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Abstract

In this study we analyzed practical aspects of the application of a cutting stock model to a

Brazilian company that manufactures fiimiture on a large scale with a high degree of
standardization. The model is based on the classical approach of Gilmore and Gomory

(1965), which combines a linear program and a column generation procedure. Besides the
,

2-stage and 3-stage guillotine cutting patterns, we also considered 1-group guillotine

patterns that improve the productivity of the cutting equipment. Examples derived from the

furniture company are used to illustrate some of the trade-offs involved, in particular, the

trade-off between cutting simpler patterns and patterns that yield less waste material, but

reduce the productivity of the cutting machine.

Key words: cutting and packing problems, fumiture industry, guillotine cutting patterns, 1-

group patterns.



Resumo

Neste estudo analisamos aspectos praticos de uma aplicaoao do modelo de corte de estoque

a uma indl’istria brasileira de moveis de alto grau de padronizaeao e larga escala de

produeao. O modelo é baseado na abordagem classica de Gilmore e Gomory (1965), que

combina um programa linear com um procedimento de geraeao de colunas. Além de

padroes 2 e 3-estagios, consideramos também padroes mais simples, tipo xadrez (chamado

por Gilmore e Gomory de I-group) que melhora a produtividade do equipamento de

cortagem. Exemplos derivados da indfistria de moveis estudada sao usados para ilustrar o .

efeito do uso de padroes altemativos, em particular, a perda versus produtividade da serra.

Palavras-chaves: problemas de corte de estoque, problemas de corte e empacotamento,
indfistria de moveis, padroes guilhotinados, padroes l-group



1. Introduction

In this study we analyzed the cutting stock problem of a Brazilian furniture company with

highly standardized products manufactured on a large scale. The problem is how to cut a

set of objects (rectangular plates of wood fiber), with known sizes and quantities, to

produce a set of items (smaller rectangular plates) with specified sizes and demands. The

objects are available in stock, or can be obtained from suppliers in a short time. The items

are parts of the products, such as tables, chairs, cupboards, wardrobes, etc., manufactured

by the company.

Given that the total amount of objects is, in general, sufficiently large to produce all

ordered items of the planning horizon (typically of one or two weeks), the problem is to

determine a set of feasible cutting patterns, that is, patterns that produce all ordered items.

An immediate criteria to evaluate the solutions would be the waste of material, that is,
solutions of lower waste should be preferable. Nevertheless, if the objects have different

costs, the minimum waste solution can be less economical. This suggests the material cost

as an alternative criteria. The minimum cost solution becomes particularly important for

the furniture company for which the cost of objects (raw material) can represent more than

one third of the total costs of some products. This solution can also be helpfiil for

supporting stock management decisions.

Different practical aspects should be considered when solving this cutting problem,

especially with respect to the cutting machine, which is a production bottleneck of the
filmiture company. There are non trivial trade-offs to be analyzed, for example, the trade-

off between cutting simpler patterns (e.g., l-group guillotine patterns) and patterns that

yield less waste material (e.g., 2-stage and 3-stage patterns) but require longer processing
times and, in this way, reduce the productivity of the equipment. Another example is the

trade-off between the benefits of combining more products in a production run to reduce

the waste material, and the corresponding difficulties in the control of the production, work
in process, due dates, etc.

Although there are several papers in the literature dealing with the cutting stock problem in

the filmiture industry (e.g., Gilmore and Gomory, 1965, Foronda and Carino, 1991,

Yanasse et al., 1991, Camieri et al., 1994), we are not aware of previous work that



specifically treated the issues above. For surveys of cutting and packing problems and their

industrial applications, the readers may consult Brown (1971), Golden (1976), Hinxman

(1980), Dyckhoff and Finke (1992), Dowsland and Dowsland (1992), Sweeney and

Paternoster (1992), Bischoff and Waescher (1995), Dyckhoff et al. (1997) and the

electronic databases of the Special Interest Group on Cutting and Packing (SICUP, 1998).

This paper is organized as follows: In section 2 we review the classical model of Gilmore

and Gomory (1965) and how to solve it using the simplex algorithm combined with a

column generation procedure. In section 3, together with the exact and non exact 2-stage

and 3-stage guillotine cutting patterns, we consider the l-group guillotine patterns which

improve the productivity of the cutting machine. In section 4 we present details of the
model implementation and analyze computational results of examples derived from the

fiamiture company. We compare the minimum waste and minimum cost criteria and

analyze the trade-offs between 2-stage and 3-stage patterns, and between l-group and non

l-group patterns. Finally, in section 5 we present concluding remarks and discuss

perspectives for future research, such as the importance of pattern sequencing and models

integrating cutting stock and lot sizing problems in the mmimre industry.

