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We study the analytic torsion of the cone over an orientable odd dimensional
compact connected Riemannian manifold W. We prove that the logarithm of
the analytic torsion of the cone decomposes as the sum of the logarithm of the
root of the analytic torsion of the boundary of the cone, plus a topological term,
plus a further term that is a rational linear combination of local Riemannian
invariants of the boundary. We also prove that this last term coincides with
the anomaly boundary term appearing in the Cheeger Miiller theorem [7] [26]
for a manifold with boundary, according to Briining and Ma [3]. We also prove
Poincaré duality for the analytic torsion of a cone.  October, 2010 ICMC-USP
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Analytic torsion was originally introduced by Ray and Singer in [29], as an analytic
counter part of the Reidemeister torsion of Reidemeister, Franz and de Rham [31] [13] [12].
Since then, analytic torsion became an important invariant of Riemannian manifolds, and
has been intensively studied, several generalizations have been introduced and significative
results obtained. Concerning the original invariant, the first important result was achieved
by W. Miiller [26] and J. Cheeger [7] who proved that for a compact connected Riemannian
manifold without boundary, the analytic torsion and the Reidemeister torsion coincide,
result conjectured by Ray and Singer in [29], because of the several similar properties
shared by the two torsions. This result is nowadays known as the celebrated Cheeger-
Miiller theorem. The next natural question along this line of investigation was to answer
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the same problem for manifolds with boundary. It was soon realized that the answer to such
a question was an highly non trivial one, since the boundary introduces some wild terms.
The first case to be analyzed was the case of a product metric near the boundary. W. Liick
proved in [22] that in this case the boundary term is topological, and depends only upon the
Euler characteristic of the boundary. The answer to the general case required 20 more years
of work, and has eventually been given in a recent paper of Briining and Ma [3]. The new
contribution of the boundary, beside the topological one given by Liick, is called anomaly
boundary term and we denote it by Apn,abs. The term Apn abs has a quite complicate
expression, but only depends on some local quantities constructed from the metric tensor
near the boundary (see Section 2.6 for details). The next natural step is to study the
analytic torsion for spaces with singularities. A first, natural type of space with singularity
is the cone over a manifold, CW. Cones and spaces with conical singularities have been
deeply investigated by J. Cheeger in a series of works [7] [9] [10] (see also [27]). Due to
this investigation, all information on L?-forms, Hodge theory, and Laplace operator on
forms on C'W are available. Further information on the class of regular singular operators,
that contains the Laplace operator on CW, are given in works of Briining and Seely (see
in particular [6]). As a result it is not difficult to obtain a complete description of the
eigenvalues of the Laplace operator on CW in terms of the eigenvalues of the Laplace
operator on W. With all these tools available, namely on one side the formula for the
boundary term, and on the other some representation of the eigenvalues of the Laplace
operator on the cone, it is natural to tackle the problem of investigating the analytic
torsion of CW. What one expects in this case in fact is some relation between the torsion
of the cone and the torsion of the section. A possible extension of the Cheeger Miiller
theorem could follow, or not. Indeed, it is general belief that in case of conical singularity
such an extension would require intersection R torsion more than classical R torsion (see
[11]). However, if the section is a rational homology manifold, then the two torsion coincide
(see [7], end of Section 2), and the classical Cheeger Miiller theorem is expected to extend.
If C(W) is the chain complex associated to some cell decomposition of W, then the
algebraic mapping cone Cone(C(W)) gives the chain complex for a cell decomposition of
CW. It is then easy to see that the R torsion of CW only depends on the choice of a
base for the zero dimensional homology. Even if Poincaré duality does not hold, it does
hold between top and bottom dimension, and therefore we can use the method of Ray and
Singer in order to fix the base for the zero homology using the Riemannian structure and
harmonic forms (see [29] Section 3, see also [19]). The result for the R torsion is

T(CW) = /Vol(CW).

On the other side, one wants the analytic torsion. The analytic tools necessary to deal
with the zeta functions appearing in the definition of the analytic torsion, constructed with
the eigenvalues of the Laplace operator on CW, are available by works of M. Spreafico [36]
[37] [39]. In these works, the zeta function associated to a general class of double sequences
is investigated. In particular, a decomposition result is presented and formulas for the zeta
invariants of a decomposable sequence are given. This technique applies to the case of the
zeta function on CW, and permits to obtain some results on the analytic torsion that we will
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describe here below. Before, we note that this approach has been also followed in [19], [40]
and [18]. The main results of these papers are that in the case of W an odd low dimensional
sphere, then the classical Cheeger Miiller theorem with the anomalous boundary term of
Briining and Ma holds for CW, while if W is an even dimensional sphere, it does not hold.
Explicit formulas for W the sphere of dimensions one, two and three are also given, and
in [18] it is conjectured that the Cheeger Miiller theorem with the anomalous boundary
term of Briining and Ma holds for W any odd dimensional sphere. This is proved to be
true in Theorem 1.1.2 below. In Theorem 1.1.3 the same result is proved for the cone over
a generic orientable compact connected Reimannian manifold of odd dimension. We split
the proof of Theorem 1.1.3 in two parts. We first prove in Section 9 that the result is true
if the dimension of the manifold is smaller than six. A basic ingredient in this proof are
results of P. Gilkey on local invariants of Riemannan manifolds [14]. Next, in Section 10,
we prove the general statement. The reason for giving a different explicit proof for the
low dimensional cases is due to the fact that the proof of the general case is based on a
result that has not been published yet, namely a formula for the anomaly boundary term
of Briining and Ma with mixed boundary conditions. This result is contained in a preprint
of the same authors [4], and we thanks the author for making available part of their work.

We are now ready to state the main results of this paper, for we fix some notation. Let
(W, g) be an orientable compact connected Riemannian manifold of finite dimension m
without boundary and with Riemannian structure g. We denote by C;W the cone over W
with the Riemannian structure

dr @ dx + 2%g,

on CW — {pt}, where pt denotes the tip of the cone and 0 < x < [ (see Section 4.1 for
details). The formal Laplace operator on forms on Cy — {pt} has a suitable L2-self adjoint
extension Agpg/rel o0 CiW with absolute or relative boundary conditions on the boundary
OCIW (see Section 4.3 for details), with pure discrete spectrum SpA,pg/re1. This permit
to define the associated zeta function

C(stabs/rel) = Z )‘_Sa

)\esp+Aabs/rel

for Re(s) > ™+ . This zeta function has a meromorphic analytic continuation to the whole
complex s-plane with at most isolated poles (see Section 5 for details). It is then possible
to define the analytic torsion of the cone

l\:))—‘

+
IOg Tabﬂ;/rel C’l 5 Z qé— 0 Aabs/rel)
q=0

In this setting, we have the following results (analogous results with relative boundary
conditions also follow by Poincaré duality on the cone, proved in Theorem 5.5.1 below).
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THEOREM 1.1.1. The analytic torsion on the cone CiW on an orientable compact con-
nected Riemannian manifold (W, g) of odd dimension 2p — 1 is

p—1
log Tans(C1W) =% Z(—l)q“rkﬂq(w; Q) log 2(p—4q)

1
— t3 log T(W,1?g) + S(0C, W),
q=0

where the singular term S(OC,W) only depends on the boundary of the cone:

plpl q

J 1 k i -
Saw T2 Z e Pok+1,q(s )( jz_ i ) Z(—l)h Res; ¢ (s,A(h)) (q—p+1)20—F),

— 1
q=0 j=0 k=0 h=0 s=j+3

where the functions ®ogt1,4(s) are some universal functions, explicitly known by some
recursive relations, and A is the Laplace operator on forms on the section of the cone.

