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The de Sitter space is known as a Lorentz space with positive constant
curvature in the Minkowski space. A surface with a Riemannian metric is
called a spacelike surface. In this work we investigate properties of the second
fundamental geometry of spacelike surfaces in de Sitter space S5

1 by using the
action of GL(2,R) × SO(1, 2) on the system of conics defined by the second
fundamental form. The main results are the classification of the second fun-
damental mapping and the description of the possible configurations of the
LMN -ellipse. This ellipse gives information on the lightlike binormal direc-
tions and consequently about their associated asymptotic directions. May, 2014

ICMC-USP

1. INTRODUCTION

We investigate properties of the second fundamental form, with respect to lightlike nor-
mals, of spacelike surfaces in de Sitter 5-space. In the Euclidean case, Little in [9] described
elements of the local second order geometry of surfaces, such as asymptotic directions and
inflection points, in terms of invariants of a classical object: the curvature ellipse. The
classification of the second fundamental form also appears as an useful device in the inves-
tigation of the singularities of the 5-web of the asymptotic lines of surfaces in R5, given by
Romero-Fuster, Ruas and Tari in [12]. For surfaces in Minkowski space R4

1, Izumiya, Pei
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150 M. KASEDOU, A. C. NABARRO AND M. A. S. RUAS

and Romero-Fuster introduce the concept of curvature ellipse in [4] and study geometric
properties of spacelike surfaces in Minkowski 4-space in terms of properties of this ellipse.
In [3], they study properties of the curvature ellipse in spacelike surfaces in Minkowski
(n+ 1)-space, Rn+1

1 , n ≥ 2 (using isothermal coordinates), and by using this setting they
obtain geometric characterization for a spacelike surface M to be contained in hyperbolic
n-space (de Sitter n-space or n-dimensional lightcone), n = 3, 4. This characterization is
given in terms of the umbilicity of theses surfaces with respect to some normal field. Izu-
miya, Romero-Fuster and Pei study spacelike surfaces in hyperbolic 4-space (see [5]). For
other recent results on spacelike surfaces in de Sitter space see [6], [7] and [8].

Bayard and Sánchez-Bringas in [1], study the complete invariants of a quadratic map
R2 −→ R2

1, under the actions of SO(2)+ × SO(1, 1)+, where SO(2)+ and SO(1, 1)+ are
the connected components of the identity of the Euclidean and Lorentzian groups of R2

and R2
1 respectively. The invariants of these actions have been applied in the classification

of the configurations of curvature ellipses of spacelike surfaces in Minkowski 4-space.
We continue in this paper the investigation of properties of the second order geometry

in the case of spacelike surfaces in de Sitter space S5
1 by using the actions SO(1, 2) and

GL(2,R) on the system of conics defined by the second fundamental form. We define an
ellipse in affine space that we call LMN -ellipse. This ellipse gives informations on the
lightlike binormal directions and consequently about their associated asymptotic direc-
tions. The main results are the classification of the second fundamental mapping and the
description of the possible configurations of the LMN -ellipse.

The paper is organized as follows. In section 2, we give the basic concepts on extrinsic
geometry of spacelike submanifolds in the de Sitter n-space in Rn+1

1 . In section 3, we in-
troduce some invariants (which are preserved by Lorentzian transformations) of the second
order geometry of the spacelike surface in the de Sitter 5-space. In sections 4 and 5, we
obtain the normal forms of the matrix α of the second fundamental form, under the action
of GL(2,R)×SO(1, 2), when the rank of α is 1 or 2, respectively. We also study the number
of lightlike binormal and their associated asymptotic directions in each case. In section 6,
we obtain normal forms of α on 4 parameters, when rank α = 3. In section 7, we obtain the
equation of asymptotic directions at a non lightlike inflection and non conic point. This is
a fourth order equation, then at each non conic and non lightlike inflection point there are
at most 4 asymptotic directions associated to the lightlike binormals directions. In section
8, when rank α = 3 we study the number of lightlike binormal directions and consequently
the number of their associated asymptotic directions. We give some examples of space-
like surfaces and lightlike binormals and their associated asymptotic directions. Section 9
contains the appendix A, in which we define trigonometric polynomials representing the
equation of the binormal directions and discuss their solutions.

2. PRELIMINARIES

In this section we review basic notions of spacelike surfaces in de Sitter space. Let
Rn+1 = {x = (x0, . . . , xn) | xi ∈ R (i = 0, . . . , n)} be an (n+ 1)-dimensional vector space.
For any vectors x = (x0, . . . , xn) and y = (y0, . . . , yn) in Rn+1, the pseudo scalar product
of x and y is defined by 〈x,y〉 = −x0y0 +

∑n
i=1 xiyi. We call (Rn+1, 〈, 〉) a Minkowski
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SECOND ORDER GEOMETRY OF SPACELIKE SURFACES IN DE SITTER 5-SPACE 151

(n+ 1)-space and write Rn+1
1 instead of (Rn+1, 〈, 〉). A vector x ∈ Rn+1

1 \ {0} is spacelike,
timelike or lightlike if 〈x,x〉 is positive, negative or equal to zero, respectively. The norm
of the vector x is defined by ||x|| =

√
|〈x,x〉|.

We define the de Sitter n-space by Sn1 = {x ∈ Rn+1
1 | 〈x,x〉 = 1}. A Lightcone in Rn+1

1

is the set LC∗ = {x ∈ Rn+1
1 \ {0} | 〈x,x〉 = 0}. Let U ⊂ R2 be an open subset and

X : U −→ Rn+1
1 an embedding map. We write M = X(U). We say that M is a spacelike

surface if any tangent vector v 6= 0 at each point on X(U) is always spacelike.
Let {e1, e2,n

T
0 ,n

S
1 . . . ,n

S
n−2} be an orthonormal frame in the Minkowski space Rn+1

1 ,
where e1, e2 generates the tangent space on M at each point and nT0 and nS1 . . . ,n

S
n−2 are

respectively a timelike normal section and spacelike normal sections.
The first fundamental form on M is given by ds2 =

∑2
i,j=1 gijduiduj , where gij =

〈Xui
,Xuj

〉. For i, j = 1, 2 and k = 0, . . . , n− 2, we denote hkij as

hkij(u) = 〈Xuiuj (u),n
T (or S)
k (u)〉 = −〈Xui(u),n

T (or S)
k,uj

(u)〉.

We call hkij the coefficients of the second fundamental forms.
We now review the concept of curvature ellipse of a spacelike surface in Minkowski

space studied in [3]. Let M = X(U) be the spacelike surface in Minkowski (n + 1)-
space. We write u0 ∈ U and p0 = X(u0). We assume that 〈Xui(u0),Xuj (u0)〉 = δij for
i, j = 1, 2, where δij is the Kronecker delta. Let ϑ ∈ S1 and write the tangent direction
vϑ = cosϑXu1

(u0) + sinϑXu2
(u0) on the spacelike surface. We consider a spacelike curve

γ(t) on M parametrized by unit speed, such that γ(t0) = p0 and (∂γ/∂t)(t0) is parallel
to vϑ. The normal curvature vector η(u0, ϑ) in the ϑ direction is defined as the normal
component of the second order derivative (∂2γ/∂t2)(t0). We have

η(u0, ϑ) = HX + BX cos 2ϑ+ CX sin 2ϑ,

where

HX = −1

2
(h0

11 + h0
22)nT0 +

1

2

n−2∑
k=1

(hk11 + hk22)nSk ,

BX = −1

2
(h0

11 − h0
22)nT0 +

1

2

n−2∑
k=1

(hk11 − hk22)nSk ,

CX = −h0
12n

T
0 +

n−2∑
k=1

hk12n
S
k .

The vector η(u0, ϑ) is independent on the choice of the curve γ(t). As ϑ varies from 0
to 2π, η(u0, ϑ) traces an ellipse in the normal space, which we call curvature ellipse at p0.
The curvature ellipse is determined by the coefficients of the second fundamental form with
respect to normal directions nT0 ,n

S
i .

Using the same notation we also denote by X : U −→ S5
1 a parametrization of spacelike

surface in de Sitter 5-space. For any point p ∈ X(U) = M , each tangent vector v ∈
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152 M. KASEDOU, A. C. NABARRO AND M. A. S. RUAS

TpM \ {0} is spacelike and orthogonal to the position vector p. In this case, we consider
the second fundamental form in the direction ϑ ∈ S1 as the projection of the normal
curvature vector into NpM ⊂ TpS5

1 .
Let nT0 ,n

S
1 ,n

S
2 : U −→ NM be a timelike normal section and spacelike normal sections

of M . Let S4
+ := {v = (1, v1, . . . , v5) ∈ R6

1 | 〈v,v〉 = 0} be a sphere in the lightcone. We
define a map e : U × S1 −→ LC∗5 as

e(u, θ) = nT0 (u) + cos θnS1 (u) + sin θnS2 (u).