2. Mathematical formulation

Pieces of furniture such as tables, chairs, cupboards, wardrobes, etc, are produced from

rectangular plates of wood fibers pressed together, known as hardboards. First, these plates

are cut to produce items (smaller rectangles) which are parts of the products. Then, the

items pass through several production stages (e.g., border and surface treatment, painting,
gluing, etc), until they are assembled together to become the final products.

The hardboards are supplied in different standard sizes, such as (in meters): 1.830 x 2.130,

1.830 x 2.750, 2.130 x 2.440, 2.130 x 2.750, 2.130 x 3.050. Besides these sizes, the

hardboard suppliers, who also have an interesting cutting stock problem in their production

processes (see Morabito and Garcia, 1998), offer leftover hardboards of smaller sizes and

with special discounts. Typical sizes of these offcuts are (in m): 1.220 x 2.440, 1.220 x

2.750, 1.220 x 3.050, 1.245 x 2.440, 1.700 x 2.100, etc. The standard sizes can be acquired

in any quantity, whereas the offcuts are offered daily in different lots with varying prices.



In section 4 we analyze an example of a fumiture company using some of these plate sizes

and a typical weekly order list of 25 item types.

Consider the following notation for the mathematical formulation:

Objects:

N: number ofplate types (hardboards);

ijWj: size of the plate typej, j=1,...,N;
Dj: available quantity of the plate type j, j=1,...,N;
6}: unit cost of the plate type j, j=1,...,N (proportional to the plate area).

m: number of item types (smaller rectangles);

Ikxwk: size of the item type k, k=1,...,m;

dk: required quantity of item type k.

The mathematical model can be derived from the work of Gilmore and Gomory (1963) on

l-dimensional cutting stock problems. In that paper, the authors analyzed a machine

balancing problem in which the capacity of the machines can be interpreted here as the

plate availability D; j=1,..,N. To describe the model, we initially suppose that, for each

plate type, all cutting patterns are defined (when solving the model, these patterns are

considered only implicitly). Let n,- be the number of possible patterns for plate type j. For
each pattern, we associate the following mx] vectors:

j j aall an In]
1 j Ja a , a,21 j _ 22 I n, _al — , a, —

2 , , a” , 1—1, ,N
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where 0:1, is the number of times that item type k appears in pattern 1“ of plate type j. The
decision variables are x,-,, the number of plates of typej cut by pattern i, i=1, ...,n,-, j =1, .,..N.
Let d = (d1, d2, dm) be the demand vector. The cutting problem with minimum cost

criteria can be formulated as:



”1 "2 "N
Minimize f(x11,x21,...) = Z C1x11 + Z CzJCiz + + 2 CinN (1)

I=1 I=1I=1

n1 ng nN

Subject to: Z a} x,-1 + Z afxiz + + Z a,”x,-N = d (2)
I=1 I=1 I=1

"1

Z xil 5 D1
I=1

"2

Z xi2 5 D2
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(3)

"N
xiN S DN

I=1

xg-ZO, integer, i=1,...,n,~, j=1,...,N. (4)

The objective function (1) represents the cost of the plates needed to produce all items. If
the criteria is the minimum waste, then each C,- in f(x”,x21,...) should be replaced by

Ljo -ZZ'=1 lkwkaj} , that is, the waste of pattern i using plate type j. The constraint (2)

guarantees that all dk ordered items of type k are produced. The constraints (3) consider the

availability of each plate type j, j=1,..,N, and the constraints (4) require the decision

variables to be non negative integers. Note that if the number of possible patterns is very
large (in the furniture company, this number can be hundreds of thousands, or even

millions), the model (l)-(4) is much more difficult to be optimally solved.

Gilmore and Gomory (1961, 1965) applied the simplex method with a column generation

procedure to solve the LP-relaxation of (1)-(4). This approach has been widely utilized to

solve cutting problems in several industrial processes. The contributions to this method

have been in the solution of the combinatorial optimization subproblem of generating a

column in the linear program (see problem (7) below where only one plate is out). To

initiate the simplex method, the artificial variable technique can be applied and an initial

basis is composed of the columns of the artificial variables associated with constraints (2),
together with the slack variable columns associated with constraints (3).

The column generation derives from the simple observation that the columns of the model

(1)-(4) can be iteratively generated, instead of being stored a priori. Let 7x be the simplex



multiplier vector associated with constraint (2), and 6}- be the multiplier associated with the

f’" constraint in (3), j=1,...,N. The (m+N)x1 vector (71; H), is the multiplier vector

corresponding to the current basis. Then, the relative cost of variable xij is given by: C)-

a’ . .