It is important to observe that the singular term S(OC;W) is a universal linear combina-
tion of local Riemannian invariants of the boundary, for the residues of the zeta function
of the section are such linear combination (see Section 9.3 for details).

THEOREM 1.1.2. When W is the odd dimensional sphere (of radius a), with the standard
induced Fuclidean metric, then the singular term of the analytic torsion of the cone C;W
appearing in Theorem 1.1.1 coincides with the anomaly boundary term of Brining and
Ma, namely S(OC;S?P~1) = Apm abs(0C;S2P~1). In this case, the formula for the analytic
torsion reads

log Tops (CS2P71) = 1ogVol(cl52p Y) 4+ Apppans (9C1S2P71),

where

2p—1"’ . d 1)k—igitl
D& (p—1-k 2k+1Z (2 + )

J=

2k+1

A ans(0C;S2P1) =

COROLLARY 1.1.1. The natural extension of Cheeger Miiller theorem for manifold with
boundary is valid for the cone over an odd dimensional sphere, namely

log Tabs (C1S*P71) = log 7(C1S* ™) + Apn,ans(0C1S*P 7).

The result in the corollary should be understood as a particular case of the still unproved
general result that the analytic torsion and the intersection R-torsion of a cone coincides
up to the boundary term, for the intersection R-torsion is the classical R-torsion for the
cone over a sphere.
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THEOREM 1.1.3. When (W, g) is an orientable compact connected Riemannian manifold
of odd dimension, then the singular term of the analytic torsion of the cone C;W appearing
in Theorem 1.1.1 coincides with the anomaly boundary term of Brining and Ma, namely
S(OCIW) = Apm,abs(OCIWV).

We conclude with a remark on the even dimensional case, namely when the dimension of
the section W is even. It is quit clear that all the arguments used in the odd dimensional
case go through also in the even dimensional case. So we obtain formulas for the analytic
torsion as in the theorems above. However, in the even dimensional case some further
term appears: this was described in some details for W = S2 in [19]. Since we do not
have a clear understanding of this new term yet, we prefer to omit the non particularly
illuminating formulas for the even dimensional case here.

2. PRELIMINARIES AND NOTATION

In this section we will recall some basic results in Riemannian geometry, Hodge de Rham
theory and global analysis, and the definitions of the main objects we will deal with in this
work. All the results are contained either in classical literature or in [29], [26], [9], [3], [14]
[1]. This section can be skipped at first reading, and it is added exclusively for the reader’s
benefit. From one side, it permits to the interested reader to find out all the necessary
tools to verify the arguments developed in the following sections, with precise reference
to definitions and formulas, avoiding the fuss of searching in several different papers and
books, from the other, it provides a unified notation, whereas notations of different authors
are too often quite different in the available literature.

2.1. Z/2-graded algebras and Berezin integrals

Let V, W be finite dimensional vector spaces over a field IF' of characteristic zero, with
Euclidean inner products (_,_). Let V* = Hom(V,F) denotes the dual of V, and fix
an isomorphism of V onto V* by v*(u) = (v,u). Then, we identify F-homomorphisms
with tensor product of tensors by Hom(V, W) = V* @ W. If V,W have dimensions m,n
respectively, and {ex }7",, {b;}}, are orthonormal bases of V' and W respectively, then we
identify t € Hom(V, W) with the tensor T € V* ® W with components Ty, = (b, t(ex)) =
b*(t(ex)), namely

n

m
T = Z TszZ ® by,
k=11=1

where we denote by {e;} the dual base. We use the Euclidean norm of a linear homomor-
phism |¢| = y/tr(t*t). In the orthonormal base, this gives for the associated tensor

|T|2 = Z ZT,?Z.

k=11=1
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We denotes by AV the exterior algebra of V' (the universal algebra with unit generated by
V with the relation v2 = 0). A Z/2-graded algebra A is a vector space with an involutions
such that A = A, ®A_, and a product - that preserves the involution, i.e. such that A;A; C
Aji. The exterior algebra is a first example. Let A and B be two Z/2-graded algebras. The
vector spaces tensor product A® B has a natural Z/2-grading, AQ B = (A®B)+®(A®B)_,
where (A® B); = A, By @A_®B_,and (A®B). = A,  B_® A_ ® B;. This
becomes a Z/2-graded algebra, that we denote by A®B, with the product defined by (we
will omit the dot in the following)

(a®b) - (d'&b) = (=1)P11lg . a'&b - b

There are two natural immersions of A in A®A as an algebra: we identify A with A® 1
and we denote by A =1® A. Since A®1®1® B = A® B, we have that AQB = A® B.
Let A = B = AV, for some vector space V', where we denote the product by A, as usual.
Then, V&V € AVRAV. If v € V, then v = v®1 € V = V&L, o = 1&v € V = 1@V, and
vA® eV AV. Note that, v A& = (v&1) A (1&v), while (1&v) A (v&1) = —v A ©, and

and=(1du)A(1év) = 1&(uAv) =uAvEV AV.

This permits to identify an antisymmetric endomorphism ¢ of V' with the element

(d(vj), vi) 05 A O,

N =

é=

m
jk=1

of A2V. For the elements (¢(vj),v) are the entries of the tensor representing ¢ in the
base {vi}, and this is an antisymmetric matrix. Now assume that r is an antisymmetric
endomorphism of A?V. Then, (Rjr = (r(v;),vx)) is a tensor of two forms in A%V. We
extend the above construction identifying R with the element

R:% > (r(ws),ve) Ay A b, (1)
k=

Jik=1

of A2V A A2V. This can be generalized to higher dimensions. In particular, all the con-
struction can be done taking the dual V* instead of V. We conclude with the definition of
the Berezin integral. Assume V' to be oriented. We define the Berezin integral be

B
/ CAWRAV — AW,
B
/ ca®p—cepBler, ... em)a,
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m(m+1)
—1 2 .
where cg = (7% In particular, note that
™

and this vanishes if dimF = m is odd.