The normalized lightlike direction ē : U × S1 −→ S4
+ is given by ē(u, θ) = e(u, θ)/e0(u, θ),

where e0(u, θ) is a first component of e(u, θ).
The coefficients of the second fundamental form of the embedding of the surface into S5

1

with respect to the basis {nT0 ,nS1 ,nS2 } are given by

a0 = 〈Xu1u1 ,n
T
0 〉, a1 = 〈Xu1u2 ,n

T
0 〉, a2 = 〈Xu2u2 ,n

T
0 〉,

b0 = 〈Xu1u1 ,n
S
1 〉, b1 = 〈Xu1u2 ,n

S
1 〉, b2 = 〈Xu2u2 ,n

S
1 〉, (1)

c0 = 〈Xu1u1 ,n
S
2 〉, c1 = 〈Xu1u2 ,n

S
2 〉, c2 = 〈Xu2u2 ,n

S
2 〉.

The second fundamental form with respect to a lightlike normal e(u, θ), IIe(u,θ) : TpM →
R, is given by IIe(u,θ)(du1, du2) =

∑2
i,j=1〈Xuiuj

, e(u, θ)〉duiduj . Let IIe(u,θ)(du1, du2) =

L(u, θ)du2
1 + 2M(u, θ)du1du2 +N(u, θ)du2

2, then the we have

(L,M,N)(u, θ) = (a0 + b0 cos θ + c0 sin θ, a1 + b1 cos θ + c1 sin θ, a2 + b2 cos θ + c2 sin θ).

We call IIe(u,θ) =

(
L M
M N

)
the matrix of the second fundamental form in the direction

e(u, θ). We remark that if we take the normalized lightlike normal direction ē(u, θ), the
corresponding second fundamental form is expressed by II ē(u,θ). We will use this last one
but still denote by IIe(u,θ).

The discriminant of the binary differential equation (briefly, BDE) IIe(u,θ) = 0 is given
by

∆(u, θ) = M(u, θ)2 − L(u, θ)N(u, θ).

The sign of the discriminant ∆ is invariant under change of parametrization of the surface.
We say that a direction θ ∈ S1 is a lightlike binormal at p = X(u) if ∆(u, θ) = 0, that
is rank(IIe(u,θ)) ≤ 1. In this case we call a kernel direction of the second fundamental
form IIe(u,θ) by asymptotic direction associated to the lightlike binormal direction. Then
for each θ such that ∆(u, θ) = 0, the associated asymptotic directions are the solutions of
IIe(u,θ)(du1, du2) = 0, that is,

(du1 du2)

(
L M
M N

)(
du1

du2

)
= 0.
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SECOND ORDER GEOMETRY OF SPACELIKE SURFACES IN DE SITTER 5-SPACE 153

We also say that the point p = X(u) is a lightlike inflection point if (L,M,N)(u, θ) = 0
for some θ ∈ S1, in this case any direction is asymptotic (rank (IIe(u,θ)) = 0).

To explain the relations of the geometry of the asymptotic directions on spacelike surface,
let C = {(l,m, n) | m2 − ln = 0} be a cone and E(u, θ) = A + cos θB + sin θC be the
ellipse in the 3-space R3 = {(l,m, n)}, where A = (a0, a1, a2)t, B = (b0, b1, b2)t and
C = (c0, c1, c2)t. We call this ellipse as LMN -ellipse. The center A of the ellipse varies
with the choice of normal frames. We say that the vector (l,m, n) is elliptic, hyperbolic
or parabolic respectively if its discriminant m2 − ln is negative, positive or equal to zero.
Equivalently (l,m, n) is, respectively, inside, outside or on the cone C. We remark that the
determinant of the second fundamental form is LN −M2. Properties of lightlike binormal
directions and lightlike inflection points are related to the configuration of the cone and
the LMN -ellipse. We have the following caracterizations.

(1.) There is no lightlike binormal θ ∈ S1 if and only if E(u, θ) /∈ C, ∀θ ∈ S1 (rank(IIe(u,θ)) =
2, ∀θ ∈ S1).

(2.) θ ∈ S1 is a lightlike binormal direction if and only if E(u, θ) ∈ C (rank(IIe(u,θ)) ≤ 1).

(3.) p is a lightlike inflection point if and only if the LMN -ellipse goes through the origin
(rank(IIe(u,θ)) = 0).

We intend to classify the configurations of the LMN -ellipse in further sections to inves-
tigate the geometry of the asymptotic directions, associated to the lightlike binormals, on
spacelike surfaces in de Sitter 5-space.

We can consider the one-parameter family of the height functions on M, H(u, θ) =
〈X(u), e(u, θ)〉. If θ is a lightlike binormal direction at the point p then the height function
hθ, obtained when we fix the parameter θ, has a singularity more degenerate than Morse
at p. Moreover any direction in the kernel of the hessian of hθ at p is an associated
asymptotic direction (see [5]).

From now on, for short, we omit the word “lightlike” in the expressions “lightlike binor-
mal direction” and “lightlike inflection points”.

3. INVARIANTS ASSOCIATED TO THE SECOND FUNDAMENTAL
FORM

The aim of this section is to introduce some invariants of the second order geometry of
the spacelike surface in the de Sitter 5-space. First we define invariants of these surfaces,
which are preserved by the Lorentzian transformations, that is, by the following actions
(1) and (2).

(1.) Change of parametrization, ψ̃ ∈ Diff(U): X′(u) = X ◦ ψ̃(u),

(2.) Change of the normal vector fields, Φ̃ : U −→ SO(1, 2): (n′
T
0 ,n

′S
1 ,n

′S
2 )t =

= Φ̃ (nT0 ,n
S
1 ,n

S
2 )t,

where SO(1, 2) = {Φ | 〈Φx,Φy〉 = 〈x,y〉 for ∀x,y ∈ R3
1} is the Lorentzian transformation

group on Minkowski 3-space. As usual GL(2,R) will denote the general linear group on
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R2. Let α and k be defined as

α(u) :=

 a0 a1 a2

b0 b1 b2
c0 c1 c2

 , k(u) := −
∣∣∣∣ a0 a1

a1 a2

∣∣∣∣+

∣∣∣∣ b0 b1
b1 b2

∣∣∣∣+

∣∣∣∣ c0 c1
c1 c2

∣∣∣∣ .
The families Φ̃ and ψ̃ of elements respectively in SO(1, 2) and GL(2,R) are parametrized

by u. That is, for any u ∈ U , Φ := Φ̃(u) ∈ SO(1, 2) and ψ := ψ̃(u) ∈ GL(2,R). By
computation, we have the following table.

Actions α(u) k(u) ∆(u, θ)

(1) ψ ∈ GL(2,R) α′(u) = αΨ(u) (detψ)2k(u) ∆′(u, θ) = (detψ)2∆(u, θ)

(2) Φ ∈ SO(1, 2) α′(u) = Φα(u) k(u) ∆′(u, θ) = ∆(u, θ′(θ)), where
θ′(θ) is a diffeomorphism on S1

where,

ψ =

(
ψ11 ψ12

ψ21 ψ22

)
and Ψ =

 ψ2
11 ψ11ψ12 ψ2

12

2ψ11ψ21 ψ11ψ22 + ψ12ψ21 2ψ12ψ22

ψ2
21 ψ21ψ22 ψ2

22

 .

It follows that det Ψ = (detψ)3. Let (L,M,N) = (a0 + b0 cos θ + c0 sin θ, a1 + b1 cos θ +
c1 sin θ, a2 + b2 cos θ + c2 sin θ), then we have another expression of the action (1):(

L′ M ′

M ′ N ′

)
= Duψ

t

(
L M
M N

)
Duψ,

that we can also write by ψt
(
L M
M N

)
ψ.

The action (2) is generated by the following actions

Φ1,t =

 cosh t sinh t 0
sinh t cosh t 0

0 0 1

 , Φ2,θ =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,Φ3,± =

 ±11 0 0
0 ±21 0
0 0 1

 ,

where ±1 and ±2 are not necessarily to be the same signs.
For each u ∈ U , let I(u) be the first fundamental form of the spacelike surface X(U),

then k(u)/ det I(u) and rankα(u) are invariant under the actions (1) and (2). The maximal
and minimal values of ∆(u, θ)/ det I(u) are also invariants.

The following proposition follows from the above discussion.

Proposition 3.1. The signs of k(u) and ∆(u, θ), and rankα(u) are invariant under the
actions (1) and (2).
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We now fix a point u ∈ U and concentrate to classify the configurations of LMN -ellipses.
To do this we study the action of G = GL(2,R)×SO(1, 2) on the system of conics defined
by α.

We may distinguish the configuration of the LMN -ellipse by the multiplicity of the
solutions of the equation ∆(u, θ) = 0, 0 ≤ θ ≤ 2π. We fix u ∈ U and let ∆(u, θ) ≡/ 0 and
θ1, . . . , θk be distinct solutions of ∆(u, θ) = 0 with multiplicities m1, . . . ,mk, where mi is
a number such that

∆(u, θ) =
∂

∂θ
∆(u, θi) = · · · = ∂mi

∂θmi
∆(u, θi) = 0 and

∂mi+1

∂θmi+1
∆(u, θi) 6= 0.