(75,0)( ;) = C,- -7ra,’ -0,-, where e’ is the le vector with 1 in component j and O in the
e

remaining components (see constraints (2) and (3)). Applying the Dantizg criteria to

choose a column to enter the basis (i.e., the variable with the lowest relative cost), we

obtain:

mintw { Cf '”aij '6l'} (5)

Given that the vectors a," have the same formation law (since they correspond to cutting

patterns), it follows that problem (5) consists of the solution to the subproblem:

maximize rm]

such that aj corresponds to a cutting pattern for plate ijWj (6)

Observe that problem (6) is equivalent to problem (5) since we have supposed that the cost

of plate type j, C), is independent of how the pattern is cut. If the criteria is the minimum

waste (Cjé—Ljo — 21! 1k wka'i} ), we should just redefine the coefficients of the objective

function in (6) by: flkfiflk-lkwk. This is valid because the waste function is linearly defined

in terms of the number of items of type k. In section 3 we discuss classes of cutting patterns
for which additional costs of the cutting process should be considered and these costs do

not vary linearly with the number of items in the pattern.

Problem (6) should be solved for each plate type j =1,...,N. For each j, we obtain a cutting

pattern represented by a vector aj . If

C, -7ra"-6, = minj=l ,,,,, N {Cj -7raj 42} 20, (7)



then the current basis is optimal and the LP-relaxation is solved. Otherwise, Cs -7ras-6l,<0

as
and the column ( SJ enters the basis. The choice of the column to leave the basis follows

e

the usual steps of the simplex method.

This procedure is particularly useful for the cutting problem of the furniture company,

where the demands dk are sufficiently large (typically of the order of hundreds or

thousands; see the examples in section 4) and just a few items are produced in each pattern

(at most tens of items), so that the value of the basic variables are large and its simple

rounding produces satisfactory results. The integer l-dimensional and 2-dimensional

cutting stock problems have been considered in the literature (e.g., Haessler, 1980, Vance

et al., 1994, Waescher and Gau, 1996, Riehme et al., 1996) and several heuristics have

been developed to find an integer solution, instead of simple rounding.

3. Pattern generation

The variable vector a’ of problem (6) corresponds to a cutting pattern for the plate ijWj
and, therefore, is subject to a set of rules from the cutting process. Sometimes the

mathematical formulation of the constraints that define a feasible cutting pattern is non

trivial. In this section we briefly review how problem (6) can be solved for the cases of 2-

stage and 3-stage guillotine cuttings, and we present another cutting rule called l-group
that, although yielding higher levels of waste, increases the cutting process productivity of

the furniture company. For simplicity, the procedures are presented considering just one

type of plate, say plates of size LxW and cost C. If we have different types of plates, the

procedure should be repeated for each type.

3.1 2-stage cutting patterns

In the furniture company the cutting equipment is able to produce only guillotine cuts on

the plates. A cut is of guillotine type if, when applied to a rectangle, it produces two new

rectangles. Gilmore and Gomory (1965) presented a simple and effective method to solve

problem (6) when the cutting pattern is obtained by guillotine cuts in, at most, two stages.

In the first stage, parallel longitudinal guillotine cuts are produced on the plate, without

moving the plate, to produce a set of strips. In the second stage, these strips are pushed,



one by one, and the remaining parallel transversal guillotine cuts are made on each strip

(figure 1). If there is no need for additional trimming (i.e., all items have the same width in

each strip), the pattern is called exact 2-stage guillotine (figure 1a), otherwise, it is called

non exact (figure 1b).

Figure 1 — 2-stage cutting pattern: (a) exact case, (b) non exact case

The method developed by Gilmore and Gomory (1965) to generate 2-stage patterns

involves two phases. Approaches based on two phases are usual in the literature; see e.g.

Farley (1983), Morabito and Arenales (1994), Hifi and Zissimopoulos (1996), Hifi (1997),

Riehme et al. (1996), and Morabito and Garcia (1998). In the first phase, cutting patterns

are determined for each strip of size (L,wj), j eDw, where Dw={/' | wj ¢ wi, i>j, i, j=1,...,m}

is the set of different widths. Then, the second phase decides how many times each strip

should be used. Note that we need just one cutting pattern for each strip, the one that

III

provides the best value for Z nil”. , where L,- is the number of items of type i in a strip of
i=l

type j. The two-phase procedure for the non exact case (figure 1b) is briefly presented
below.

1” Phase: Let W}={i | w,- Swj, i=1,...,m} and V], jeDw , be defined as:

V]. = max2 74/10. (8)
ieW]

21/1, 5 L (9)
ier

xii/20, integer, i=1,..,m (10)

2“ Phase: Let luj be the number of strips of type j in the plate j EDw. Then,

max ZVjuj (11)
jEDW

ijuj s W (12)
jeD“.