2.2. Some Riemannian geometry

Let (W,g) be an orientable connected Riemannian manifold of dimension m without
boundary, where g denotes the Riemannian structure. We denote by TW the (total space)
of the tangent bundle over W, and by T*W the dual bundle. We denote by AT*W the
exterior algebra of T*W. We denote by I'(W,TW) and I'(W,T*W) the corresponding
spaces of smooth sections, and by Io(W,TW) and T'o(W,T*W) the spaces of smooth
sections with compact support. Let © = (z1,..., %) be a local coordinate system on W.
We denote by {0;}72; the local coordinate base on TW, and by {dx;}}", the dual base of
one forms on T*W: dx;(0x) = ;5. We denote by {e;}2; and {ej}7", local orthonormal
bases of TW and T*W, e (ex) = ;. Then,

m m
g= Z gjrdr; ® dxy = Z djre; @ ey,
k=1 k=1

and the volume element on W is dvoly = ef A --- A e}, = /|detg|dzy A -+ Adzy,.

Let V : T(W,TW) — I'(W,End(TW)) denotes the covariant derivative associated to
the Levi Civita connection of the metric g. This is completely determined by the tensor
r :bzigbﬂvzl Lapre@e;®ey, € LW, T*W@T*W@TW), with components the Christoffel
symbols:

Lapy = I(ea; €s; e:ky) = eiky(r(60t7 €3, )= e:(vﬁaeﬁ) = g(e"/a véaeﬂ) = —Layp,

that can be computed using the formula:

1
Lagy = 5 (Capy + Cyap + Cypa) (2)
where the Cartan structure constants cogy = —Cgay are defined by

m
e, e8] = Z CafyCy-
y=1

The connection one form associated to V is the matrix valued one form w € so(m,T'(W, AT*W)),
with components

m
Wgy = Z [(ea; ey €h)ey-
a=1
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The curvature associated to the Riemannian connection V (of the metric g) is the linear
map r: T(W,TW @ TW) — T'(W, End(TW)), defined by:
r(w,y,2) = VoVyz =V V2 = Vi, 12,

where z,y, z, r(x,y, z) € T'(W, TW), and corresponds to the tensor R = 223,7,6:1 Ropysel®
ep@es®es, € VW, T*"W @ T*W @ T*W @ TW ), with components

Ropys = —Rpanys = R(eas e, €y, €5) = e5(r(ea,ep,€4))
=¢e5(Ve,Vesey = Ve, Ve ey = Vied e516y)-

The curvature two form associated to R is the matrix valued two form Q € so(m, T'(W, A2T*W)),
with components

m

Qs = Z R(ea, ep,€s5,€%)es, A eg,
a,B=1,a<p

and can be computed by the following formula:

Dap = dwag + ) way Awsg. ®3)
~y=1
We introduce two more tensor fields. The Ricci tensor Ric = ZZL g1 Ricapey, @ ej €
LW, T*W @ T*W), defined by
RiC(.’E, y) = Z GZ(VEkva - V:vveky - v[ek,z]y)7

k=1

and the scalar curvature tensor, defined by
m
T= ZRic(ek, ek).
k=1

The components of these tensors in terms of the curvature tensor are:

m
. *
Ricyp = E R(eg,ea,€p,€r,),
k=1
m
T= g R(ex, en, en, €}).
k,h=1

2.3. Hodge theory and de Rham complex
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We recall some results on the de Rham complex (see for example [25]) and some results
from [29] and [26]. From now one we will assume that W is compact. In this section we
also assume that W has no boundary.

Let denote by Q4 the space of sections I'(W, AADT*TW). The exterior differential d defines
the de Rham complex

Cpr: ...—)Q(Q)(W) 4d>Q(q+l)(W) e,

whose homology coincides with the rational homology of W. The Hodge star « : AADT*W —
A=DT*W | defines an isometry * : Q4(W) — Q™~9(W), and an inner product on Q9(W)

(o, ) = /W aA*xfB = /W<oz,ﬂ>dvolg.

The closure of Q¢ with respect to this inner product is the Hilbert space the L? g-forms
on W. The de Rham complex with this product is an elliptic complex. The dual of the
exterior derivative df, defined by (o, d3) = (d'a, ), satisfies df = (—1)™4+™+1 x dx. The
Laplace operator is A = (d 4 d!)2. Tt satisfies: 1) *A = Ax, 2) A is self adjoint, and 3)
Aw = 0 if and only if dw = dfw = 0. Let HI(W) = {w € Q@ (W) | Aw = 0}, be the space
of the g-harmonic forms. Then, we have the Hodge decomposition

QUW) = HUW) @ dQI~ Y (W) @ dTQIH(W).

All this generalizes considering a bundle over W. In particular, we are interested in the
following situation. Let p : w1 (W) — O(k, F) be a representation of the fundamental group
of W, and let E,, be the associated vector bundle over W with fibre F* and group O(k, ),
E,= w Xp IF*. Then, we denote by Q(W, E,) be the graded linear space of smooth forms
on W with values in E,, namely Q(W,E,) = Q(W) ® E,. The exterior differential on W
defines the exterior differential on Q4(W, E,), d : Q4(W, E,) — Q¢ (W, E,). The metric g
defines an Hodge operator on W and hence on Q4(W, E,), » : Q4(W, E,) — Q™ 9(W, E,),
and, using the inner product (_,_) in E,, an inner product on Q¢(W, E,) is defined by

(w,m) = /W<°" A ). (4)

It is clear that the adjoint d' and the Laplacian A = (d + d')? are also defined on the
spaces of sections with values in E,. Setting H4(W, E,) = {w € QW (W,E,) | Aw = 0},
be the space of the g-harmonic forms, we have the Hodge decomposition

QUW, E,) = HI(W, E,) & dQ* (W, E,) & d'Q" (W, E,). (5)
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This induces a decomposition of the eigenspace of a given eigenvalue A # 0 of A(@) into
the spaces of closed forms and coclosed forms: E;q) = 5}(21 @ Sf\qgcl, where

£ = {w € Q(W,E,) | Aw = Iw, dw = 0},
ED = {w e Q(W,E,) | Aw = v, dlw = 0}.

Defining exact forms and coexzact forms by

Si?e)‘x = {w € Qq(VVa Ep) | Aw = >\w7 w = doz},

gl _ {w € QW,E,) | Aw = I, w = d'a}.

A,cex

Note that, if A # 0, then 5)(\?21 =&

Mo and f,')(\qgcl =&Y and we have an isometry

A,cex?

¢ 30 — &)

A,cex ?