In this case, we say that p is of ((m1 + 1) + · · ·+ (mk + 1))-type. We say that α is of type
((m1 + 1) + · · ·+ (mk + 1))-type if at this point we have both, k binormal and k asymptotic
directions, with same multiplicities m1, · · · ,mk. In Section 8, we show that this always
happens when rank of α is 3. If there is no solution we say that α is 0-type then there
is no asymptotic direction. We also say that a point p is of ]S1-type if ∆(u, θ) ≡ 0. We
call p an inflection point of M if the LMN -ellipse goes through the origin for some θ, and
in this case all directions are asymptotic. If not we say that p = X(u) is non-inflection
point. We say that α is of ]S1-type if all lightlike normal directions are binormals and
all tangent directions are asymptotic directions. We will see, in Section 4, that if the
ellipse degenerates into a segment (or a point) outside the origin and on the cone then all
the directions θ are binormals (∆(u, θ) ≡ 0) but there is only one associated asymptotic
direction.

Let X(u) be a spacelike surface in de Sitter 5-space and α the matrix of coefficients of
the second fundamental form at p = X(u) with respect to the lightlike normal direction
e(u, θ). Following [10], we say that a point p ∈ X(U) is of type Mi, i = 1, 2, 3 if rank of α
is i. We now introduce some denominations for vectors and planes which are in the image
of the second fundamental form in the cases rank α = 1 or 2.

(1.) If rankα = 1, then there exists a vector x = (x0, x1, x2) such that 〈x〉 = 〈A,B,C〉,
where 〈v1, · · · ,vn〉 denotes the vector space generated by the vectors vi, i = 1, · · · , n.
Let D̄1 = x0x2 − x2

1. The sign of D̄1 is invariant under the action of G. Therefore we
have three cases D̄1 > 0 (M1-elliptic case), D̄1 < 0 (M1-hyperbolic case), D̄1 = 0 (M1-
parabolic case). Respectively, the vector x is elliptic, hyperbolic or parabolic. Equivalently,
the vector x is inside, outside or on the cone C.

(2.) If rankα = 2, then there are two vectors x = (x0, x1, x2) and y = (y0, y1, y2) such
that 〈x,y〉 = 〈A,B,C〉. We write D̄2 by

D̄2 = det


x0 2x1 x2 0
y0 2y1 y2 0
0 x0 2x1 x2

0 y0 2y1 y2

 .

The sign of D̄2 is invariant under the action of G. Therefore we have the cases (see [9, 11]):
D̄2 > 0 (M2-elliptic case), D̄2 = 0 (M2-parabolic case) and D̄2 < 0 (M2-hyperbolic case).
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Equivalently, the plane 〈x,y〉 is elliptic, parabolic or hyperbolic. The following geometric
conditions hold: a plane by the origin is elliptic if and only if it intercepts the cone C only
at the origin, it is hyperbolic if and only if it is transversal to the cone and it is parabolic
if and only if it is tangent to C (see [10]).

We assume that rankα ≥ 1. Changing coordinates if necessary, we can assume that
A = (a0, a1, a2) does not vanish.

Let (l,m, n) be a vector in the three space {(L,M,N)}. Let α = (A,B,C)t be the
second fundamental form at u ∈ U . We say that α is A-elliptic or A-hyperbolic respectively
if p is not an inflection point and the vector A is always elliptic or always hyperbolic under
the action of G. We also say that α is A-parabolic if p is not an inflection point and α
is neither A-elliptic nor A-hyperbolic. We define the open and closed elliptic discs, called
α-discs, by

Dα = {A + p B + q C | 0 ≤ p2 + q2 < 1}, and Dα = {A + p B + q C | 0 ≤ p2 + q2 ≤ 1}.

These are elliptic discs of center A, in the plane generated by the vectors B and C. They
are regions bounded by the LMN -ellipse. There is a possibility that Dα and Dα degenerate
to a segment or a point. By using these concepts we have the following lemmas that are
important to classify α.

Lemma 3.1. Let Dα be the open α-disc defined as above. For any element W ∈ Dα, there
exist a transformation Φ such that W is parallel to A′, where α′ = (A′,B′,C′)t := Φα.
Therefore,

(1.)If W 6= 0 then W = rA′ for some r ∈ R∗.
(2.)If W = 0 then A′ = 0.

Proof.
Suppose that W = A + p B + q C. Then there exists (θ, t) ∈ S1 × R such that

(cos θ, sin θ) = (p/
√
p2 + q2, q/

√
p2 + q2) and sinh t/ cosh t =

√
p2 + q2. We may write

Φ = Φ1,t ◦ Φ2,θ. Therefore,

A′ = cosh t A + sinh t(cos θ B + sin θ C) = cosh t(A + p B + q C).

This completes the proof.

Lemma 3.2. (Inertial property for the closed α-discs) Let α and α′ be equivalent under
the action of G and W ′ = A′+p′ B′+q′ C ′ ∈ Dα′ the image of W = A+p B+q C ∈ Dα by
this action. Then there exists a homeomorphism Θ, where (p′, q′) = Θ(p, q), of the closed
disc D2 = {(p, q) | p2 + q2 ≤ 1} such that for any (p, q), W and W ′ have same sign and
same rank. That is, sgn(detW ) = sgn(detW ′) ∈ {0,±1} and rankW = rankW ′.
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Proof. It is sufficient to check that for each action Φ1,t,Φ2,θ,Φ3,± ∈ SO(1, 2) and
ψ ∈ Diffu(U), there exists Θ that satisfies the statement. We omit the case of action
Φ3,± ∈ SO(1, 2). Given ψ ∈ Diffu(U), we may put Θ = idD2 , then we obtain W ′ =
Duψ

t W Duψ with a regular matrix Duψ. In this case, rank and index of W do not
change.

Next, given Φ1,t ∈ SO(1, 2), since cosh t − p sinh t is positive, we may define a map
Θt : {1} ×D2 −→ {1} ×D2 by

Θt (1, p, q) =
1

cosh t− p sinh t
(1, p, q)

 cosh t − sinh t 0
− sinh t cosh t 0

0 0 1

 .

Then Θt ◦ Θ−t = Θ−t ◦ Θt = id{1}×D2 , therefore Θt is a homeomorphism. We now
put (1, p′, q′) = Θt(1, p, q), then we obtain W = (cosh t − p sinh t)W ′. Therefore we have,
detW ′ = (cosh t− p sinh t)2 detW and rankW ′ = rankW .

Finally, given Φ2,θ ∈ SO(1, 2), we may put (p′, q′) = (p cos θ + q sin θ,−p sin θ + q cos θ),
then

W ′ = (1, p′, q′)

 A′

B′

C′

 = (1, p′, q′)

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 A
B
C


= (1, p, q)

 A
B
C

 = W.

Therefore, the determinant and the rank ofW,W ′ coincide respectively. This completes the

proof.

The proof of the next result is analogous to the proof of Lemma 3.2.

Lemma 3.3. If rank of α is 2 then the type of the plane 〈A,B,C〉 is an invariant.

Using the last results we have the following proposition.

Proposition 3.2. Let Dα be an open α-disc defined as above, then we have:

(1.)α is A-hyperbolic (or A-elliptic) if and only if any element of Dα is contained in the
hyperbolic region (or elliptic region respectively).

(2.)If rankα = 2 and α is M2-parabolic then α is A-parabolic or u is inflection point if
and only if Dα includes some parabolic point.

(3.)If rankα = 2 and 〈A,B,C〉 isM2-hyperbolic, then α is A-parabolic or u is inflection
point if and only if Dα includes some elliptic, parabolic and hyperbolic points.

(4.)If rankα = 2 and 〈A,B,C〉 is M2-elliptic, then α is A-parabolic or u is inflection
point if and only if Dα includes some parabolic point p. If u is an inflection point, then p
is at the boundary of the disc and if α is A-parabolic then p is in the open disc.
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(5.)If rankα = 3, we have no inflection point. Therefore α is A-parabolic if and only if
Dα includes some elliptic, parabolic and hyperbolic points.

Proof. By applying the above lemmas, we have the results.

4. RANK ONE CASE

We consider the rank one case and obtain the normal forms of α. Using these normal
forms, in this case, it is easy to study the number of binormals and asymptotic directions.
It can occur finite number of asymptotic directions with infinite number of binormals or
vice-versa; no asymptotic and no binormal directions; or infinite number of binormals
associated to an unique asymptotic direction.

Proposition 4.1. If rankα = 1, there are the following equivalence classes.
(a) M1-elliptic: α is equivalent to some α1,e,
(b) M1-parabolic: α is equivalent to some α1,p,
(c) M1-hyperbolic: α is equivalent to some α1,h,
where

α1,e =

 c 0 c
s 0 s
0 0 0

 , α1,p =

 c 0 0
s 0 0
0 0 0

 , α1,h =

 0 c 0
0 s 0
0 0 0

 , (1)

with (c, s) = (1, 0), (0, 1), (1, 1).

Proof. Suppose that rankα = 1, then by acting Φ1,t,Φ2,θ ∈ SO(2, 1), we may assume
that C = 0. Let D be a (3×1)-matrix and γ ∈ S1 with A = cos γD and B = sin γD. Next,
we consider respectively three cases ||B|| < ||A||, ||B|| > ||A|| and ||B|| = ||A||. (i) In the
case that | cos γ| > | sin γ|, by acting Φ1,t with tanh t = − sin γ/ cos γ, we obtain B = 0
and we may replace A = (cos γ cosh t + sin γ sinh t)D by D. (ii) | cos γ| < | sin γ|. Acting
Φ1,t with 1/(tanh t) = − sin γ/ cos γ, then we have A = 0 and we can take B = D by the
same reason. (iii) In case that | cos γ| = | sin γ|, by replacing the sign of the matrix B, then
we can take A = B = D. Therefore by following these steps we obtain the following three
cases:

M1-elliptic case: If detD > 0, then there exists a regular matrix S such that StDS =

±
(

1 0
0 1

)
. By acting Φ1,t,Φ2,θ ∈ SO(2, 1) we may change sign of the matrix α. Therefore

we have the following form α1,e as in (1) where (c, s) = (1, 0), (0, 1), (1, 1).