,uj 2 0, integer, jEDw (13)



The procedure can be easily adapted to deal with the exact case (figure la) by simply

redefining W,- in the first phase as Wj={i I
w,——-wj, i=1,...,m}. The cutting pattern obtained

with the solution of (6)-(8) and (9)-(11) is given by:

a, = ZjeDw 311/‘1

=
012 = ijeDw AQj/uj

(14)a

ani = ZjEDw Ahy’luj

Let mw be the number of elements of Dw. It should be noted that the mw+1 knapsack

problems in (8)—(10) and (l l)-(13) produce the optimal pattern for the plate of size LxW,

considering the cuts of the first stage parallel to the plate length L (the optimality comes

from the fact that the strips are independently cut. In section 3.3 we consider the l-group

pattern where the strips are not independent). The process should be repeated now

considering the cuts of the first stage parallel to the plate width W. Note that this repetition

requires the solution of other mL+1 knapsack problems, where mL is the number of

elements in Dw={j | 1]- ¢ l,-, i>j, i, j=1,...,m}). Cutting patterns should be determined for

each plate type, and the pattern with the highest relative cost is chosen (see (7)).

3.2 3-stage cutting patterns
The cutting equipment of the furniture company is able to cut guillotine patterns in, at

most, three stages (figure 2a).

Figure 2 — (a) 3-stage cutting pattern, (b) Heuristic third stage

Exact approaches to generate 3-stage cutting patterns can be found, for example, in

Gilmore and Gomory (1965) and Beasley (1985). Gilmore and Gomory (1965) discussed

an approach based on the application of the two-phase procedure (8)-(14) to each strip of
size wa, WSW, where w is any linear combination of the widths w], w;, wm (i.e.,

w = leaiw, , a,-_>.0, integer). Beasley (1985) presented dynamic programming formulas

with state spaces that depend on the size of the sets composed of all linear combinations of
the lengths I), l), 1m and the widths w,, w;, w," in LxW(normal sets). Obviously the



inconveniences of these approaches are the computational requirements that, depending on

the size of the problem, can be excessive. Next we present a simple heuristic that has been

producing good results for the furniture company (Morabito, 1989) and practically

involves the same computational effort as the 2-stage procedure.

Consider again the first phase of procedure (8)-(14) for the non exact case, where items of

type ie W,- (i.e., i such that wiSWJ) should be selected and arranged in a strip of size waj.
Note that, for each item ie W,-, we can arrange ij/wil items along the width w,- of the strip

(figure 2b), instead of only one item as in the original procedure. Thus, the heuristic simply

replaces a,- in (8) by Lw/w,_| m, and fly in (14) by Lw/wil xii,- (where LxJ denotes the largest

integer less than or equal to x). The remainder of the two-phase procedure stays as before.

3.3 l-group cutting patterns

Due to the particular characteristics of the cutting machine, the l-group guillotine patterns

are the ones that require the shortest processing times. These patterns belong to a special

class of 2-stage patterns in which the second stage cuttings are performed simultaneously

on the strips resulting from the first stage cuttings (Gilmore and Gomory, 1965). This

implies that the second stage cuttings are produced together with the first stage cuttings,

without moving the strips and, in this way, save processing time. Here we consider only
the exact case where there is no need for additional trimming (see figure 3). Gilmore and

Gomory (1965) also discussed p-group patterns, p>l, which are of less interest for the

furniture company. Note that the l—group patterns can be non homogeneous (a pattern is

homogeneous if it contains only items of the same type), as illustrated in figure 3.

Figure 3 — l-group cutting pattern

The l-group patterns can be mathematically modeled as follows. Note that, although they

are simpler than 2-stage patterns, an additional difficulty is introduced because the strips

can not be independently cut anymore. This hypothesis of independence was necessary to

validate Gilmore and Gomory’s decomposition method. Let R,- be the ordered rectangle

l,~xw,-, i=l,..,m. Consider the mxm matrix 17 = (7m), defined as:



it, if R, = I: x wk
fl. ="‘ 0 otherwise

where 7r, is the simplex multiplier associated with the r’h-contraint in (2). Note that 75-5727,

i=1,...,m. For illustration, let R1=1x2, R2=1x3 and R3=1x4. Then, fru=7r1, mg=7rz

(R2=ll><wz) and m3=7r3 (R3=l 1XW3). In words, the non null elements of the i'h-line ofmatrix

1] correspond to the items with the same length l,-, and the non null elements of column k

correspond to the items with the same width w. The variables that define a l-group pattern
are:

A,- = number of times that the length l,- is cut

pk = number of times that the width w is cut

It should be noted that the product link defines the number of items of size lixwk in the

pattern (see figure 3). Thus, the l-group pattern with the lowest relative cost is obtained by

solving the following integer quadratic program:

Maximize 2275-1 1m, (15)
i=1 k=l

Subject to: 21, /1,. s L (16)
i=l -

2 wk All S W (17)
k=l

1,20, ykzo, integer, i, k=1,...,m. (18)

A heuristic solution to problem (15)-(18) can be obtained fixing yk, k=1,...,m (or A),

i=1,...,m) and solving the resulting knapsack problem. In particular, a simple heuristic

solution is given by (see section 4 for computational results):

it]. =LW/ij, y, =o, k=1,...,m, k¢j, for anyjeDW. (19)

In words, the strip waj is repeated y,- times. With vector p fixed, we can determine vector

1, which defines the pattern of strip waj. Note that, because of the choice above, it



follows that by = O for kfi' and, since ail-fl) if and only if ier (items of same strip w,-),

the objective function (14) can be rewritten as:

LW/wjj ana= LW/ij 2M. (20)
i=l few,

Moreover, without loss of generality, we can fix lp=0 for all pst. Therefore, the

constraint in (16) becomes:

21,3, SL. (21)
15W]

In summary, by fixing a according to (19), we obtain the problem in (8)-(10), that is:

V,- = maximize 2m}, , s.t.: 21,1, $L, 1,20, integer, i=1,...,m
few, ieW}

and the solution of (19) corresponds to the homogeneous solution of (11)-(13). Repeating

this procedure for each jeDW and selecting the best solution among them, we have a

heuristic procedure to solve problem (15)-(18):

Max/my {LW/ij VJ. } , (22)

Note that, in this way, we are choosing the most valuable pattern among all patterns

composed of strips of the same type (L,wj),j eDw. Similarly, we can fixthe vector A:

a]. =LL/1,J, x, =0, i=1,...,m, i¢j,foranyjeDL. (23)

andthen,

Maxie/t {LL / 1,J V1}, (24)

where Vj = maximize 2711/11” s.t.: Zwkyk SW, ”120, integer, k=1,...,m
keLj keLj

L,- = { k such that wk=wj}.

3.4 Fixed pattern cost, item rotation and saw thickness

In the objective function (1) we have considered that the coefficient C, of variable xi,

(number of plates of type j using pattern i) is independent of pattern i. Since the l-group



patterns are the ones that require the shortest processing times, a simple approximate way

of describing the cost of cutting a more complex pattern is to increase the plate cost, for

example, to add to C,- a fixed cost 6}- associated with the additional time needed to process

pattern i. The coefficient of 5c,-,- in the objective fimction (1) becomes:

0, =U

Cj + 5, if i is not a 1- group pattern
' (25)Cj otherwise

Then, in each simplex iteration, we search first for a l-group pattern with negative relative

cost to enter the basis (i .e., problem (6) is solved with the condition that ai corresponds to a

l-group pattern). If condition (7) is verified, then we search for a non l-group pattern (i.e.,

problem (6) is solved for exact and non exact 2-stage and 3-stage patterns). In this case, the

optimality test (7) should be changed considering (25).

So far we have considered that the items are cut following a fixed orientation, that is, we
have supposed that no items can be rotated in 90 degrees before being placed in the

pattern. Nevertheless, in the fumiture company, we can have part of the items with fixed

orientation and part of them without. In this case, it is enough to consider in (8)-(10) each

item type i without fixed orientation as two different types of sizes lixw; and w,~xl,~,

respectively (note that the sets DW and DL should be redefined). Moreover, the quantity of

items i (either lixw; or w,-xl,-) in the pattern should compose the i’h-component of vector a in

(14). For example, assume that item type 1 has no fixed orientation and consider a new
item type m+1, with l,,,+, = w, and w,,,+, = 11. The coordinate a, in (14) should be

calculated by:

a! =ZJEDW (ll/j +fl’m4-IJ )1uj

We have also supposed so far that the saw thickness of the cutting machine can be

disregarded. Without loss of generality, to consider the saw thickness we simply add it to

the sizes of the stock platesand items when solving problems (8)-(10) and (11)-(13). For

example, the new sizes of the plates and items of type i should be (L+o)x(W+o) and

(li+a)x(w,-+ a), where ais the saw thickness (Gilmore and Gomory, 1965).



4. Model implementation and computational results

In this section we discuss some details of the computational implementation of the models

of sections 2 and 3, and analyze the computational results obtained from examples of the
furniture company. We compare the criteria of minimum waste and minimum cost, and

analyze the trade-offs between 2-stage and 3-stage cutting patterns, and l-group and non 1-

group cutting patterns.