1
¢ wr— —=diw
VA
whose inverse is \%d. Also, the restriction of the Hodge star defines an isometry

* :dF QU (W) — Qa1 (W),

and that composed with the previous one gives the isometries:
R

VA

1 ) m—qg—1
ﬁdT* : g)(\?ccl - g)(\,ex ! )

dx : 5,(\?21 _ glm—atl)

A cex ’

2.4. Manifolds with boundary

Next consider a manifold with boundary. If W has a boundary OW, then there is a
natural splitting near the boundary, of AW as direct sum of vector bundles AT*OW G N*W,
where N*W is the dual to the normal bundle to the boundary. Locally, this reads as
follows. Let 0, denotes the outward pointing unit normal vector to the boundary, and
dx the corresponding one form. Near the boundary we have the collar decomposition
Coll(OW) = (—¢,0] x OW, and if y is a system of local coordinates on the boundary, then
(x,y) is a local system of coordinates in Coll(OW). The metric tensor decomposes near
the boundary in this local system as

g =dz ®dx + gs(x),

where gs () is a family of metric structure on 9W such that gs(0) = i*g, wherei : OW — W
denotes the inclusion. The smooth forms on W near the boundary decompose as w =
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Wtan + Wnorm, where wyorm is the orthogonal projection on the subspace generated by dzx,
and weay is in C° (W)@ A(OW). We write w = w1 +dz Aws, where w; € C°(W)®@A(OW),
and

*wo = —dx N\ *w. (8)

Define absolute boundary conditions by

Babs(w) = Wnorm‘@W = W2|8W =0,

and relative boundary conditions by

Brel(w) = Wtan‘BW = w1|3W =0.

Note that, if w € Q9(W), then B,ps(w) = 0 if and only if By (*w) = 0, Bra(w) = 0
implies Byei(dw) = 0, and B,ps(w) = 0 implies B,ps(dfw) = 0. Let B(w) = B(w) ® B((d +
d")(w)). Then the operator A = (d + d')? with boundary conditions B(w) = 0 is self
adjoint, and if B(w) = 0, then Aw = 0 if and only if (d+d')w = 0. Note that B correspond
to

B . . wnorm‘BW = 07

Babs(w) =0 if and only if { (4 normlow = 0, 9)
_ . . Wtan|8W =0,

Brei(w) =0 if and only if { (d')tanlow = 0, (10)

Let

HUW, E,) = {w € QUW, E,) | ADw = 0},
Hgbs(VV? EP) = {Ct) € Qq(m E/)) | A(q)w = Oa Babs(w) = 0}7
H,(W,E,) = {w e QUW,E,) | ADw =0, By (w) = 0},

rel
be the spaces of harmonic forms with boundary conditions, then the Hodge decomposition
reads

VoW, Ep) = H]

abs
Qgel(VV’ EP) = Hq

rel

(W, E,) ® dQ% (W, E,) © d' Q5 (W, E,),

abs abs

(W, E,) ® dQI (W, E,) @ dtQi (W, E,).

rel rel

2.5. The form valued zeta functions and the analytic torsion

By the results of the previous sections, the Laplace operator A(@ | with boundary con-

ditions Bjps/rel has a pure point spectrum SpAé%)s Jrel consisting of real non negative eigen-

values. The sequence Sp +A£.Ll]3)s Jrel is a totally regular sequence of spectral type accordingly
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to Section 3.1, and the forms valued zeta function is the associated zeta function, defined
by

C(S’ Aé(l({))s/rel) C(S Sp+AE%)s/rel) = Z )\75,

(a)
/\esp+Aa(Ls/rel

when Re(s) > & (see Propositions 3.3.2 and 3.3.3). The analytic torsion Taps/ret((W, 9); p)
of (W, g) with respect to the representation p : w1 (W) — O(k,R) is defined by

1 m
log Tavs /et (W 9); p) = =3 Z (0, Aé%)s/rel)

We will omit the representation in the notation, whenever we mean the trivial represen-
tation.

THEOREM 2.2.1. Poincaré duality for analytic torsion [22]. Let (W,g) be an ori-
entable compact connected Riemannian manifold of dimension m, with possible boundary.
Then, for any representation p,

log Tups (W, g); p) = (=1)™ " log Trat (W, 9); p).

We now use results of section 2.3 to define closed, coclosed, exact and coexact zeta
functions. We again restrict ourselves to the case of a manifold without boundary (see
[29] for the case of manifold with boundary). By the very definition, we have

(o, AD) = 37 dimEPAT = Cas, AD) + Gals, A@),
AESp, A(@)

where

Cal5,A@) = 3" dim&W A,

/\GSerA(‘J)

Cccl(37 A(q)) = Z dim g)(\(,]gcl/\_s'

AeSp, AlD)

Since, by (6), Ca(s, A@) = Cca(s, A1), we obtain from the above relations the fol-
lowing formulas for the torsion of a closed m dimensional manifold W:

m

o T((W.9):p) = & > (~1)%a’(0.A®) = L Y"(-1)9¢,(0,2)
qg=1 g=1
IS e 0.8,
2 gt ccl
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In particular, using again duality, for an odd dimensional manifold W of dimension
m=2p—1,

p—1 1\
o T(W, 9):) = 3 (~1)7¢4(0, ) + ¢ 0,407)
q=1

p—2 (_1)p (11)
- Z(_l)qd:cl(oa AW) + TCécl(O’ AP=1)y,
q=0

2.6. The Cheeger Miiller theorem for manifolds with boundary, and the
anomaly boundary term of Briining and Ma

In case of a smooth orientable compact connect Riemannian manifold (W, g) with bound-
ary OW, for any representation p of the fundamental group (for simplicity assume rk(p) =
1), the analytic torsion is given by the Reidemeister torsion plus some further contribu-
tions. It was shown by J. Cheeger in [7], that this further contribution only depends on
the boundary, namely that

log Tons((W, 9); p) = log 7(W; p) + c(OW).

In the case of a product metric near the boundary, the following formula for this boundary
contribution was given by W. Liick [22], where x(X) denotes the Euler characteristic of X,

1
log Tans (W, 9); p) = log 7(W; p) + Zx(aW) log 2.

In the general case a further contribution appears, that measures how the metric is far
from a product metric. A formula for this new anomaly boundary contribution is contained
in some recent result of Briining and Ma [3]. More precisely, in [3] (equation (0.6)) is given
a formula for the ratio of the analytic torsion of two metrics, go and gy,

Tans(Wyg1);p) _ 1 B
logm =3 /aw (B(Vl) B(VO))7 (12)

where V; is the covariant derivative of the metric g;, the forms B(V;) are defined as
follows, according to Section 1.3 of [3] (observe, however, that we take the opposite sign
with respect to the definition in [3], since we are considering left actions instead of right
actions, and also that we use the formulas of [3] in the particular case of a flat trivial
bundle F). Using the notation of Section 2.1 (in particular see equation (1)), we define the
following forms
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1m 1
51:52 i"w; — i*wo)ok A €,
k=1
ol
Z*Qj = 5 Z Jkl/\ek/\el (13)
k,l=1
1’mfl

o

=1

Here, w; are the connection one forms, and €2;, j = 0,1, the curvature two forms as-
sociated to the metrics go and g7, respectively, while © is the curvature two form of the
boundary (with the metric induced by the inclusion), and {ej,}7"-;' is an orthonormal base
of TW (with respect to the metric g). Then, set

1P g rer 1 k—1ck
B(Vj)zi/ / e~ 32 j Zmu Sjdu. (14)
1

Taking g1 = g, and gg an opportune deformation of g, that is a product metric near the
boundary, it is easy to see that (see equation (31) of Section 4.2)

logM _1 B(Vy).