M1-parabolic case: Since detD = 0, then there exists a regular matrix S such that

StDS = ±
(

1 0
0 0

)
. Removing the sign of the matrix α, we get α1,p as in (1), where

(c, s) = (1, 0), (0, 1), (1, 1).
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M1-hyperbolic case: Since detD < 0, then there exists a regular matrix S such that

StDS = ±
(

0 1
1 0

)
. Removing the sign of the matrix α, we get α1,h, where (c, s) = (1, 0),

(0, 1), (1, 1).

Theorem 4.1. The number of asymptotic directions (AD) and type of binormal direc-
tions (BD), for each normal form of Proposition 4.1, are in table 1.

M1-type AD BD

(c, s) = (1, 0) 0 0-type
M1-elliptic or M1-hyperbolic (c, s) = (0, 1) inflection (2+2)-type

(c, s) = (1, 1) inflection 4-type

(c, s) = (1, 0) 1 ]S1-type
M1-parabolic (c, s) = (0, 1) inflection ]S1-type

(c, s) = (1, 1) inflection trans-]S1-type

Table 1: M1-case

Proof.

M1-elliptic case: In this case, the second fundamental form is given by (L,M,N)(u, θ) =
(c+s cos θ, 0, c+s cos θ), and ∆(u, θ) = −(c+s cos θ)2. Then for each θ such that ∆(u, θ) = 0
we have (L,M,N) = 0 so p = X(u) is an inflection point. (i) If (c, s) = (1, 0) then
∆(u, θ) < 0 and there are no asymptotic directions (M1e non-inflection 0-type). (ii) If
(c, s) = (0, 1) then ∆(u, θ) = 0 if θ = π/2, 3π/2 with ∂

∂θ∆(u, θ) = 0 for both θ’s (M1e in-

flection (2+2)-type). (iii) If (c, s) = (1, 1) then ∆(u, θ) = 0 when θ = π with ∂i

∂θi ∆(u, θ) = 0
for i = 1, · · · , 3 (M1e inflection 4-type).

M1-parabolic case: In this case (L,M,N)(u, θ) = (c + s cos θ, 0, 0) and ∆(u, θ) ≡ 0
(]S1-type). (i) If (c, s) = (1, 0) then for any θ, IIe(u,θ)(du1, du2) = du2

1 = 0 gives only one
asymptotic direction (M1p non-inflection ]S1-type). (ii) If (c, s) = (0, 1) then (L,M,N) =
0 if θ = π/2, 3π/2, that is α is M1p inflection ]S1-type. (iii) If (c, s) = (1, 1) then
(L,M,N) = 0 if θ = π and α is also inflection type (M1p inflection trans-]S1-type). Let
W = A + pB + qC and p2 + q2 ≤ 1. We may distinguish (ii) from (iii) by the topological
type of α-disc {(p, q)/p2 + q2 ≤ 1} (see Figure 1).
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O

 rank W=0

O

 rank W=0

 rank W=1

inflection #S -type1inflection trans-#S -type1

Figure 1: Topological type of ellipse in M1-parabolic inflection type.

M1-hyperbolic case: In this case, we obtain (L,M,N)(u, θ) = (0, c + s cos θ, 0) and
∆(u, θ) = (c + s cos θ)2. (i) If (c, s) = (1, 0) then there are no asymptotic direction (M1h

non-inflection 0-type). (ii) If (c, s) = (0, 1) then ∆(u, θ) = 0 if θ = π/2, 3π/2 and this is
an inflection point (M1h inflection (2 + 2)-type). (iii) If (c, s) = (1, 1) then ∆(u, θ) = 0 if
θ = π (M1h inflection 4-type).

Remark 4. 1. The GL(2,R)×SO(1, 2) action does not always preserve the form of the
curvature ellipse. When rank α = 1, at a non inflection point, we see that the degenerate
ellipse is a radial segment, or a point, in the same equivalence class.

(g) hyperbolic

    non-inflection

    0-type

O

O

(i) hyperbolic

    inflection

    (2+2)-type

O

(h) hyperbolic

    inflection

    4-type

OO O O O

OO

(a) elliptic

    non-inflection

    0-type

(c) elliptic

   inflection

   (2+2)-type

(b) elliptic

    inflection 

 4-type

O O

(f) parabolic

    inflection

    #S -type1

(e) parabolic

    inflection

  trans-#S -type1

(d) parabolic

    non-inflection

    #S -type1

Figure 2: Classification of M1 case.
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5. RANK TWO CASE

In this section, we classify α when rankα = 2. According to the type of the plane
generated by A, B and C, and the type of α given in Section 3, we have the following
result.

Proposition 5.1. If rankα = 2, there are the following equivalence classes.
(a) M2-hyperbolic and A-elliptic: α is equivalent to αhe,
(b) M2-hyperbolic and A-parabolic: α is equivalent to αhp,
(c) M2-hyperbolic and A-hyperbolic: α is equivalent to αhh,
(d) M2-parabolic: α is equivalent to αp,
(e) M2-elliptic: α is equivalent to αe.
The normal forms for α are displayed below and must have rank 2.

αhe =

 1 0 1
b0 0 0
c0 0 c2

 , αhp =

 1 0 0
b0 0 0
c0 0 1

 , αhh =

 1 0 −1
b0 0 0
c0 0 c2

 , (1)

αp =

 1 1 0
b0 0 0
c0 c1 0

 , αe =

 0 1 0
0 b1 0
1 c1 c2

 ,

where c2 < 0 for αe.

For theM2-parabolic case, that is, the plane 〈A,B,C〉 parabolic, we need the following
lemma.

Lemma 5.1. Suppose that rankα = 2 and the plane 〈A,B,C〉 is parabolic. If A is

parabolic or equal to 0, then α ∼G α′, α′ =

 A′

B′

C′

, where A′ is hyperbolic.

Proof.

Let W ∈ Dα, W 6= A hyperbolic, then the result follows by Lemma 3.1.

Proof. (of Proposition 5.1) M2-hyperbolic case: In this case, the plane 〈A,B,C〉
is hyperbolic, then there are two generators D,E such that 〈D,E〉 = 〈A,B,C〉 and we
can assume detD > 0. We can get the simultaneous diagonal normal forms of D and

E, that is, there is a regular matrix S ∈ SO(2) such that StDS = ±
(

1 0
0 1

)
, and

StES =

(
λ1 0
0 λ2

)
.

Therefore, we obtain

α′ =

 a′0 0 a′2
b′0 0 b′2
c′0 0 c′2

 .
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If A is elliptic, parabolic (we assume a′0 6= 0, a′2 = 0) or hyperbolic, we first multiply
A,B,C respectively by

ψ =

(
1/
√
|a′0| 0

0 1/
√
|a′2|

)
,

(
1/
√
|a′0| 0

0 1

)
or

(
1/
√
|a′0| 0

0 1/
√
|a′2|

)
,

next, we apply Φ =

 ±1 0 0
0 1 0
0 0 1

 to the result, to get (a′′0 , 0, a
′′
2) = (1, 0, 1), (1, 0, 0) or

(1, 0,−1) respectively. And, in any case, applying Φ2,θ, for some appropriate θ we get b′′2 =

0. When A is parabolic, we can make another simplification, acting ψ =

(
1 0

0 1/
√
|c′′2 |

)
and changing sign, using appropriated Φ. Therefore, we obtain αhe, αhp and αhh as in (1),
where we denote a′′i , b

′′
i , c
′′
i by ai, bi, ci to simplify notation.

M2-parabolic case: In this case the plane 〈A,B,C〉 is parabolic, then there are hy-
perbolic and parabolic vectors D,E (i.e. detD < 0 and detE = 0) such that 〈D,E〉 =

〈A,B,C〉. Set S ∈ GL(2) such that E′ = StES = ±
(

1 0
0 0

)
and StDS = D′. In this

case, for any γ, δ ∈ R,

det(γE′ + δD′) = (detS)2 det(γE + δD) ≤ 0,

and zero if and only if δ = 0. This means that the plane 〈D′,E′〉 is also parabolic, then it

contains only one parabolic direction, which is E′ =

(
1 0
0 0

)
. Moreover, it follows that it

must contain D′′ =

(
0 1
1 0

)
. As A,B,C are linear combinations of D′′,E′, we have

α′ =

 a′0 a′1 0
b′0 b′1 0
c′0 c′1 0

 .

Taking Φ2,θ ◦ α′, for apropriate θ, we can get b′1 = 0.
By Lemma 5.1, we may assume that A is hyperbolic, then it is not hard to show that

α′ is equivalent to αp as in (1).