To solve the LP-relaxation of the model (1)-(4), we implemented the simplex algorithm

with the column generation procedure described in section 3. For phase 1 of the simplex,

we generate initial basic solutions as discussed in section 2. The linear systems involved in

the simplex algorithm were solved applying the Gauss elimination method with partial

pivoting (the sizes of these systems for the furniture company were of the order of tens).
Finally, the knapsack problems (8)-(10) and (11)-(l3) were solved by the lexicographic

method described in Gilmore and Gomory (1963).

Gilmore and Gomory (1963) recommended the use of a stopping criteria (cutofl) to

interrupt the simplex algorithm in cases where, after a few iterations, the improvements in

the objective function are insignificant. In this work we implemented the criteria of

interrupting the simplex method if the last 10 iterations did not reduce the value of the
objective function in, at least, 0. l%.

The implementations were coded in Pascal language (Turbo-Pascal 5.5) and the

computational results of the next tables were produced by a Pentium 100 microcomputer.

A tolerance of 4:10“6 was considered for the floating point errors.

4.1 Minimum waste versus minimum cost

Consider the example of tables 1 and 2. The data for the stock plates are presented in table

1. In fact, the plate types 1, 2 and 3 were not available in the company stock at the time of
the production planning, but could be supplied in a short time with discounts of 10% in

comparison with the costs of the plate types 4 and 5 (note in the last column of table 1 that

the plates have different costs per unit area). Table 2 presents the data for the ordered

items. The items do not have a fixed orientation (i.e., they can rotate 90 degrees) and the

saw thickness is o=0.004 m.



Table 1- Data of the N=5 types of stock plates

Table 2 — Data of the m=25 types of ordered items

Table 3 compares the results obtained with the two criteria: the minimum waste and the

minimum cost (see section 3.1), Considering only non exact 2-stage cutting patterns (8)-

(14). All values of the table correspond to the simple rounding of the optimal solution of
the LP-relaxation of problem (1)-(4) (recall that the variables in (l)-(4) are integers). For

example, the minimum waste and minimum cost values found by the simplex method were

501.3 m2 (i.e., 2.32%) and $22597.77, respectively. After the variable rounding, these

values changed to 501.4 m2 (2.32%) and $22598.07 (table 3), that is, deviations of less

than 10'3 with respect to the value of the optimal relaxed solution. The largest variation in

the item demands is 0.3% (in fact, note in table 3 that the two solutions produce 48228 and

48230 items, respectively, which are very close to the original demanded value of 48227

items).

Table 3 — Comparison between the minimum waste and minimum cost solutions

Table 4 details the stock plates utilized in the minimum waste and minimum cost solutions.

Observe that the solutions are quite different with respect to the utilization of plate types.

For example, the minimum cost solution utilizes all plate types, in particular, all available

plates of types 3 and 4 (compare tables 1 and 4). On the other hand, the minimum waste

solution utilizes only plates of types 3, 4 and 5, in particular, all available plates of type 4.

These solutions can be useful for supporting stock management decisions and reviewing
the adopted inventory policies. In fact, after the implementation of the model in the

.

company, the production manager reported that the model was also being used to help in

the process of acquisition of stock plates.

Table 4 -— Utilization of stock plates in the minimum waste and minimum cost solutions

It is worth noting that, for this example, any basis is composed of 30 columns (i.e., m+N

linearly independent columns), that is, at most 30 cutting patterns are utilized. The

minimum waste solution uses only 26 patterns, whereas the minimum cost solution

requires 27 patterns. The remaining basic columns correspond to the columns of the basic



slack variables. For example, for the minimum cost solution, the other 3 columns

correspond to the slack variables associated with the availability constraints of plate types

1, 2 and 5 (compare tables 1 and 4).

4.2 Trade-off between 2-stage and 3-stage cutting patterns
The third cutting stage reduces the productivity of the equipment due to the additional

processing time. Considering that, on the one hand, the cutting equipment is a production
bottleneck and, on the other hand, the cost of waste material is substantial in the furniture

company, an interesting trade-off is that of choosing between patterns easy to cut, such as

2-stage, which saves processing time, and 3-stage patterns which save waste material.

To illustrate this trade-off, we solved the example of section 4.1 with the criteria of
minimum waste for both the exact 2-stage and the 3-stage cutting patterns. Table 5

compares the results obtained. Similar to table 3, all values of the table correspond to the

simple rounding of the optimal relaxed solution obtained by the simplex method. For

example, the minimum waste values found for the two cases were 826.8 m2 (3.78%) and

474.7 m2 (2.20%), respectively. After the rounding of the variables, these values changed

to 827.3 m2 (3.78%) and 474.7 m2 (2.20%) (see table 5), that is, deviations of less than 10'3

from the optimal relaxed solution. The largest variation in the item demand was 0.8%.

(note in table 3 that the two solutions produce 48253 and 48227 items, respectively, which

are very close to the original demanded value, 48227). Table 6 details the stock plates

utilized in the exact 2-stage and 3-stage solutions.