Tans(W,90)50) 2 Jow

Note that the right end side of this equation is (as expected) a local quantity, and is well
defined if there exists a regular collar neighborhood of the boundary. If this is the case, we
define the Briining and Ma anomaly boundary term by

1
ABM abs(OW) = 3 B(V4), (15)
oW
and we have
1
log Tabs((W, 9): p) = log 7(W; p) + 7 x(OW) log 2 + Apt,abs (OW). (16)

3. ZETA DETERMINANTS

In this section we collect some results on the theory of the zeta function associated to a
sequence of spectral type introduced in works of M. Spreafico [35] [36] [37] and [39]. This
will give the analytic tools necessary in order to evaluate the zeta determinants appearing in
the calculation of the analytic torsion in the following sections. We give the basic definition
in Section 3.1, some results concerning simple sequences in Section 3.2, the main results for
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double sequences in Section 3.3, and we specializes to the zeta functions associated to the
Laplace operator on Riemannian manifolds in Section 3.4. We present here a simplified
version of the theory, that is sufficient for our purpose here; we refer to the mentioned
papers for further details (see in particular the general formulation in Theorem 3.9 of [39]
or the Spectral Decomposition Lemma of [37]).

3.1. Zeta functions for sequences of spectral type

Let S = {a,}52; be a sequence of non vanishing complex numbers, ordered by increasing
modules, with the unique point of accumulation at infinite. The positive real number
(possibly infinite)

. logn
so = limsup ————,
n—oo 1Oglan|
is called the exponent of convergence of S, and denoted by e(S). We are only interested in
sequences with e(S) = sy < oo. If this is the case, then there exists a least integer p such
that the series Y >~ | a, P! converges absolutely. We assume sy — 1 < p < s, we call the
integer p the genus of the sequence S, and we write p = g(5). We define the zeta function
associated to S by the uniformly convergent series

¢(s,8) = Za;s,
n=1

when Re(s) > e(S5), and by analytic continuation otherwise. We call the open subset
p(S) = C — S of the complex plane the resolvent set of S. For all X\ € p(S), we define the
Gamma function associated to S by the canonical product

1 B e’} _)\ Zi(:sl) (,]‘1).7' (,?)j
NEwoial || (1 * a) ¢ " (17)

n=1 n

When necessary in order to define the meromorphic branch of an analytic function, the
domain for A will be the open subset C — [0, 00) of the complex plane. We use the notation
Yo = {ze@ | larg(z — ¢)| < g}, withe>6>0,0<60 <7 Weuse Dg. =C — Xg,
for the complementary (open) domain and Ag. = 059, = {z € C | |arg(z — )| = §},
oriented counter clockwise, for the boundary. With this notation, we define now a particular
subclass of sequences. Let S be as above, and assume that e(S) < oo, and that there exist
¢ > 0and 0 < 0 <, such that S is contained in the interior of the sector £ .. Furthermore,
assume that the logarithm of the associated Gamma function has a uniform asymptotic
expansion for large A € Dy .(S) = C — X, of the following form

[e%e) g(S)
logT(=A, ) ~ Y "aa,0(=N)% + Y ar1(=N)Flog(—-N),
j=0 k=0

where {a;} is a decreasing sequence of real numbers. Then, we say that S is a totally regular
sequence of spectral type with infinite order. We call the open set Dg .(S) the asymptotic
domain of S.
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3.2. The zeta determinant of some simple sequences

The results of this section are known to specialists, and can be found in different places.
We will use the formulation of [34]. For positive real numbers [ and ¢, define the non
homogeneous quadratic Bessel zeta function by

> ]z,k 2 -
Z(S7V7Qal)zz lT‘f'q 5

k=1
for Re(s) > %. Then, z(s,v,q,1) extends analytically to a meromorphic function in the
complex plane with simple poles at s = %, —%, —%, .... The point s = 0 is a regular point
and

1,(1g) (18)
2'(0,v,q,1) = —log v27rll'7uq.
q
In particular, taking the limit for ¢ — 0,
vts
2'(0,v,0,1) = —log L
2v 2T (v + 1)
3.3. Zeta determinant for a class of double sequences
Let S = {)‘n,k}ff,)kﬂ be a double sequence of non vanishing complex numbers with

unique accumulation point at the infinity, finite exponent sg = e(S) and genus p = g(.5).
Assume if necessary that the elements of S are ordered as 0 < [A11] < [A12] < A2 < ...
We use the notation S, (Sk) to denote the simple sequence with fixed n (k). We call
the exponents of S,, and Sy the relative exponents of S, and we use the notation (sg =
e(S),s1 = e(Sk), s2 = e(Sy)). We define relative genus accordingly.

DEFINITION 3.3.1.  Let S = {Ayk}5—=; be a double sequence with finite exponents
(s0,51,82), genus (po,p1,p2), and positive spectral sector Xg, oo Let U = {un,}22, be
a totally regular sequence of spectral type of infinite order with exponent ry, genus q, do-
main Dy q. We say that S is spectrally decomposable over U with power &, length £ and
asymptotic domain Dg ., with ¢ = min(cy,d, '), 8§ = max(0y, ®,8’), if there exist positive
real numbers k, € (integer), ¢, and ', with 0 < 6’ < w, such that:

An K

oo
1.the sequence u,"S, = } has spectral sector g o, and is a totally regular
=1

sequence of spectral type of infinite order for each n;
2.the logarithmic T-function associated to Sy /uf has an asymptotic expansion for large
n uniformly in X for X in Dg ., of the following form

¢ L
logT(=\,u,"S,) = Z boy, (N)uy, 7 + Z P, (MNu, " logu, + o(u,™), (19)
h=0 =0
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where op, and p; are real numbers with oo < --- < o¢, po < -+ < pr, the P, () are
polynomials in X\ satisfying the condition P, (0) =0, ¢ and L are the larger integers such
that oy < rg and pp, < 1.