M2-elliptic case: Finally we consider the case when the plane 〈A,B,C〉 is elliptic. We
may assume that A 6= 0 and that there is a regular matrix S such that A′ = StAS =

±
(

0 1
1 0

)
. Therefore,

α′ =

 0 1 0
b′0 b′1 b′2
c′0 c′1 c′2

 .
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Since rankα = 2, then the rank of the submatrix

(
b′0 b′2
c′0 c′2

)
is equal to 0. Acting Φ2,θ

(rotation), we obtain (b′0, b
′
2) = (0, 0).

Since 〈A,C〉 is an elliptic plane and does not contain parabolic vectors, then c′0c
′
2 < 0.

Taking ψ =

(
1/
√
|c′0| 0

0 1/
√
|c′2|

)
and changing the sign of c′0, we obtain αe as (1), with

c2 = c′′2 < 0.

To complete the classification, we can now apply Proposition 3.2. Using the normal
forms, it is easy to study the number of binormals and asymptotic directions. Observe
that if E(u, θ) is a segment and the line passing through it does not contain the origin,
then ∆(u, θ) ≡ 0 does not hold. Therefore, in this case, we have a finite number of
binormals.

Theorem 5.1. The number of asymptotic directions (AD) and the types of lightlike
binormal directions (BD), for each normal form of Proposition 5.1, are in tables 2 to 5.

A-elliptic A-hyperbolic AD BD

(a) b0
2 + c0

2 < 1 and |c2| < 1 (d) b0
2 + c0

2 < 1 and |c2| < 1 0 0-type

(b) b0
2 + c0

2 = 1 and |c2| < 1 (e) b0
2 + c0

2 = 1 and |c2| < 1 or 1 2-type

b0
2 + c0

2 < 1 and |c2| = 1

(c) b0
2 + c0

2 = 1 and |c2| = 1 (f) b0
2 + c0

2 = 1 and |c2| = 1 2 (2+2)-type

M2-hyperbolic

A-parabolic AD BD

(g) b0
2 + c0

2 < 1 1 (1+1)-type

(h) b0
2 + c0

2 = 1 and b0 6= ±1 2 (2+1+1)-type

(i) b0
2 + c0

2 > 1 and b0 6= ±1 2 (1+1+1+1)-type

(j) b0 = ±1 and c0 6= 0 inflection (2+1+1)-type

(k) b0 = ±1 and c0 = 0 inflection (3+1)-type

M2-hyperbolic
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A-hyperbolic: |c1| ≤ 1, A-pababolic: |c1| > 1 AD BD

(a) |c1| < 1 0 0-type

(b) |c1| = 1 and c0 6= c1 1 4-type

(d) |c1| = 1, c0 = c1 b0 6= 0 inflection 4-type

(c) |c1| > 1, (c1 − c0)2 6= b0
2(c1

2 − 1) 1 (2+2)-type

(e) |c1| > 1, (c1 − c0)2 = b0
2(c1

2 − 1) inflection (2+2)-type

M2-parabolic

A-hyperbolic A-parabolic AD BD

(a) |b1| < 1 (b) |b1| > 1 0 0-type

(c) |b1| = 1 —– inflection 2-type

M2-elliptic

Proof. M2-hyperbolic case. The number of binormals is always finite then in the
non-inflection case the asymptotic directions are of same type as the binormal directions
(these types are defined in Section 3). In fact, observe that in this case, it follows from
the normal forms in Proposition 5.1, that for each θ, the associated asymptotic direction
is given by IIe(u,θ)(du1, du2) = L(u, θ)du2

1 + N(u, θ)du2
2 = 0 with LN ≤ 0, and we prove

that ∆ = LN = 0 has a multiple solution only in the inflection case.
In the next calculations we use the normal forms given in Proposition 5.1 to write

(L,M,N) and ∆.

M2-hyperbolic and A-elliptic: ∆(u, θ) ≤ 0 for all θ. In this case (L,M,N) =
(1 + b0 cos θ + c0 sin θ, 0, 1 + c2 sin θ) and ∆(u, θ) = −(1 + b0 cos θ + c0 sin θ)(1 + c2 sin θ),
where b0 6= 0 and c2 6= c0. Since ∆(u, θ) ≤ 0, then b0

2 + c0
2 ≤ 1 and |c2| ≤ 1. Therefore,

we have the following possibilities:

(i) α is M2he 0-type if and only if b0
2 + c0

2 < 1 and |c2| < 1, figure 3(a).

(ii) α is M2he 2-type if and only if “b0
2 + c0

2 = 1 and |c2| < 1” or “b0
2 + c0

2 < 1
and |c2| = 1” (that is the asymptotic direction is given respectively by L(u, θ)du2

1 = 0 or
N(u, θ)du2

2 = 0), figure 3(b).
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(iii) α is M2he (2+2)-type if and only if b0
2 + c0

2 = 1 and |c2| = 1 (that is the
asymptotic direction is given respectively by L(u, θ1)du2

1 = 0 or N(u, θ2)du2
2 = 0), figure

3(c).

M2-hyperbolic and A-hyperbolic: ∆ ≥ 0 for all θ then (L,M,N) = (1 + b0 cos θ +
c0 sin θ, 0,−1 + c2 sin θ) where b0 6= 0 or c0 6= −c2. Therefore, we can classify as follows:

(i) α is M2hh 0-type if and only if b0
2 + c0

2 < 1 and |c2| < 1, figure 4(d).

(ii) α is M2hh 2-type if and only if “b0
2 + c0

2 = 1 and |c2| < 1” or “b0
2 + c0

2 < 1 and
|c2| = 1”, figure 4(e).

(iii) α is M2hh (2+2)-type if and only if b0
2 + c0

2 = 1 and |c2| = 1, figure 4(f).

M2-hyperbolic and A-parabolic: In this case (L,M,N) = (1+b0 cos θ+c0 sin θ, 0, sin θ)
and ∆(u, θ) = − sin θ(1 + b0 cos θ + c0 sin θ).

Observe that a point p is an inflection point if and only if (L,M,N) = 0 for some θ ∈ S1,
that is b0 = ±1. Suppose that b0 6= ±1, that is the equations L(u, θ) = 0 and N(u, θ) = 0
have different solutions.

(i) If b0
2 + c0

2 < 1 then there are two solutions θ = 0, π (∆(u, θ) = 0 is (1+1)-type)
and one double asymptotic direction for each binormal. Figure 5(g).

(ii) If b0
2 + c0

2 = 1 then there are three solutions (∆(u, θ) = 0 is (2+1+1)-type) and
two asymptotic directions. In this case, the ellipse is tangent to the cone in two different
ways, figure 5(h).

(iii) If b0
2 + c0

2 > 1 then there are four solutions (∆(u, θ) = 0 is (1+1+1+1)-type)
and two asymptotic directions, figure 5(i).

If b0 = ±1 in αhp then the equations L(u, θ) = 0 and N(u, θ) = 0 have a common solution.

(iv) If c0 6= 0 then there are three solutions and ∆(u, θ) = 0 is (2+1+1)-type, figure
6(j). (We call p an M2hp inflection (2+1+1)-type.)

(v) If c0 = 0 then there are two solutions θ = 0, π and ∆(u, θ) = 0 is (3+1)-type. In
this case we call p an M2hp inflection (3+1)-type, figure 6(k).

cone
plane containing 

LMN-ellipse

(a) A-elliptic 0-type (b) A-elliptic 2-type (c) A-elliptic (2+2)-type

Figure: Classification for M2-hyperbolic A-elliptic case
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(d) A-hyperbolic 0-type (e) A-hyperbolic 2-type (f) A-hyperbolic (2+2)-type

Figure: Classification for M2-hyperbolic A-hyperbolic case

(g) A-parabolic (1+1)-type (h) A-parabolic (2+1+1)-type

(i) A-parabolic (1+1+1+1)-type

Figure: Classification for M2-hyperbolic A-parabolic case

(k) inflection (3+1)-type (j) inflection (2+1+1)-type

Figure: Classification for M2-hyperbolic inflection case

M2-parabolic: Then (L,M,N) = (1 + b0 cos θ + c0 sin θ, 1 + c1 sin θ, 0) and ∆(u, θ) =
−(1 + c1 sin θ)2.

(i) If |c1| < 1 (that is α is A-hyperbolic) then there are no solutions (M2p 0-type),
figure 7(a).

(ii) If |c1| = 1 (that is α is A-hyperbolic and the ellipse intercepts the cone) then
∆(u, θ) = 0 has a quartic solution, then we have two cases:

a. If c0 = c1 (therefore b0 6= 0) then p is an inflection point (M2p inflection 4-type),
figure 8(d).

b. If c0 6= c1 then p is a non-inflection point and has one asymptotic direction (M2p

4-type), figure 7(b).
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(iii) If |c1| > 1 (that is α is A-parabolic) then ∆(u, θ) = 0 has two multiple solutions.
By computation, we can classify two cases:

a. If (c1 − c0)2 = b0
2(c1

2 − 1), then one of the solutions of ∆(u, θ) = 0 satisfies
(L,M,N)(u, θ) = 0, therefore p is an inflection point (M2p inflection (2+2)-type), figure
8(e).

b. Otherwise, p is a non-inflection point and has one asymptotic direction, (M2p

(2+2)-type), figure 7(c).

cone

plane containing 

LMN-ellipse

(a) A-hyperbolic 0-type (b) A-hyperbolic 4-type 

O O O

(c) A-parabolic (2+2)-type 

O
O O O

Figure: Classification for M2-parabolic case

O
O

(d) inflection 4-type (e) inflection (2+2)-type 

Figure: Classification for M2-parabolic inflection case

Finally we consider the M2-elliptic case.

