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Summary

This paper presents two approaches for comparing several exponential accel-
erated life models under the usual stress levels. The approaches are based on
on the likelihood ratio statistics and on the posterior Bayes factor ( Aitkin,
1991). These procedures can be useful in many practical situations. An ex-
act distribution and a table of critical values of the likelihood ratio statistics
are considered. A simulation study is also performed.
Key words: accelerated life models; posterior Bayes factor; expo-
nential; Laplace’s method; likelihood ratio statistics.

1 Introduction
Accelerated life testing of a product is often used to obtain information on its
performance under usual conditions. Such testing involves conditions more
severe than encountered in the everyday’s life. This results in decreasingthe
item’s mean life leads to shorter test times and reduces experimental costs.
The basic idea is to collect data at high stresses levels and use it to extrap-
olate to the usual stress level where testing is not possible. Several authors
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have considered this problem, see Nelson (1990) and Bhattacharyya and Soe-
joeti (1989) for a complete reference. However, most of the articles in the
literature related to the accelerated data are concerned to the estimation of
the parameters involved in the model. There are a few papers devoted to test-
ing hypothesis, for example, see J. Yum and H. Kim (1990). At present, we
are unware of statistical literature related to the the comparison of the mean
time to failure of products under the usual stress level via the accelerated
data.

In this paper, to compare the mean time to failure of a product under
the usual stress level , we make use of the posterior Bayes factor ( Aitkin,
1991) and also of the likelihood ratio statistics. As mentioned by Aitkin,
the comparison of models via posterior Bayes factor may be applicable for
a wide class of models and does not suffer from the Lindley’s paradox. To
compute the posterior Bayes factor, we have to compute the posterior mean
of the likelihood function L;(6)) of the observed data D and the parameter
6;, which corresponds to model M, h=1,2, or,

Ii = [La(On)r(6s Yds,
J Li (61)7 (65)

J Lp(6r)7(61)d0s ’

where 7(6;) is the prior density assigned to the parameter §,,. The posterior
Bayes factor for model M; over model M,; is then given by

The posterior Bayes factor provides a measure of the weight of sample evi-
dence in favor of M; over M;. As pointed out by Aitkin, (1991), values of
A less than 1/20, 1/100 or 1/1000 constitute strong, very strong and over-
whelming sample evidence aginst M; in favour of AM,.

In Section 2, we formulate the exponential accelerated model by introduc-
ing the power rule model ( see Mann et al., 1974) which puts some relation-
ships between the parameters of the model and the invironmental conditions.
Section 3 is devoted to justify the amendement of the power rule model given
by Mann et al., 1974, p. 425, via the orthogonal parametrization ( Cox and
Reid, 1987), in order to simplify the numerical determination of the M.L.E.
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involved in the model. In Section 4, we obtain the posterior Bayes factor and
the likelihood ratio statistics. Section 5 provides the exact distribution of
the proposed statistics and its critical points. Also, in Section 6, a numerical
illustration of the repeated sampling property of the likelihood ratio statistics
is considered. It is shown that, as the number of items on test grows, the sig-
nificance level of the likelihood ratio statistics computed by considering that
the extra parameter in the power rule is known is close to the significance
level when the likelihood ratio statistics is computed by treating the extra
parameter as estimated from the data.

2 Formulation of the Model
Suppose that p sets of independent accelerated data, using a type ll censoring.
are available and have been drawn from an exponential density under the
stress V; given by

f(t,0:5) = Zexp{——}, 0;; > 0 (1)
0;; 0;

1=1,...,k and j3=1,...,p.
The unknown parameter 8;; is the mean to failure of the component of type
j under the stress V;. The test terminates after a fixed number r; of failures
tij1,- «+, tir, have occurred when n; components of type j are put on test
under the stress V;. Let 6;; be the mean time to failure of the component of
type j under the usual stress V3, 7 =1....,p.

In this paper, we adopt the power rule model ( see Mann et al., 1974) as
the relationships between the mean time to failure and the stress V;, that is,

0;; = 3 (2)

where

Let:

1% — In, Vi
p)



k

r = yor,
s=1

A A; ry

_ j — 3
' I=1

The likelihood function for (aj, B;), given the data set {Vi 6,7}, i =
1,...,k,3g=1,...,p, is

1 &
|Las,By) = a5 (V*)Pexp{-- 3_ AsV) (3)

One important problem is to test: H,:0;; =6,, for j=1,...,p against
Hy : 61; # 6;, at least for one j. In this paper, to test H, we make use of the
posterior Bayes factor ( Aitkin, 1991) and the likelihood ratio statistics. To
make easy this comparison we use the orthogonal parametrization ( Cox and
Reid, 1987). To the best of our knowledge, we are unware of any statistical
literature dealing with such problem.