When a double sequence S is spectrally decomposable over a simple sequence U, Theorem
3.9 of [39] gives a formula for the derivative of the associated zeta function at zero. In order
to understand such a formula, we need to introduce some other quantities. First, we define
the functions

21

> s—1 1 e_At
(I)Uh(s) = / t P / j(bah(/\)d/\dt. (20)
0 Ae,c

Next, by Lemma 3.3 of [39], for all n, we have the expansions:

o0 D2
log (=X, Sy fuy) ~ Y da;0n(=A)" + Y ar1,0(=A)* log(=N),

- (21)
D (N) ~ Db 0(=2)™ + 3 b k1 (= 1)  log(=A),
=0 =
for large A in Dy .. We set (see Lemma 3.5 of [39])
A0,0(S) = Z (ao 0,n Z bo’h70 Qu > u—Ke
" (22)

o0
Aja(s) = (aj,l,n - Zboh,j,lui‘”‘> u;®, 0<j<po.
h=0

n=1

We can now state the formula for the derivative at zero of the double zeta function. We
give here a modified version of Theorem 3.9 of [39], more suitable for our purpose here.
This is based on the following fact. The key point in the proof of Theorem 3.9 of [39] is
the decomposition given in Lemma 3.5 of that paper of the sum

oo

T(s,\,8,U) Z u; " log D(=X\, u"S,,),

in two terms: the regular part P(s, A, S,U) and the remaining singular part. The regular
part is obtained subtracting from 7 some terms constructed starting from the expansion
of the logarithmic Gamma function given in equation (19), namely

L
P(s, A S,u) =T(s, A, S,U) — Z¢ah u,, " Z‘Ppl (Nu, "t log uy,.
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Now, assume instead we subtract only the terms such that the zeta function ((s,U)
has a pole at s = o5, or at s = p;. Let ’p(s,)\,S’, U) be the resulting function. Then
the same argument as the one used in Section 3 of [39] in order to prove Theorem 3.9
applies, and we obtain similar formulas for the values of the residue, and of the finite part
of the zeta function ((s,S) and of its derivative at zero, with just two differences: first,
in the all the sums, all the terms with index o, such that s = oy, is not a pole of {(s,U)
must be omitted; and second, we must substitute the terms Ay (0) and Ap ;(0), with the
finite parts of the analytic continuation of Ago(s), and Ap;(s). The first modification

is an obvious consequence of the substitution of the function P by the function P. The
second modification, follows by the same reason noting that the function A, 1(s) defined
in Lemma 3.5 of [39] are no longer regular at s = 0 themselves. However, they both admits
a meromorphic extension regular at s = 0, using the extension of the zeta function (s, U),
and the expansion of the coefficients aq; k , for large n. Thus we have the following result.

THEOREM 3.3.1. The formulas of Theorem 3.9 of [39] hold if all the quantities with
index oy, such that the zeta function ((s,U) has not a pole at s = o}, are omitted. In such a
case, the result must be read by means of the analytic extension of the zeta function {(s,U).

Next, assuming some simplified pole structure for the zeta function ((s, U), sufficient for
the present analysis, we state the main result of this section.

THEOREM 3.3.2. Let S be spectrally decomposable over U as in Definition 3.3.1. Assume
that the functions ®,, (s) have at most simple poles for s = 0. Then, ((s,S) is regular at
s =0, and

0,5)=-—A Res on (8) Resy ((s,U

¢(0,S) 0.1( E 51 Res: ((s,U),

¢'(0,8) = — Ao,0(0) — A, (0) E Resl on(8)Resy C(s,U)
s s=oyp,

¢
+— ZRebo on (8) Res1 ((s,U) —|—Z Rebl D, (s)Reso ((s,U),

s=op =0 S=0h

where the notation S means that only the terms such that ((s,U) has a pole at s = oy,
appear in the sum.

This result should be compared with the Spectral Decomposition Lemma of [37] and
Proposition 1 of [38].

REMARK 3.3.1. We call regular part of (0,S) the first term appearing in the formula
given in the theorem, and regular part of {'(0,S) the first two terms. The other terms gives
what we call singular part.
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COROLLARY 3.3.1.  Let Sy = {)\(j)7n,k}$~:k=17 i =1,...,J, be a finite set of double
sequences that satisfy all the requirements of Definition 3.3.1 of spectral decomposability
over a common sequence U, with the same parameters k, £, etc., except that the polynomials
Py, »(N) appearing in condition (2) do not vanish for A\ = 0. Assume that some linear

combination E}]ﬂ c; Py, p(A), with complex coefficients, of such polynomials does satisfy
this condition, namely that Z;‘]:1 ¢jPjy,p(A) = 0. Then, the linear combination of the zeta

function Z;‘]:1 c;jC(s,S(j) is reqular at s = 0 and satisfies the linear combination of the
formulas given in Theorem 3.5.2.

3.4. Zeta invariants of compact Riemannian manifolds

We recall in this section some known facts about zeta invariants of a compact manifold.
We will rewrite such results in the terminology of zeta functions associated to sequences of
spectral type just introduced. Our main reference are the works of P. Gilkey, in particular
we refer to the book [14].

Let (W, g) be a compact connected Riemannian manifold of dimension m, with metric g.
Let A denote the metric Laplacian on forms on W, and SpA@ = {),}22 (Ao = 0) its
spectrum. Then, there exists a full asymptotic expansion for the trace of the heat kernel
of A for small ¢,

> eqit?, (23)
j=0

where the coefficients depend only on local invariants constructed from the metric tensor,
and are in principle calculable from it.

w3

TI‘LzeitA(Q) =t :

ProrosIiTION 3.3.1.

—9 4
(m)—60<m )+180<m )) / 2dvol,
q q—1 p—2 w
1 m m— 2 m—4
. ——) 180 — 720 Ric|?dvol
+?’60(4#)2( <Q>+ (q1> (p2>>/w| e[ dvol,
_ _4
(2(’”)—30(”‘ 2>+180(m )) |R|2dvol,.
q qg—1 p—2 w

PROPOSITION 3.3.2. The sequence Sp+A(Q) of the positive eigenvalues of the metric
Laplacian on forms on a compact connected Riemannian manifold of dimension m, is a
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totally reqular sequence of spectral type, with finite exponent e = 3, genus g = [e], spectral
sector g . with some 0 < ¢ < A1, € < 0 < 5, asymptotic domain Dy . = C — ¥g ., and
infinite order.