Since c2 < 0, (L,M,N) = (sin θ, 1 + b1 cos θ+ c1 sin θ, c2 sin θ) and ∆(u, θ) = (1 + b1 cos θ+
c1 sin θ)2− c2 sin2 θ then ∆(u, θ) = 0 for some θ if and only if b1 = ±1. Therefore, we have
the following classification.

(i) If |b1| < 1 then there are no solution, and Dα consists of hyperbolic points (M2eh

0-type), figure 9(a).

(ii) If |b1| > 1 then there are no solution, however Dα includes an origin. (M2ee

0-type), figure 9(b).

(iii) If |b1| = 1 then the solution θ of ∆(u, θ) = 0 satisfies (L,M,N)(u, θ) = 0. There-
fore, p is an inflection point (M2e inflection 2-type), figure 9(c).
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cone
plane containing 

LMN-ellipse

(a) A-hyperbolic 0-type 

O O

(c) inflection 

    2-type 

O

(b) A-parabolic

    0-type 

O

Figure: Classification for M2-elliptic case

6. RANK THREE CASE

As the group G = GL(2)× SO(1, 2) has dimension 7 and the space of 3× 3 matrices α
has dimension 9, the classification of G-orbits in this space has at least 2 parameters, but
our aim is to classify as follows. We use similar arguments as in sections 4 and 5, according
to the A-elliptic, A-hyperbolic and A-parabolic type of α, to obtain pre-normal forms for
rank 3 matrices depending on 4 parameters.

Proposition 6.1. If rankα = 3 we have the following subcases.
(a) M3 and A-elliptic: α is equivalent to α1

3,e or to α3,e,
(b) M3 and A-hyperbolic: α is equivalent to α3,h,
(c) M3 and A-parabolic: α is equivalent to α3,p,
where the normal forms for α are displayed below.

α1
3,e =

 1 0 1
1 0 b2
c0 c1 c2

 , α3,e =

 1 0 1
0 0 b2
c0 c1 c2

 , (1)

α3,h =

 0 1 0
1 0 b2
c0 c1 c2

 , α3,p =

 1 0 0
b0 0 b2
c0 1 c2

 ,

with |b2| ≤ 1 for α1
3,e and α3,e. In each case, the normal forms must have rank 3.

Proof.
First, we fix a point u0 ∈ U and find a regular matrix S such that

ST
(
a0 a1

a1 a2

)
S =

(
±1 0
0 ±1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
or

(
±1 0
0 0

)
.
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Then we have

α′ =

 a′0 0 a′2
b′0 b′1 b′2
c′0 c′1 c′2

 ,

where (a′0, a
′
2) = (±1,±1), (1,−1), (−1, 1) or (±1, 0). Taking Φ =

 −1 0 0
0 1 0
0 0 1

, we may

change the sign of (a′0, 0, a
′
2) to reduce α to the cases in which (a′0, a

′
2) = (1, 1), (1,−1) or

(1, 0). If b′1 6= 0, taking Φ2,θ with (cos θ, sin θ) = (c′1,−b′1)/
√
b′21 + c′21, we obtain

α′′ =

 1 0 a′2
b′′0 0 b′′2
c′′0 c′′1 c′′2

 where a′2 = ±1 or 0. (2)

We shall denote α′ and α′′ by α to simplify the notation, when it is necessary.
By Proposition 3.2, there are three types for α. For each case, we consider the following

simplified form:

(a) M3 A-elliptic case:

α3,e =

 1 0 1
b0 0 b2
c0 c1 c2

 , where c1 6= 0 and b0 6= b2.

By assumption, cosh tA + sinh tB must be elliptic for all t ∈ R, then |b0| ≤ 1 and |b2| ≤ 1.
We get the following cases:
(1a) If |b0| = 1, then we have α1

3,e as in (1) where c1 6= 0 and |b2| < 1 or b2 = −1.

(1b) If |b0| < 1, we can apply Φ1t and appropriated ψ to obtain α3,e as in (1) where c1 6= 0
and |b2| ≤ 1.

(b) M3 A-hyperbolic case: In this case, a′2 = −1 in (2) and there is S such that
StA′S give us A′′ = (0, 1, 0). Then

α3,h =

 0 1 0
b0 0 b2
c0 c1 c2

 , where b0c2 − b2c0 6= 0,

and since rank is 3, b0 or c0 does not vanish. Assuming that b0 6= 0, then by acting

ψ =

(
1/
√
|b0| 0

0
√
|b0|

)
and changing the sign of b0, we obtain α3,h as in (1) where

c2 − b2c0 6= 0.

It is not difficult to verify that we can reduce the case that b0 = 0 and c0 6= 0 to this one.
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170 M. KASEDOU, A. C. NABARRO AND M. A. S. RUAS

(c) M3 A-parabolic case: In this case, a′2 = 0 in (2), then by acting

ψ =

(
1/
√
|c′′1 | 0

0 1/
√
|c′′1 |

)
and changing the sign of (c′′0 , c

′′
1 , c
′′
2) if necessary, we obtain

α3,p as in (1) where b2 6= 0.

On the other hand, the number of the asymptotic directions corresponds to the number
of the real solutions of ∆(u, θ) = 0, which will be discussed in further sections.

In the rank three case, it is more difficult to study the number of asymptotic directions,
because we need to analyse the type of solutions of a polynomial of degree at most 4. Then
we split this analyse in the next sections.

7. EQUATION OF THE ASYMPTOTIC DIRECTIONS

In this section we obtain the equation of the asymptotic directions associated to the light-
like binormal directions on spacelike surface in de Sitter 5-space in terms of the coefficients
of the second fundamental form. The discriminant ∆(u, θ) = M(u, θ)2 − L(u, θ)N(u, θ)
can be written as

∆(u, θ) = d1(u) + d2(u) cos θ + d3(u) sin θ + d4(u) cos2 θ + d5(u) cos θ sin θ + d6(u) sin2 θ,

where d1 = a2
1 − a0a2, d2 = 2a1b1 − a0b2 − a2b0, d3 = 2a1c1 − a0c2 − a2c0, d4 = b21 − b0b2,

d5 = 2b1c1− b0c2− b2c0 and d6 = c21− c0c2. The lightlike direction e(u, θ) (more precisely,
ē(u, θ)) is a binormal if and only if ∆(u, θ) = 0. This equation can be written as

(1 cos θ sin θ)

 d1 d2/2 d3/2
d2/2 d4 d5/2
d3/2 d5/2 d6

 1
cos θ
sin θ

 = 0. (1)

If there is some θ which satisfies the above equation (1), then we find the asymptotic
directions (cosϕ, sinϕ) associated to θ by solving the following equations:

(cosϕ sinϕ)

(
L M
M N

)(
cosϕ
sinϕ

)
= 0,

where L(u, θ), M(u, θ), N(u, θ) are the coefficients of the second fundamental form with
respect to the lightlike direction e(u, θ). This equation can be written as

∇(u, ϕ, θ) := (cos2 ϕ 2 sinϕ cosϕ sin2 ϕ)

 a0 b0 c0
a1 b1 c1
a2 b2 c2

 1
cos θ
sin θ

 = 0 (2)

We write A(u, ϕ), B(u, ϕ) and C(u, ϕ) as

(A(u, ϕ) B(u, ϕ) C(u, ϕ)) := (cos2 ϕ 2 sinϕ cosϕ sin2 ϕ)

 a0 b0 c0
a1 b1 c1
a2 b2 c2

 .
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In order to eliminate the parameter θ, we substitute x = cos(θ), y = sin(θ). The equation
(2) is A+Bx+Cy = 0 that gives x = −(A+Cy)/B. We now replace x by this expression
in ∆. We take the resultant in y of the new ∆(ϕ, y) and x2 + y2 = 1 (where the variable x
is as above). By using a mathematical software (such as Maxima, Mathematica or Maple),
if B 6= 0, we obtain the following equation:

d4
2 C4+2 d1 d4 C

4−d2
2 C4+d1

2 C4−2 d4 d5BC
3−2 d1 d5BC

3+2 d2 d3BC
3+2 d2 d5AC

3−
2 d3 d4AC

3 − 2 d1 d3AC
3 + 2 d4 d6B

2 C2 + 2 d1 d6B
2 C2 + d5

2B2 C2 + 2 d1 d4B
2 C2 −

d3
2B2 C2 − d2

2B2 C2 + 2 d1
2B2 C2 − 4 d2 d6ABC

2 + 2 d2 d4ABC
2 − 2 d1 d2ABC

2 +
2 d4 d6A

2 C2+2 d1 d6A
2 C2−d5

2A2 C2−2 d4
2A2 C2−2 d1 d4A

2 C2+d3
2A2 C2+d2

2A2 C2−
2 d5 d6B

3 C−2 d1 d5B
3 C+2 d2 d3B

3 C+2 d3 d6AB
2 C−4 d3 d4AB

2 C−2 d1 d3AB
2 C+

2 d5 d6A
2BC+2 d4 d5A

2BC+4 d1 d5A
2BC−2 d3 d6A

3 C−2 d2 d5A
3 C+2 d3 d4A

3 C+
d6

2B4+2 d1 d6B
4−d3

2B4+d1
2B4−2 d2 d6AB

3+2 d3 d5AB
3−2 d1 d2AB

3−2 d6
2A2B2+

2 d4 d6A
2B2−2 d1 d6A

2B2−d5
2A2B2+2 d1 d4A

2B2+d3
2A2B2+d2

2A2B2+2 d2 d6A
3B−

2 d3 d5A
3B − 2 d2 d4A

3B + d6
2A4 − 2 d4 d6A

4 + d5
2A4 + d4

2A4 = 0.