3 The orthogonal parametrization
It is easy to verify that the Fisher information matrix for (aj, §8;) is given by

rV*
o? TagI{aj, B;) = ive Tk re In2V; . (4)

To obtain an estimator of B; which is stable with respect to a;, we solve the
differential equation ( Cox and Reid, 1987)

da;—= = [In(V?*), 5=m) (5)

given the parametrization,

ay = (VP, (6)
Bi = Bi



The parameters A; and B; are orthogonal in Cox and Reid’s sense, that is,
the Fisher information matrix in terms of A; and f; is diagonal, or,

3 0
I(%;, 85) = (30 SErin?(%) ). (7)

The likelihood of (;,B;) is

LO. 8) = Xexpl= 3° Au( 5). ®Aj =]
From (6), we may write the power rule model (2) as

2).
0; = - ’ 9J (5)5s

( )

7 = 1,...,p and
i = 1,... Fk

This orthogonal paametrization and (9) give an important justification of the
amendment of (2) suggested by Mann et al. (1974). It is easy to see from
(8), since V; is chosen at random from the k values V;,7 = 1,...,k, that the
maximun likelihood estimator (EE of f; is the solution of the equation

1%SA72) In(777) == 0. (10)
1=1

As emphasized by Cox and Reid (1987), the estimator 4 is stable with
respect to A;. The next result provides a justification of why taking 5; = 8;
when testing H, via the posterior Bayes factor or via the likelihood ratio
statistics.

Let (3; | A;) be the conditional prior of 3; given \;. Following Sweeting
(see Cox and Reid, 1987), we introduce a new likelihood function from the
Bayesian point of view:

Definition:

The integrated likelihood, L();), is defined as

Ly) = [LO B)7(8;| X;)dB;, (11)

for 7 = 1,...,p.
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Lemma 1:

Under the accelerated life model (1) and #(8; | A;) NG (the approxi-
mated data-translated prior, Box and Tiao, 1973) we have that

L(x) = L(x; 8), (12)
k

Co .3A), (13)
J 1=1

ox Aj ’exp{—

where L();,3;) is the profile likelihood and f; is the MLE defined in (10).

Proof:

The result (12) follows from (8) and (10). The result (13) is a trivial ap-
plication of the Laplace approximation (Tierney and Kadane, 1986) to the
integral

tr 1 & V;
LOG) = [3 Pexp{—2 3 Aii(5)" db;

J 1=1

When A; and 3; are taken to be a prior independent, the integrated likelihood
is equal to the conditional profile likelihood ( Cox and Reid, 1987). Motivated
by the above Lemma, we take 3; = B; and considering the parametrization

Aj

we have the following "likelihood function ” for 6,;:

—r; 1
& V; 4.L(6y;) x 67; exp{—-—>_ Ai;()"}. |

(15)
01; 1=1 Vi

Our purpose is to compute the posterior Bayes factor and the likelihood
ratio statistics, using (15), for testing H, : 6; = 6; foryj = 1,...,p versus
Hy:6,; #6, ,Jorsome j.



4 Posterior Bayes Factor (Aitkin, 1991)
Let M; be a model under H, and M; a model under H;. The posterior Bayes
factor for model M; over M, is given by

|

“+A

A= Ly=2

where

Li = [Lu(0w)n(60) | data)ddpy, h=1,2, (16)

01) = 6; = 04, 7=1,...,p and
62) = (011, 012, cee 015).

(h)
—a U3

L, — [ok
1

1k) = | £400) (Ou) dbp, Uu = 1,2. (17)

Since, the Jeffrey’s prior for (Aj, 8;) is w(A;,8;) x 1/A% and 7(B; | Aj)
1/232, then 7(};) 1/22, Thus, from (14) we have that

EU 1

(fa) A
1

I ,60.;
7(0(2)) xX (18)

The main result of this section 1s stated next.

Theorem:
1. Under (15), the posterior Bayes factor for testing H,: 6,; = 6, for j=

1....,p, 1s

2: (0-P)p=PT(2pr — 1/2)I'?(r — 1/2)
A

T7(2r — 1/2)T(pr — 1/2)
U, “where

[



v= HelZh2055)
{: (Zh pl Sl 23) al

- I | (19)

2. Under (15), given B;, U 1s likelihood ratio statistics.

Proof:

Combining the prior and the likelihood function under the model M; and
M; and integranting out with respect to 6(;) and (3), respectively, we get

0 = 3 Au SPATur 1/2)
=] a=]

and

12) —— uTPYHPI2TP (yr _ 1/2)T1%_, |5° AuPI~(ur-1/2) (20)
1=1

Thus, from (17) and the above expressions we get the first part of the the-
orem. The second part of the theorem can be easily obtained from (15). A
similar result with no censored data can be found in Nagarsenker 1980.