Table 5 — Comparison between the“ exact 2-stage and 3-stage minimum waste solutions

Table 6 — Utilization of stock plates in the exact 2-stage and 3-stage solutions

As expected, the exact 2-stage solution (3.78%) results in higher waste than the non exact

2-stage solution (2.32%) (tables 3 and 5). On the other hand, the 3-stage solution (2.20%)

yields lower waste. Estimating the processing times of 2-stage (exact and non exact) and 3-

stage patterns, the production planner can select the best solution taking into account the

benefits of reducing waste material and increasing productivity in the cutting process.

Alternatively, he or she can add to the plate cost an estimated cost, proportional to the



additional processing times of 3-stage cuttings with respect to 2-stage, and choose the

minimum cost patterns, as in section 3.3. This idea is explored below.

4.3 Trade-off between l-group and non 1-group cutting patterns
To illustrate the trade-off between l-group and non 1-group patterns, let us consider

another example derived from the furniture company. Plates of size 1.850 x 3.670 111

should be used to produce all items of table 7. As in the example of tables 1 and 2, we
assume that the items have no fixed orientation (i.e., they can rotate 90 degrees) and the

saw thickness is

0.004 m.

Table 7 — Data of the m=15 types of ordered items

For ease of presentation, suppose that the unit cost of the plates is $1 and there is a

sufficient number of such plates to produce all items. In order to avoid local perturbations
due to the variable rounding, our analysis focuses on the relaxed solution of problem (1)-

(4), which produces exactly 13227 items (table 7). Table 8 presents the results obtained by

varying the fixed cost 5 in (25) from $0.00 to $0.15 (i.e., from 0% to 15% of the plate

value). For simplicity, these results were produced considering the non l-group patterns as

non exact 2-stage patterns.

Table 8 — Solutions obtained for different values of the fixed cost of non l-group patterns

Note in table 8 that, as we increase the fixed cost (first column of table 8), the proportion
of plates with non l-group patterns decreases (last column), followed by an increase in the

waste material (third and fourth columns).

In particular, if the fixed cost is $0.02, that is, a value equivalent to 2% of the plate value,

the cost of the minimum waste solution (first row of table 8) rises from $348.71 to

$355.22, that is, an increase of $6.51 (given that 93.4% of the patterns are non l-group).
On the other hand, the minimum cost solution is $354.68 (third row of table 8). The

increase in the percentage waste is small (from 2.67% to 2.80%, or only O.13%; compare

the first and third rows) in comparison with the minimum waste solution. In this case, note



that the proportion of plates using l-group patterns reduces from 93.4% to 77.7%, but the

total number of plates cut remains almost the same. If the fixed cost is greater or equal to

$0.15 (last row of table 8), then it is better to cut all plates with l-group patterns.

The data of table 8 can be very useful for a production manager who needs to determine

the best set of cutting patterns taking into account the trade-off between the economy of
material (patterns with lower levels of waste) and the benefits of increasing process

productivity (simpler patterns such as l-group) and, in this way, reducing overtime,

avoiding additional shifts, satisfying due dates, etc. Figure 4 illustrates a trade-off curve for

the example above (fourth and sixth columns of table 8). Note that as the proportion of non
l-group patterns decreases (and hence, the productivity increases), the waste material

increases.

Figure 4 - Trade-off curve between waste material and proportion of non l-group patterns

5. Concluding remarks and perspectives for future research

In this paper we analyzed the application of Gilmore and Gomory’s approach for the

cutting stock problem of a Brazilian furniture company. Different rules for generating a

cutting pattern were studied under alternative objective functions. A trade-off curve was

depicted showing the variation of the waste material as the proportion of l-group cutting

patterns is increased to improve the productivity of the cutting machine. Besides being

helpful for the production planning of the cutting process, the model can also be useful for

deriving an inventory policy for the stock plates.

The cutting stock problem is part of the production planning of the company and the

solution of the model (1)-(4) produces a set of cutting patterns which can not always be cut

in any sequence, since the items obtained must be grouped for the production of the

products and there may be limitations for the work in process and different product due

dates. The pattern sequencing has been studied in the literature with different objectives,

such as minimizing the order spread and the number of open products (a product is open if
its demand was only partially produced) during the production of the cutting patterns
(Madsen, 1988, Yuen, 1995, Yuen and Richardson, 1995, Yanasse, 1997). To be applied to



the furniture industry, these approaches should be adapted to include additional constraints,

such as product due dates and work in process limitations.