PROPOSITION 3.3.3. The zeta function C(S,Sp+A(q)) has a meromorphic continuation

to the whole complex plane up to simple poles at the values of s = mT*h, h=0,1,2,...,
that are not negative integers nor zero, with residues

Resls:%fh C(SaserA(q)) — __Cah

the point s = —k =0,—1,—2,... are regular points and

¢(o, Sp+A(Q)) = eq.m — dimkerA(?),
C(—k,Spy AD) = (=1)*Kleq myo-

4. GEOMETRIC SETTING AND LAPLACE OPERATOR
4.1. The finite metric cone

Let (W, g) be an orientable compact connected Riemannian manifold of finite dimension
m without boundary and with Riemannian structure g. We denote by C'W the cone over
W, namely the mapping cone of the constant map : W — {p}. Then, CW is compact
connected separable Hausdorff space, but in general is not a topological manifold. However,
if we remove the tip of the cone p, then CW — {p} is an open differentiable manifold, with
the obvious differentiable structure. Embedding W in the opportune Euclidean space R,
and R* in some hyperplane of R**" with opportune h, disconnected from the origin, a
geometric realization of CW is the given by the set of the finite length [ line segments
joining the origin to the embedded copy of W. Let x the euclidean geodesic distance from
the origin, if we equip CW — {p} with the Riemannian structure

dr ® dx + 22g, (24)

this coincides with the metric structure induced by the described embedding. We denote
by CoW the space (0,I] x W with the metric in equation (24). We denote by C;W
the compact space Co W = CoyW U {p}. We call the space C;W the (completed finite
metric) cone over W. We call the subspace {{} x W of C;W, the boundary of the cone, and
we denote it by dC;W. This is of course diffeomorphic to W, and isometric to (W, 1%g).
For the global coordinate x corresponds to the local coordinate =’ = [ — z, where 2’ is the
geodesic distance from the boundary. Therefore, gy(z') = (I—xz)?g, and if i : W — Cio yW
denotes the inclusion, i*(dr ® dx + 2%2g) = go(0) = [?g. Following common notation, we
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will call (W, g) the section of the cone. Also following usual notation, a tilde will denotes
operations on the section (of course § = g), and not on the boundary. All the results of
Section 2.4 are valid. In particular, given a local coordinate system y on W, then (x,y) is
a local coordinate system on the cone.

We now give the explicit form of x, d and A. See [8] [9] and [27] Section 5 for details.

If we QUCo W), set

w(z,y) = fi(z)wi(y) + fa(x)de A wa(y),

with smooth functions fi; and fs, and w; € Q(W). Then a straightforward calculation
gives

*w(z,y) = a2 fo(x)kwa (y) + (=1) 7™ fi(2)dx AFwi(y), (25)

dw(x,y) = f1(x)dw: (y )+8 fi(z)dz Awi(y) — f2()dz A dwa(y),
diw(z,y) =272 fi(z)d wi(y) — ((m = 2¢ + 2)a™" f2(x) + Op fo(x)) wa(y) (26)
— 272 fy(x)dz A dng (v),

Aw(z,y) = (=02f1(z) — (m —2q)2~ ' 0, f1(z)) wi(y) + 272 f1 (2)Aw; (y) — 2271 fo(x)dwo (y)
o A (572 (@) Ban(y) +2(v) (~022(2) — (m — 2+ 220, o)

+(m — 20 +2)272fo(@)) — 207 fa(@)dwr (y) ) -
(27)

4.2. Riemannian tensors on the cone
We give here the explicit form of the main Riemannian quantities on the cone. All
calculation are based on the formulas given in Sections 2.2 and 2.6. Recall that a tilde
denotes quantities relative to the section, that we have local coordinate (x,y1,...,ym) on
C;W, and that the metric is

g1 = dz @ dz + 22g.

Let {bx}7*, be a local orthonormal base of TW, and {bj }}", the associated dual base.
Then,

eg = Oy ey = dx,
1

ex = —by, e, = xby, 1<k<m.
T
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Direct calculations give Cartan structure constants

cjkO:O, 1§],k§m,
Ot
Cokl = —CkOL = = 7 1<kl <m,
1._ .
Cikt = —Cjkl, 1<5,k 1< m.

The Christoffel symbols are

Tor = 0, 1<kl <m,
9; .
FjOk:_FjIw:?y 1<4,k<m,
1.
Ljrr = =T, 1<4,k1l<m.
X

The connection one form matrix relatively to the metric g; has components

wi,00 = 0,
W1,05 = W10 = ——€; = —0,, = )
¥ J T ] ] J (28)
m 1 m 5 m B
wlﬁjk = ZFhkje;; = E ZI‘hkje;‘L = Zrhk]b; = C:)jka 1 § j, k S m.
h=1 h=1 h=1
To compute the curvature we calculate
m m
dwio; == (Ob3) Adyr =~ (Qibrs)dyx A duyi,
=1 Lk=1

where b = >/ brjdyy, and, for 1 < j,k <m,
dwlﬁjk = d&)jk;

while

m m m
.~
—(w1 Awi)ro = (w1 Awr)or = E w100 A\ w1k = E wi,o0 A w1k = — E by A Wy,

=0 =1 =1
m m
(w1 A wl)jk = E w151 N\ w1k = w50 A\ w10k + E w151 NWi 1k = —b;f A bz + (JJ A (I))jk,
=0 =1
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for 1 < j,k < m. The curvature two form has components

Q1,00 =0,

Q95 = — Z (O1brj )dyr N dyy — Zbi‘ N Wi, 1<5<m,
k=1 =1

Ql,jk = d~L:1jk 7b>; /\bz + ((I)/\L:J)jk = Q]‘k 7b;k /\bz, 1<j5,k<m.

Next, considering the metric gy = dx ® dx + g, similar calculations gives:

wo0; =0, 0<j<m, 29)
wo ik = Wik, 1<,k <m.
By equations (28) and (29),
Si=—g D cihei=—5> ViAb==35> b, (30)
k=1 k=1 1
Sy = 0. (31)

We also need the curvature two form © on the boundary 0C;W. A similar calculation
gives
Ok = Qyp..
Note in particular that it is easy to verify the equation (1.16) of [3]: © = i*Q; — 252
For

2 & oy
257 = =5 D by AL AD AD
g, k=1

2 m
Z Qi A3 A Dy,
k=1

é:

o | R

while (i*Q);, = Qi — b% A D}, gives

0. 12 - ) * * 7% 7%
ge =5 0 (G =6 AbL) MG AD
j k=1

4.3. The Laplace operator on the cone and its spectrum

We study the Laplace operator on forms on the space C;W. This is essentially based
on [9] and [6]. Let denote by £ the formal differential operator defined by equation (27)
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acting on smooth forms on Co W, I'(C(oyW,AT*C(oyW). We define in Lemma 4.4.1 a
self adjont operator A acting on L?(C;W, AW CyW), and such that Aw = Lw, if w € domA.
Then, in Lemma 4.4.2; we list all the solutions of the eigenvalues equation for £. Eventually,
in Lemma 4.4.3, we give the spectrum of A.

LEMMA 4.4.1. The formal operator L in equation (27) with the absolute/relative bound-
ary conditions given in equations (9)/(10) on the boundary OC\W defines a unique self
adjoint semi bounded operator on L*(CiW,ANDT*C,W), that we denote by the symbol
Aabs/Arel, Tespectively, with pure point spectrum.