5 Repeated Sampling Properties of U

In this section, an exact distribution of U is obtained under the following
assumption:

Assumption 1:

(i) — B; isknownfor j=1,...p,
(21) — r;=a, for 1=1,...,k

To obtain the null distribution of U, under Assumption 1, in a closed com-
putional form, we will use essentially the method given by Nagarsenker,
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(1980). The next Lemma will be useful to obtain the distribution of U in a
closed form.

Lemma 2:

The h-th moment of L defined in (19), under the null hypothesis H, and
Assumption 1, is given by

p"T(ak +k). T(pak)E[L"] = E[UM**] = { (ak) Tpakt ph) (21)

Proof:

To obtain the h-th moment of L defined in (21), under the null hypothe-
sis and Assumption 1, we first write U defined in (19) as

IT ub
[Xi=1 F1Pke

U=Lk=
where

k V:
|

uj = 0i(3)"- (22)
1=1 1 co

It is well known that ( Mann et al., 1974 ) 6; has a gamma distribution
with shape parameter a and a scale parameter ni Thus, it is not hard to
shown from (22) and (2) that u; has a gamma distribution with a shape
parameter ka and a scale parameter 3 Then, Lemma 2 follows directly
from the Nagarsenker’s (1980) result.

Using the method of Nagarsenker (1980), we obtain the null distribution
of L in a closed computational form. This is done using the Mellin inverse
transformation and Lemma 2, that is, the density function of L is

fi) = Kp,a, B= / I=F=1pPM{T(n + h)}?/T(pka + ph)dh
—100

where  K(p,a,k) = {T(ka)} PI'(kap). (23)



From (23), using the procedure given by Nagarsenker (1980), we have the
exact distribution of L in the form

— \vV i ak I'(akp) —
14

AP[L < z] = (2m)"p2"? Tak) 2 {Dr Ex(ak,v + r)},

where

D, = R[T(ak+v +7), v=1(p-1), (24)

I.(c,d) is the incomplete beta function and R, is obtained by recurrent for-
mulas defined in Nagarsenker (1980). Putting p = 2 in (21), it can easily be
checked that the distribution of L is given by P[L < z] = I(ak, 1).

Table 1 gives the 5% significance points of L for k = 5 and for various
values of a and p. This table were obtained from Table 1 and 2 given by
Nagarsenker 1980.

Table 1: 5% significance points of L with k = 5

p=2 | p=3 | p=4
0.66824 | 0.5351 | 0.4433
0.82131 | 0.7363 | 0.6711
0.90732

|

0.8595 | 0.8209
0.93748 - -

- 0.9275 | 0.9065OD

OW»NN

IR

6 Numerical illustration
A simulation study presented in this numerical illustration is based on 1,000
samples generated according to the exponential model and the power rule
model with p=2, k=5, pp; =p06 =0."7, a; = a; =400 and for each
n; =a, t=1,23,4,5, given in Table 1 and the parameters and stresses
given in Table 2. | BE
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Table 2: Parameters and the stresses of the generated data

ARARTEF AT
19 0.007713
2110 0.012530
3115] 0.016642
4120 0.020355
9 | 25 0.023796

For each generated sample, U (given in (17)) for 8; known and estimated
by the first generated sample were computed and compared with the critical
points for each a given in Table 1. Table 3 presents the number of times (

out of 1,000) H, (when true) was rejected, by using each one of the above
statistics.

Table 3 : Number of rejections of H, in 1,000 simulated samples

a|U(Bi=B2=0.7) | U:(B; = B) | B; given by the 1rst generated sample
1 0.05 0.13 Bi = 0.68 B, == 1.26
2 0.06 0.064 pr == 0.90 Ba == 0.96
4 0.054 0.046 | Br == 0.93 Ba == 0.87
6 0.053 0.048 Br =0.74 f,=0.83

As seen from Table 3, the U statistics (when S;:known) has a tendency of
presenting the rejection rates closed to 5% . The U statistics ( when f; is

estimated) has the rejection rate closed or not to 5% when the estimators
of ; are approximately equal to each other or not. The simulation studies
seem to indicate that, if the number of items on test are reasonably large,
then, the rejection rates that follow by using U (or L) when f; 1s treated as
estimated are close to the rejection rates when 3;is treated as

s

fixed at the
true value.

Acknowledgement: We are very grateful to Eric F. Rodrigues for helping
us in the simulation study.
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