B.; ARMENTANO, V.A. — Branch-and-bound algorithms for
capacitated lot-sizing in parallel machines

TOLEDO, F.M.B.; SANTOS, M.O.; ARENALES, M.N.; SELEGHIM
JUNIOR, P. - Logistica de distribui¢gdo de agua em redes urbanas -
racionalizagdo energética.

GOIS, 1.P; ESTACIO, K.C.; OISHI, C.M. BERTTONLV.; BOTTA, V.A.;
NAGAMINE, A.; KUROKAWA, F.A.; FEDERSON, F. - Aplicagdo de
volumes finitos na simula¢&o numeérica de contaminagdo em lengdis freaticos.

MARQUES, F.P.; ARENALES, M.N. — The constrained compartmentalized
knapsack problem.

POLDI, K.C.; ARENALES, M.N. — Dealing with small demand in integer
cutting stock problems with limited different stock lengths.

PRADO, T.A.S.; NUNES, M.G.V. — A statistical generative model for
unsupervised learning of web argument structures.

POLTRONIERE, S.C.; ARENALES, M.N.; TOLEDO, F.M.B.; POLDI, K.C.
— Coupling cutting stock and dot sizing problems in the paper industry.

OLIVEIRA, P.R.; ROMERO, R.A F. — Modelo de misturas ICA aperfeigoado
para classificagdo nio supervisionada.

HOTO, R.; ARENALES, M.; MACULAN, N. — The compartmentalized
knapsack problem: a case study.

KAIBARA, M.; FERREIRA, V.; NAVARRO, H. A. - Upwinding finite-
difference schemes for convection dominated problems. Part I: theoretical
results

