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Let N be a closed orientable n-manifold, n ≥ 3, and K be a compact non-
empty subset such that π1(N \ K) is finitely generated. We prove that the
existence of a transversally orientable cod.1 foliation on N \ K with leaves
homeomorphic to Rn−1, in the relative topology, implies that K must be
connected. If in addition one imposes some restrictions on the homology of K,
then N must be a homotopy sphere. An application to Lie group actions is
also given. March, 2001 ICMC-USP
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1. INTRODUCTION

A codimension one C2 foliation defined on a n-manifold such that all leaves are diffeo-
morphic to Rn−1 is called a foliation by planes. Two foliated manifolds (V,F) and (V ′,F ′)
are said to be conjugated if there exists a homeomorphism h : V → V ′ that takes leaves of
F onto leaves of F ′. Several authors have studied foliation by planes. The common idea
behind these studies is that very few manifolds admit such foliations. In [6], Rosenberg and
Sondow proved that the torus T 3 is the only closed 3-manifold which admits a foliation by
planes. Let M be a compact 3-manifold whose boundary is a union of tori. A foliation of
M tangent to the boundary and such that the interior leaves are planes is called a Reeb
foliation. In [7], Rosenberg and Roussarie proved that if M admits a C2 Reeb foliation,
then M is diffeomorphic either to S1×D2 or to [0, 1]×T 2. In [5], Palmeira studied foliations
by planes on open manifolds. Among others, he proved:

Theorem 1.1. ([3] page 125) If V is an orientable open n-manifold, n ≥ 3, which has
finitely generated fundamental group and with a transversally orientable C2 foliation by
closed planes F , then there exists an orientable surface Σ and an orientable one dimensional
foliation F0 of Σ such that (V,F) is conjugated by a diffeomorphism to (Σ × Rn−2,F0 ×
Rn−2). The leaves of the foliation F0 × Rn−2 are of the form L0 × Rn−2, where L0 ∈ F0.

159

Publicado pelo ICMC-USP
Sob a supervisão CPq/ICMC



160 J. L. ARRAUT AND C. BIASI

When V is simply connected it is not necessary to assume that the leaves are closed and
besides the surface Σ is precisely R2.

In this paper we shall make extensive use of Palmeira’s theorem to study foliations by
planes on a closed manifold N minus a compact subset K. The results obtained apply
to the case of a singular foliation on N defined by a C2 integrable one form in which all
regular leaves are planes that cluster in K, where K is the union of all singular leaves. The
conclusions that we obtain point in the same direction that the former results i.e., that
very few closed manifolds admit singular foliations by planes. Here, we prove the following
propositions:

Proposition 1.1. Let V be an open orientable manifold of dimension n ≥ 3 and K
a compact subset such that π1(V \K) is finitely generated. If there exists a transversally
orientable foliation by planes of V \K such that each leaf is closed, then K = ∅.

Proposition 1.2. Let N be a closed connected and orientable n-manifold, with n ≥ 3 ,
and K a compact non-empty subset such that π1(N \K) is finitely generated. If there exists
a transversally orientable foliation by planes of N \ K such that each leaf is closed, then
K is connected.

Example 1.1. Consider the singular foliation of S2 whose regular leaves are the
meridians and the singular ones are the poles P1 and P2 and form the product S2 × [0, 1].
Next, identify (x, 1) with (ψ(x), 0), where ψ : S2 → S2 is a rotation, that fix the poles, of
an angle α such that the numbers {α, 2π} are linearly independent as elements of the vector
field R over the rationals. In this way one obtains a foliation by planes of N = S2 × S1

with a singular set K = {P1} × S1 ∪ {P2} × S1 which is not connected. Notice that here
the regular leaves are not closed in N \K instead they are dense in N .

Due to Proposition 1.2 there is no lost of generality if one assumes, in the next two
theorems, that K is connected.

Theorem 1.2. Let N be a closed connected and orientable n-manifold, with n ≥ 3, and
K ⊂ N a non-empty compact and connected ANR such that π1(N \K) is finitely generated.
Assume that Hp(K;Z) = 0, for each 0 < p ≤ [n

2 ]. If there exists a transversally orientable
foliation by planes on N\K such that each leaf is closed, then N is a homology sphere.

Theorem 1.3. Let N and K be as in Theorem 1.2 and assume, besides, that Hn−2(K) =
0 and that dimtopK ≤ n− 2. Then N is a homotopy sphere for n = 3 and homeomorphic
to Sn if n ≥ 4.
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Corollary 1.1. Let N be a closed connected and orientable n-manifold, with n ≥ 3,
and K a compact non-empty subset with dimtopK = 0 and such that π1(N \K) is finitely
generated. If there exists a transversally orientable foliation by planes on N \K such that
each leaf is closed, then

i) K contains only one point,
ii) N is homeomorphic to Sn.

Example 1.2. If (x1, x2, ..., xn) are the coordinates of a point in Rn , then the form
dxn defines a foliation by closed planes of Rn = Sn\{∞}. The form e−r2

dxn, where
r2 = x2

1 + x2
2 + ... + x2

n, defines a foliation by planes of Sn with {∞} as the only singular
leave.