Since A,B,C are expressed by homogeneous trigonometric functions sinϕ and cosϕ of
order 2, then the above equation is a trigonometric homogeneous equation of order up to 8.
We remark that if (sinϕ, cosϕ) is one solution of the above equation then (− sinϕ,− cosϕ)
is also solution, so there are at most four asymptotic directions. If we substitute A,B,C and
d1, . . . , d6 in this equation, then we obtain the following completed square trigonometric
homogeneous polynomial: T 2(u, ϕ).

T 2(u, ϕ) = (k4(u) cos4 ϕ+ k3(u) cos3 ϕ sinϕ+ · · ·+ k0(u) sin4 ϕ)2 = 0 (3)

with

k4(u) = |a∗2|2 − |b∗2|2 − |c∗2|2

k3(u) = −2(|a∗1||a∗2| − |b∗1||b∗2| − |c∗1||c∗2|)
k2(u) = |a∗1|2 + 2|a∗0||a∗2| − |b∗1|2 − 2|b∗0||b∗2| − |c∗1|2 − 2|c∗0||c∗2|
k1(u) = −2(|a∗0||a∗1| − |b∗0||b∗1| − |c∗0||c∗1|)
k0(u) = |a∗0|2 − |b∗0|2 − |c∗0|2

where |a∗i |, |b∗i | and |c∗i | are cofactor matrices of α and rank α ≥ 2. We consider, without
loss of generality that p is of type M3. This is not restrictive as M2-points form a curve
on a generic surface M. So the equation obtained at M3-points is also valid at M2-points
by passing to the limit. Notice that when rank α = 1, T (u, ϕ) always vanishes.

With the previous calculations we prove the next result.

Theorem 7.1. There is at most four asymptotic directions passing through any non
inflection point and non conic point, on a generic spacelike surface in S5

1 . These directions
are solutions of the implicit differential equation

k0du
4
2 + k1du1du

3
2 + k2du

2
1du

2
2 + k3du

3
1du2 + k4du

4
1 = 0,
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172 M. KASEDOU, A. C. NABARRO AND M. A. S. RUAS

where the coefficients ki, i = 0, 1, 2, 3, 4 depend on the coefficients of the second fundamental
form, and are given above. If T (u, ϕ) ≡ 0 at p = X(u) ∈M , then p is an inflection point.

8. THE TYPES OF ASYMPTOTIC AND BINORMAL DIRECTIONS

We are interested in analyzing the number of lightlike binormal directions and their
associated asymptotic directions. To do this it is easier to analyze the LMN -ellipse, as
we justify in Section 2. This ellipse is described by using the coefficients of the second
fundamental form, using the normal forms of α(u) from Sections 4, 5, 6.

Remember that a direction θ ∈ S1 is a lightlike binormal at p = X(u) if ∆(u, θ) = 0.
In this case we call a kernel direction of IIe(u,θ) by asymptotic direction associated to the
lightlike binormal. As before, we say simply binormal directions and asymptotic directions.
For the cases where α has rank 1 or 2, we analyzed the binormals according to their
(m1 +m2 +m3 +m4)-type with m1 + · · ·+m4 = 0, 2, 3, 4 or S1-type, in Sections 4 and 5.
We have also studied the number of the asymptotic directions, in each case.

If rankα = 3, then T (u, ϕ) = 0 if and only if ϕ is an asymptotic direction. According to
the number of real solutions of a polynomial of degree at most 4, the asymptotic directions
are of the following types: (4), (3+1), (2+2), (2+1+1), (1+1+1+1), (2), (1+1), (0) or of a
conic type (i.e. the LMN-ellipse E(u, θ) is on the cone, and all lightlike normal directions
are binormals and all tangent directions are asymptotic). If T (u, ϕ) ≡ 0, then p = X(u) is
a conic point. It is not an inflection point because E(u, θ) does not pass through the origin
when the rank is 3. We can distinguish the cases by the solution types of the equations
T (u, ϕ) = 0 or ∆(u, θ) = 0, because if rank α = 3, for each binormal θ, there is only one
asymptotic direction with same multiplicity.

We now use the results of Appendix A to relate the solutions of ∆(u, θ) = d1(u) +
d2(u) cos θ + d3(u) sin θ +d4(u) cos2 θ +d5(u) sin θ cos θ + d6(u) sin2 θ = 0 with the roots of

the trigonometric polynomial F2(t). Let cos θ = 1−t2
1+t2 and sin θ = 2t

1+t2 . Then ∆(u, θ(t)) =
1

(1+t2)2F2(t), with t = tan( θ2 ), where F2(t) = At4+Bt3+Ct2+Dt+E with A = d1−d2+d4,

B = 2d3 − 2d5, C = 2d1 − 2d4 + 4d6, D = 2d3 + 2d5 and E = d1 + d2 + d4.

Lemma 8.1. The solutions of ∆(u, θ(t)) = 0 correspond to the roots of the t-polynomial
F2 adding possibly the solution θ = π. More precisely if θ = π is a solution, its multiplicity
is equal to 4− degF2(t).

Proof. Use Lemma A.2, of the Appendix A.

We have the following result.

Proposition 8.1. Consider α with rank 3.
(a) The finite number of binormal directions and their multiplicities are given in tables 1.,
2., and 3..
(b)The number of asymptotic directions (and their multiplicities) is the same number of
binormal directions (and their multiplicites). All the possibilities for the finite number of
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asymptotic directions are described in tables 1., 2., or 3..
(c) At a conic point all normal lightlike directions are binormals and all tangent directions
are asymptotics.

Proof. (a) To discuss the number of solutions of ∆(u, θ) = 0, as in Lemma 8.1, we
change coordinates and in these new coordinates we obtain the associated t-polynomial
F2(t), defined in Appendix 9, where ∆(u, θ(t)) = 1

(1+t2)2F2(t), with t = tan( θ2 ). Since

the degree of the t-polynomial F2(t) is at most four, we have the following classification.
For next tables, n means the multiplicity of binormal direction θ = π as the solution of
∆(u, θ) = 0, ∗ means that we do not care about the value and N/A means no applicable.

(1.) Suppose that degF2(t) ≤ 2, then θ = π is binormal direction with multiplicity
4−degF2(t) ≥ 2, the t-polynomial is written by F2(t) = Ct2 +Dt+E. If degF2(t) = 2, the
discriminant is given by Dquadratic = −D2 + 4CE. Then the types of binormal directions
(BD), and the number of imaginary solutions (NI) of F2(t) = 0 are given in the following
table.

BD NI Dquadric (C,D,E) degF2(t)

2 2 + C 6= 0 2

2+1+1 0 − C 6= 0 2

2+2 0 0 C 6= 0 2

3+1 0 N/A C = 0, D 6= 0 1

4 0 N/A C = D = 0, E 6= 0 0

]S1 N/A N/A C = D = E = 0 i.e. F2 ≡ 0 N/A

Types of F2(t) = Ct2 +Dt+ E = 0

(2.) Suppose that degF2(t) = 3, then we have a cubic equation F2(t) = Bt3 + Ct2 +
Dt+E = 0 with B 6= 0. We have the binormal direction θ = π with multiplicity 1. In this
case we have two discriminants:

Dcubic,1 = B2E2 +
4

27
(C3E +BD3)− 2

3
BCDE − 1

27
C2D2,

Dcubic,2 = 3BD − C2,

where Dcubic,2 is used to determine the existence of triple solutions. Then the types of
binormal directions (BD), and the number of imaginary solutions (NI) of F2(t) = 0 are
given in the following table.
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BD NI Dcubic,1 Dcubic,2

1+1+1+1 0 − *

1+1 2 + *

2+1+1 0 0 6= 0

3+1 0 0 0

Table of types on F2(t) = Bt3 + Ct2 +Dt+ E = 0 (B 6= 0)

(3.) Finally we consider the case of the quartic equation degF2(t) = 4, A 6= 0. In this
case θ = π is not a binormal direction. Dividing by A and changing coordinate, we use

the simplified form F̄2(x) = x4 + 6Hx2 + 4Gx + (I − 3H2) where I = E
A −

BD
4A2 + C2

12A2 ,

G = D
4A −

BC
8A2 + B3

32A3 and H = C
6A −

B2

16A2 . Then the discriminant of F̄2(x) = 0 is written
by Dquartic = I3 − 27(HI − 4H3 − G2)2. To apply the classification in [2], the types of
binormal directions (BD), and the number of imaginary solutions (NI) of F̄2(x) = 0 are
given in the following table. (See also Figure 3..)