In practice, due to the difficulties of an integrated analysis for the cutting and sequencing

problems, the production planning of the company defines production lots such that the

due dates and the work in process limitations can be trivially satisfied after solving the

cutting problem. However, this procedure increases the waste material, since only part of
the products (consequently, their corresponding items) is considered each time by the

cutting problem and, in this way, the number of candidate cutting patterns can be

dramatically decreased. An approach integrating the cutting stock and the lot sizing

problems, namely the coordination problem (Drexl and Kimms, 1997), is a topic for our
future research.
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(a)
,

(b)

Figure l — 2-stage cutting pattern: (a) exact case, (b) non exact case

(a) (b)
Figure 2 — (a) 3-stage cutting pattern, (b) Heuristic third stage

Figure 3 — l—group cutting pattern



Table 1 — Data of the N=5 types of stock plates

Typej L; (m) W.- (m) D,- c,- (8) MM (W)
1 1.220 2.750 975 3.3550 1.00
2 1.220 3.050 2872 3.7210 1.00
3 1.700 2.100 2305 3.5700 1.00
4 1.830 2.750 391 5.5917 1.11
5 2.130 2.440 3452 5.7747 1.11

Total 9995

Table 2 — Data of the m=25 types of ordered items

Type k lk (m) Wk (m) dk
0.454 2.130 4321
0.454 2.060 713
0.256 1.425 735
0.390 1.425 735
0.454 1.342 1447
0.454 0.636 1034
0.484 1.352 1050
0.666 1.440 2030
0.345 0.610 1384

10 0.351 1.187 4410
1 1 0.405 0.698 2940
12 0.341 0.780 5066
13 0.395 1.585 735
14 0.415 1.675 735
15 0.384 0.551 368
16 0.454 1.105 803
17 0.454 0.778 751
18 0.338 0.431 1280
19 0.454 1.578 1156
20 0.454 0.674 550
21 0.680 0.803 630
22 0.322 0.485 7308
23 0.322 1.445 5040
24 0.328 0.670 2376
25 0.205 1.368 630
Total 48227
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Table 3 —- Comparison between the minimum waste and minimum cost solutions

Minimum waste solution Minimum cost solution
Total waste (m7 501.4 (2.32%) 1100.6 (4.96%)
Total cost ($) 2365284 2259807
Number of plates out 4413 5836
Area of plates cut (m2) 215723 221733
Number of items produced 48228 48230
Area of items produced (m2) 210710 210727
Number of patterns used 27
Number of iterations 218 184
Total runtime (min) 0.5 0.4

Table 4 — Utilization of stock plates in the minimum waste and minimum cost solutions

Minimum waste solution Minimum cost solution
Type j Utilization Cost ($) Utilization Cost ($)

1 0 0 640 2147.20
2 0

k

0 2143 7974.10
3 798 2848.86 2305 8228.85
4 391 2186.35 391 2186.35
5 3224 1861763 357 2061.57

Total 4413 2365284 5836 2259807

Table 5 — Comparison between the exact 2-stage and 3-stage minimum waste solutions

Exact 2-stage solution 3-stage solution
Total waste (m7)
Number of plates cut
Area of the plates cut (m2)
Number of items produced
Area of the items produced (m2)
Number of patterns used
Number of iterations
Total runtime (min)

827.3 (3.78%)
4599
2191 1.0
48253
210837
26
127
0.1

474.7 (2.20%)
4379
215458
48227
210712
26
168
0.6



Table 6 -— Utilization of stock plates in the exact 2-stage and 3-stage solutions

Type j Exact 2-stage solution 3-stage solution
1 53 0
2 314 165
3 839 556
4 391 391
5 3001 3267

Total 4599 4379

Table 7 — Data of the m=15 types of ordered items

Type k I], (m) wk (m) dk
0.274 0.609 630
0.274 0.380 1260
0.330 0.425 630
0.361 0.650 630
0.270 0.348 315
0.270 0.705 893
0.328 0.718 2520
0.300 0.705 90
0.330 0.465 4410

10 0.330 0.480 315
11 0.330 0.465 630
12 0.250 1.956 112
13 0.302 0.674 118
14 0.270 0.674 181
15 0.270 0.636 493

Total 13227

QOOQQMAMNM

Table 8 — Solutions obtained for different values of the fixed cost of non l-group patterns

Fixed cost Total minimum Waste Percentage Number of Proportion ofnon
($) cost material Waste plates cut l-group patterns

($) (m2) (%) (%)
0.00 348.71 63.3 2.67 348.7 93.4
0.01 351.73 64.0 2.70 348.8 83.7
0.02 354.68 66.3 2.80 349.1 77.7
0.03 357.19 71.3 3.00 349.9 69.4
0.05 361.30 96.2 4.01 353.6 43.4
0.10 363.64 153.8 6.26 362.0 4.4
20.15 364.29 169.1 6.84 364.3 0.0
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