Now, let G denote a Lie group diffeomorphic to Rn−1. For n− 1 = 2 there are two such
Lie groups: R2 and A2 the connected component of the identity of the group of affine
transformations of R . Given an action of G on N, a point p is said to be a singular point
of the action if the orbit of p has topological dimension strictly less than (n− 1).

Theorem 1.4. Let N be a closed connected orientable n-manifold, n ≥ 3 , with π1(N)
finite and G a Lie group diffeomorphic to Rn−1 acting in class C2 on N. Assume that the
set K of singular points of the action is a non-empty finite subset. Then

i) K contains only one point,
ii) N is homeomorphic to Sn.

Example 1.3. Let Sn = {x ∈ Rn+1 | x2
1 + .... + x2

n+1 = 1}, F = (0, ..., 0, 1),
Rn = {x ∈ Rn+1 | xn+1 = 0} and P : Sn\F → Rn the projection using F as focus. The
vector fields P−1

∗ ∂/∂xj , 1 ≤ j ≤ n − 1, defined on Sn\F extend to C∞ vector fields Xj

on Sn and clearly any two of them commute. They define an action of Rn−1 on Sn where
all orbits are planes that cluster in the stationary point F .

Notice that in Theorem 1.4 we did not assume neither that the leaves were planes nor
that they were closed in N\K. On the other hand we imposed that π1(N) be finite. It
would be interesting to decide if this assumption is really necessary.

Theorem 1.5. Let N be a closed connected an orientable 3-manifold and K a circle.
Suppose that there exists a transversally orientable foliation by planes of N \K such that
each leaf is closed, then N admits a Heegaard diagram of genus one and thus π1(N) is a
cyclic group. Thus

i) If π1(N) = 0, then N is homeomorphic to S3,
ii) if π1(N) = Z, then N is homeomorphic to S1 × S2 .
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Example 1.4. Consider the following three foliations on S1 ×D2, the compact solid
torus. Using (φ, (x, y)) as coordinates put ω1 = dφ and ω2 = q∗(−y dx + x dy), where
q : S1 ×D2 → D2 is the projection. The leaves of the foliation F1, defined by ω1, are the
disks {φ} ×D2. The regular leaves of F2, defined by ω2, are of the form S1 × {ray}, and
the singular leaf is the central circle K = S1×{0}. F3 is obtained from F1 by turbulaizing
the disks along the central circle. Now consider a copy of the solid torus with the foliation
F1 and another copy with F2 and identify their boundaries through the map that sends
meridians onto parallels. One obtains a foliation by closed planes of S3 \K. If one uses F1

on one copy and F3 on the other and identify them with the identity map of the boundary,
then one obtains a foliation by closed planes of S1 × S2 \K.

It should be remarked that we only considered foliations by planes on N \K such that
each plane was closed. The analogous questions without this assumption remain open.

2. PROOF OF THE RESULTS

In this section we give the proof of the statements that appear in the introduction with
the exception of Proposition 1.1 whose proof is very similar to that of Proposition 1.2. We
start with a lemma that translates Theorem 1.1 into homological information on N \K.

Lemma 2.1. Let N be a closed connected and orientable n-manifold, n ≥ 3, and K a
compact non-empty subset such that N \K is connected and π1(N \K) is finitely generated.
If there exists a transversally orientable foliation by planes of N \K such that each leaf is
closed, then Hp(N \K) = 0 for each p ≥ 2.

Proof: N \K is a connected orientable n-manifold with a finitely generated fundamental
group and with a transversally orientable foliation F by closed planes. By Theorem 1.1
there exists an orientable connected surface Σ and an orientable one dimensional foliation
F0 of S such that (N \K,F) is conjugated by a diffeomorphism to (Σ×Rn−2,F0×Rn−2).
In particular, N \K and Σ have the same homotopy type and thus Hp(N \K) ∼= Hp(Σ)
for each p. Σ can only be an open surface or the torus S1×S1. Since the leaves of F0 must
be homeomorphic to R, it follows that Σ can not be the torus. Thus Σ is an open surface
and Hp(N \K) ∼= Hp(Σ) = 0, for each p ≥ 2.

Proof of Proposition 1.2. Consider the exact sequence of singular homology groups
with coefficients in Z

→ Hp+1(N,N \K) → Hp(N \K) → Hp(N) → Hp(N,N \K) → (1)

and of the isomorphisms

Hp(N, N \K) ∼= Hn−p(K) (2)

for each 0 ≤ p ≤ n, given by the Alexander-Poincaré duality. The cohomology we use for

K is the
∨
Cech cohomology. Replacing Hn(N, N \ K) by H0(K) in the exact sequence 1
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and using Lemma 2.1 one obtains the short exact sequence

0 → Z→ H0(K) → 0

Thus, H0(K) = Z and consequently, K is connected.