No. BD NI Condition

(1) 4 0 I = G = H = 0

(2) 3+1 0 I = G2 + 4H3 = 0 except for G = H = 0

(3) 1+1 2 Dquartic < 0

(4) 1+1+1+1 0 I > 0, Dquartic > 0, H < −
√

I

2
√
3

(5) 0 4 (distinct) I > 0, Dquartic > 0, H > −
√

I

2
√
3

(6) 2+1+1 0 I > 0, Dquartic = 0, H < −
√
I

2
√
3

(7) 2+2 0 I > 0, Dquartic = 0, H = −
√

I

2
√
3

(8) 2 2 I > 0, Dquartic = 0, H > −
√
I

2
√
3
except for case (9)

(9) 0 4 (multiple) I > 0, (H,G) = (
√
I

2
√
3
, 0)

In this case we have Dquartic = 0 automatically

Table of types on F̄2(x) = x4 + 6Hx2 + 4Gx+ (I − 3H2) = 0

Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



P
re
p
ri
nt

P
re
p
ri
nt

P
re
p
ri
nt

P
re
p
ri
nt

c ©
C
op
yr
ig
ht

20
08

-
Je
an

M
ar
ti
n
a

SECOND ORDER GEOMETRY OF SPACELIKE SURFACES IN DE SITTER 5-SPACE 175

0

0

H
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(3):domain

0.5ICase:I<0

1-1
-1

1

D <0q

0

H

G

(3):domain

0.5ICase:I=0

1-1

(1):point(2):curves
0

-1

1

G +4H =0
2 3

(3):domain
D <0q

D =0q
D =0q

D <0q

0

H

G

(9):point

(5):domain

(3):domain

(7):point (8):curve

(6):curve

(4):domain

(3):domain

√

I

3
-
√

√

I

3
-
√

2√

I

3
-
√

-
√

I

3
-
√

2
-

Dq<0

I
-√108-

3-4

I
-√108

3-4

0

Case:I>0

D =0q

D <0q

D =0q
D =0q

D >0q

D =0q

D >0q

Figures of types of F̄2(x) = 0 (Dq = Dquadratic for short)

As a consequence, given a pre-normal form of Section 6, with rank 3, to study the
associated number of asymptotic directions we can study the equation of binormal diretions
by using the conditions given in tables 1., 2., or 3..

Let

α(u) :=

 a0 a1 a2

b0 b1 b2
c0 c1 c2

 ,

be any 3 × 3-matrix. Then, there exists a local embedding X : U ⊂ R2 −→ S5
1 ⊂ R6

1

such that α is the matrix of the second fundamental form of X. In fact, we can take
f(u1, u2) = a0u

2
1 + 2a1u1u2 + a2u

2
2 + h.o.t, g(u1, u2) = b0u

2
1 + 2b1u1u2 + b2u

2
2 + h.o.t and

h(u1, u2) = c0u
2
1 + 2c1u1u2 + c2u

2
2 + h.o.t, where h.o.t. means higher order terms. Then

the Monge form of a spacelike surface in de Sitter 5-space is given by

X(u) =

(
f(u1, u2),

√
1 + f2 − g2 − h2 − u2

1 − u2
2, u1, u2, g(u1, u2), h(u1, u2)

)
.

We give some examples below.

Example 8.1.

(1.) If f(u1, u2) = 1
2u

2
1, g(u1, u2) = 1

2u
2
2, h(u1, u2) = u1u2 then A = (1, 0, 0), B =

(0, 0, 1), C = (0, 1, 0) and the asymptotic directions at u = (u1, u2) = (0, 0) are given by
du4

2 − du2
1du

2
2 − du4

1 = 0 (Theorem 7.1), with two simple real solutions.

Publicado pelo ICMC-USP
Sob a supervisão CPq/ICMC



P
re
pr
in
t
P
re
pr
in
t
P
re
pr
in
t
P
re
pr
in
t

c ©
C
op

yr
ig
ht

20
08

-
J
ea
n
M
ar
ti
n
a

176 M. KASEDOU, A. C. NABARRO AND M. A. S. RUAS

(2.) If f(u1, u2) = 1
2 (u2

1+u2
2), g(u1, u2) = 1

2 (u2
1−u2

2), h(u1, u2) = u1u2 then at u = (0, 0),
A = (1, 0, 1), B = (1, 0,−1), C = (0, 1, 0) and all directions are asymptotic, this is the
conic case.

(3.) If f(u1, u2) = − 1
2u

2
1, g(u1, u2) = 1

2u
2
1 − u1u2 + 1

4u
2
2, h(u1, u2) = 1

200u1u2 then
A = (−1, 0, 0), B = (0,−1, 1/2), C = (0, 1/100, 0) and the asymptotic directions are
given by 1

10000du
4
2 + 1

5000du1du
3
2 − 1

4du
2
1du

2
2 − du3

1du2 − du4
1 = 0. To analyse the type of

solutions we obtain the equation of binormal directions ∆(u, θ(t)) = 1
(1+t2)2F2(t) where

F2(t) = 1 + (1/25)t3 − t2. Since A = 0 and Dcubic,1 = −2473/27 < 0 then we conclude
that there are 4 distinct binormal directions, consequently 4 distinct asymptotic directions
(Table 2.).

APPENDIX

9. SOLUTIONS OF TRIGONOMETRIC EQUATION

Let

f(c, s) :=

m∑
j+k=0

αj,kc
jsk,

with c = cos(θ) and s = sin(θ) a trigonometric polynomial. We say that f is a polynomial
of order m ≥ 1 if the polynomial part of order m is not zero by substituting c2 = 1 − s2,
that is f satisfies

f1 :=

[m
2 ]∑
j=0

αm−2j,2j × (−1)j 6= 0 or f2 :=

[m−1
2 ]∑
j=0

αm−1−2j,2j+1 × (−1)j 6= 0,

where f1 is the coefficient of sm and f2 is the coefficient of csm−1 and they are the only
degree m terms after this substitution.

By substituting c = 1−t2
1+t2 and s = 2t

1+t2 (then t = tan(θ/2)) we get 1
(1+t2)mFm(t) and

removing the denominator we get an associated t-polynomial Fm(t) of f

Fm(t) :=

m∑
j+k=0

αj,k(1− t2)j(2t)k(1 + t2)m−j−k,

with order less or equal to 2m. We observe that (1 + t2) is not a common factor of Fm(t) if
αj,k 6= 0 for some coefficients with j+k = m because m−j−k = 0. In this case, Fm(t) = 0
does not have a solution ±i. We now consider the relations between f(cos θ, sin θ) = 0 and
Fm(t) = 0, first of all, we prove the following lemma.
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Lemma 9.1. Let f̄(θ) := f(cos θ, sin θ) be a trigonometric polynomial of order m and
Fm be an associated t-polynomial of f . For any 1 ≤ n ≤ 2m, the following conditions are
equivalent.

(1.)`2m = `2m−1 = · · · = `2m−(n−1) = 0 and `2m−n 6= 0, where `k are coefficients of
Fm(t).

Fm(t) =

2m∑
k=0

`kt
k.

(2.)The germ f̄ : (S1, π) −→ R is K-equivalent to xn at x = 0, that is

f̄(π) =
∂f̄

∂θ
(π) = · · · = ∂n−1f̄

∂θn−1
(π) = 0 and

∂nf̄

∂θn
(π) 6= 0.

Proof. Let g(c, s) = f(−c, s) =
∑m
j,k=1 αj,k(−c)jsk. Since g(c, s) = f(−c, s) is a

trigonometric polynomial of order m, then its associate t-polynomial is given by

G̃m(t) :=

m∑
j+k=0

αj,k(−1 + t2)j(2t)k(1 + t2)m−j−k.

By computation, t2m × G̃m(1/t) = Fm(t) and we have G̃m(t) =
∑2m
k=0 `2m−kt

k.
Let Φ(θ) = tan(θ/2) then we have Gm(t) = (1 + t2)m (ḡ ◦ Φ−1)(t), so that ḡ(θ) :=

g(cos θ, sin θ) at θ = 0 is locally K-equivalent to Gm(t) at t = 0. This means that (2) is
equivalent to the condition that Gm(t) at t = 0 is K-equivalent to xn at x = 0. By the co-
efficients of Gm(t), this condition is also equivalent to the condition (1). This completes the

proof.

Now we may conclude the relations between the trigonometric polynomial and its t-
polynomial.

Lemma 9.2. (Property of the t-polynomial of trigonometric polynomial) Let f(c, s) be a
trigonometric polynomial of degree m. If degFm(t) = 2m−n and Fm(t) = 0 has k-distinct
solutions t1, . . . , tk ∈ R and `-distinct solutions tk+1, . . . , tk+` ∈ C \R with the multiplicity
m1, . . . ,mk+` (where m1 + · · ·+mk+` = 2m− n) then we have:

(1.)tj 6= ±i for all j = k + 1, . . . , k + `.

(2.)f(cos θ, sin θ) = 0 has (k + 1)-distinct solutions θ1, . . . , θk ∈ S1 and π ∈ S1 with the
multiplicities m1, . . . ,mk and n.

(3.)f(c, s) = 0 has `-distinct complex solutions (c1, s1), . . . , (c`, s`) ∈ C2\R2 on c2 +s2 =
1 with the multiplicities mk+1, . . . ,mk+`.
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