Proof of Theorem 1.2. Consider the singular homology sequence of the pair (N, K)
with coefficients in Z

→ Hp(K) → Hp(N) → Hp(N, K) → Hp−1(K) → (3)

and also the singular homology and cohomology groups of N \K. Since K is an ARN (abso-
lute neighborhood retract) we have, by duality, the isomorphisms Hp(N,K) ∼= Hn−p(N\K)
for each p ≥ 0. Notice that By Lemma 2.1 Hp(N \K) = 0, for each p ≥ 2, and therefore
Hp(N \K) = 0, too. Write

Hp(N) = Fp ⊕ Tp and Hp(N) = Fp ⊕ Tp−1 (4)

where F denotes the free part and T the torsion part. From 3 and duality we have

→ Hp(K) → Hp(N) → Hn−p(N \K) →

By assumption Hp(K) = 0 for each 1 ≤ p ≤ [n
2 ], and since n − p ≥ 2, we know that

Hn−p(N \K) = 0, too. The sequence above looks 0 → Hp(N) → 0 and therefore Hp(N) =
0, for each 1 ≤ p ≤ [n

2 ]. By Poincaré duality Hn−p(N) = 0. Using this information in 4
one obtains that Hp(N) = 0 for each 1 ≤ p ≤ n− 1.

Proof of Theorem 1.3. We already know, from Theorem 1.2, that N is a homology
sphere. By a theorem of Hurewicz, it is enough to prove that π1(N) = 0. The exact
sequence 1 for p = 1, after using that Hn−2(K) = 0 and that H1(N) = 0 gives H1(N \K) =
H1(Σ) = 0. Thus Σ is diffeomorphic to R2 and by Theorem 1.1 that N \K is diffeomorphic
to Rn and therefore that π1(N \ K) = 0. Finally, since dimtop(K) ≤ n − 2 and N is a
Cantor manifold, it follows from ([4], page 93), that thee map π1(N \K) → π1(N) induced
by the inclusion is surjective and consequently π1(N) = 0, as we wanted. That N is
homeomorphic to Sn follows from celebrated theorems of Freedman [1], n = 4, and Smale
[8], n ≥ 5.

Proof of Corollary 1.1. By Proposition 1.2 K is connected and since dimtopK = 0, it
follows that K reduces to a point. By Theorem 1.3 N is a homotopy sphere and therefore
homeomorphic to Sn, for n ≥ 4. For n = 3 the fact that K is a point and N \ K is
homeomophic to R3 implies that N is homeomorphic to S3.

Proof of Theorem 1.4. We know that π1(N\K) is isomorphic to π1(N) and therefore
finite. Denote by G the regular codimension one C2-foliation on N\K defined by the
orbits of the action and let L be any leaf of G. Fix a point p ∈ L and consider the map
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j∗ : π1(L, p) → π1(N\K, p). We are going to show that j∗ is injective. Proposition 3.10 in
[1] says that a codimension one C1-foliation of a manifold defined by a locally free action
of a Lie group has no vanishing cycle. But Theorem 3.3, in the same book, guarantees
that if j∗ were not injective, then G would have a vanishing cycle. Thus, it is injective, and
consequently π1(L, p) is finite. Since L is the injective image of G/Gp and dim(L) = n−1,
it follows that Gp is a discrete subgroup of G. Therefore Ap : G → L is a covering map
and π1(L, p) is isomorphic to Gp. From χ(Gp) > 0 and 1 = χ(G) = χ(Gp) × χ(G/Gp), it
follows that χ(Gp) = 1, i.e., Gp = {e}. Thus, L is obtained from an injective immersion of
Rn−1. It follows from a now classical argument by Haefliguer, see [3], that every leaf of G
is closed in N\K. Finally, we apply theorem 1.1 and the proof is complete.

Proof of Theorem 1.5 Let T (K) be a tubular neighborhood of K diffeomorphic to
S1 × D2 and put V = N \ T (K). Since V is diffeomorphic to N \ K and π1(V ) is
finitely generated, then it satisfies the assumptions of Theorem 1.1 and therefore V is
diffeomorphic to Σ× R, where Σ is an open connected orientable surface. By Lemma 2.1
Hp(V ) = Hp(Σ) = 0 for each p ≥ 2. From the formula χ(N) = χ(V ) − χ(T (K)), that
relates the Euler characteristics, we obtain

0 = β0(Σ)− β1(Σ) = 1− β1(Σ)

i.e., β1(Σ) = 0. Since β1 is a complete invariant for orientable surfaces, it follows that Σ
is homeomorphic to S1 × (0, 1) and in consequence V is homeomorphic to S1 ×D2. Thus,
N is obtained by pasting two copies of S1 ×D2 which means that N admits a Heegaard
Splitting of genus 1.
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Université Louis Pasteur, 1986.

3. A. Haefliguer, Sur les feuilletages des variétés de dimension n par des feuilles fermées de dimension
n− 1, Colloque de Topologie de Strasbourg, 1955.

4. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton 1948.

5. C. F. B. Palmeira, Open manifolds foliated by planes, Annals of Math., 107 (1970), 109-131.

6. H. Rosenberg, Foliations by Planes, Topology, vol 7 (1968), 131-138

7. H. Rosenberg and R. Roussarie, Reeb Foliations, Annals of Math., 91 (1970), 1-24.
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