Proof. Let L9 denote the minimal operator defined by the formal operator £(?), with
domain the ¢g-forms with compact support in Cg yW, namely domL(® = Lo(ConW,AT*ConW).
The boundary values problem at the boundary x = [, i.e. dC;W, is trivial, and gives the
self adjoint extensions stated. The point & = 0 requires more work. First, note that L(%)
reduces by unitary transformation to an operator of the type

Aw) oy 4 (32)

D2
+ x2 dz’

where A(z) is smooth family of symmetric second order elliptic operators [6] pg. 370. More
precisely, the map

g+ C((0,1), ADT*W x ATDT*W) — C(C oW, ADT*C oy W),

Pq 1 (WD, TV s ga7m/ 200 (@) () 4 P17 200D (1) A d,

where 7 : CoyW — W, is bijective onto forms with compact support. Moreover, v, is
unitary with respect to the usual L? structure on the function space F(C;W, ADT*CyW)
and the Hilbert space structure on F([0,1], ADT*W x Al=DT*W) given by

l
| (12 @Iy + 1 @071 o

Under the transformation ¢, L(?) has the form in equation (32), with A(z) the constant
smooth family of symmetric second order elliptic operators in T'(W, A T*W x Ale=DT*¥):

o (A9 () (F-q-) 2(-1d
A(z) = A(0) = ( 22(_1)%2% A1 4 (249" g) (2 41— q)>

Next, by its definition, A(z) satisfies all the requirements at pg. 373 of [6], with p = 1
(in particular this follows from the fact that A(z) is defined by the Laplacian on forms on
a compact space). We can apply the results of Briining and Seeley [5] [6], observing that
in the present case we are in what they call “constant coefficient case” (Section 3 of [6]).
By Theorem 5.1 of [6], the operator L extends to a unique self adjoint bounded operator
A9, Note that this extension is the Friedrich extension by Theorem 6.1 of [6]. Note also
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that bundary condition at = 0 are necessary in general in the definition of the domain
of A9 see (L2) (c), pg. 410 of [6] for these conditions.

Eventually, by Theorem 5.2 of [6], the square (here p = 1, so m = 2) of the resolvent of
AW is of trace class. This means that the resolvent is Hilbert Schmidt, and consequently
the spectrum of A(@ is pure point, by the spectral theorm for compact operators. Note
that we do not need the cut off function v appearing in Theorem 5.2 of [6], since here

O<x<l. 1

LEMMA 4.4.2. [9] Let {(pfl?r o ¢§ZL ns wgi)n} be an orthonormal base of T'(W, A(Q)T*W)

consisting of harmonic, coexact and exact eigenforms of AW on W. Let Ag,n denotes

the eigem)alue of goégin and Meex,q,n s multiplicity (so that Meex,q,n = dimé‘ég})(,n =

dim £ ). Let J, be the Bessel function of index v. Define

ccl n

1
0y = 3(1+2¢ - m),

Hgmn =1/ Agn + a?'

Then, assuming that p, , is not an integer, all the solutions of the equation Au = \u,
with X\ # 0, are convergent sums of forms of the following six types:

w:ﬁ: 1,n,A =T qullq n()‘x)gpcez( n’

W0 =2 T )l + 0, (2% T, () da A (Y
G0,y =220 (e Ty, (M) dpla

+ %, (Az)da A dfdelazl)

cex,n

1/’147“\ ze 2+1Jiuq 27L()\x)dx/\d¢(q 2)

p Ea =T qu\aq\(Aw)wﬁi)rn
¢§f)o 3 =0u (20 o, (M) dz A o).

har,n
When piq.n 5 an integer the — solutions must be modified including some logarithmic
term (see for example [41] for a set of linear independent solutions of the Bessel equation).

Proof. The proof is a direct verification of the assertion, using the definitions in equa-
tions (25), (26), and (27). First, by Hodge theorem, there exist an orthonormal base of
ADT*W as stated. Thus, we decompose any form w in this base. Second, we compute Aw,
using this decomposition and the formula in equation (27). This gives some differential
equations in the functions appearing as coefficients of the forms. All these differential equa-
tions reduce to equations of Bessel type. Third, we write all the solutions using Bessel func-
tions. A complete proof for the case of the harmonic forms can be found in [27] Section

5.1
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Note that the forms of types 1 and 3 are coexact, those of types 2 and 4 exacts. The
operator d sends forms of types 1 and 3 in forms of types 2 and 4, while d' sends forms of
types 2 and 4 in forms of types 1 and 3, respectively. The Hodge operator sends forms of
type 1 in forms of type 4, 2 in 3, and F in 0.

COROLLARY 4.4.1. The functions + in Lemma 4.4.1 are square integrable and satisfy
the boundary conditions at x = 0 defining the domain of Areijans- The functions — either
are not square integrable or do not satisfy these conditions.

REMARK 4.4.1. All the — solutions are either not square or their exterior derivative
are not square integrable. Requiring the last condition in the definition of the domain of
Asel/abs; it follows that there are not boundary conditions at zero. This was observed by
Cheeger for harmonic forms when the dimension is odd in [9] Section 3.

LEMMA 4.4.3. The positive part of the spectrum of the Laplace operator on forms on
Ci;W, with absolute boundary conditions on OC;W is:

(@) _ .52 21 .52 21
Sp+Aabs = Meex,gon - ]#q,nvo‘qvk/l n,k=1 Y Meex,g—1,n - ]/Lq—l,maq—lvk/l n,k=1
2 21 2 2
U {mce&q—lm :Juq,l,n,k/l }n 1 U {mq—Q,n : Jpq,z,n,k/l }

o0 o0
.52 2 L2 2
U {mhar,q,o gl gk ! }k_l U {mhar,qfl,o a1kl }k_l-

o0

n,k=1

With relative boundary conditions:

() _ . —2s —2s o . 128 —2s o
Sp+Arel = {Mcex,q,n * J#qm,k/l k=1 U Meex,q—1,n * ]/Lq_lm,,k/l k=1

o0 o0
. —2s —2s . —2s —2s
U {mcex,q—l,n : ‘]U l,nv_aqflvk/l } U {mcex,q—Z,n ' jH 71,na_a<1727k7/l }

- n,k=1

U {mhar,q : j\aq\,k/l_2s}zil U {mhar,qfl : j‘aqflwc/l_zs}:):l ’

where the j, 1 are the zeros of the Bessel function J,(z), the j@ak are the zeros of the
function J,(x) = cJ,(x) + xJ,(z), c € R, ag and pg, are defined in Lemma 4.4.2.

Proof. By the Lemma 4.4.1, Lemma 4.4.2 and its corollary, we know that the + so-
lutions of Lemma 4.4.2 determine a complete system of square integrable solutions of the
eigenvalues equation A@y = \u, with A # 0, satisfying the boundary condition at x = 0.

Since Aglla)s/rel

cisely the positive part of it) of ASJ)S Jrel> W€ have to determine among these solutions those

has pure point spectrum, in order to obtain a discrete resolution (more pre-

that belong to the domain of Agi))s Jrel’ namely those that satisfy the boundary condition
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at © = [. We give details for absolute BC, the analysis for relative BC is analogous. So
consider absolute BC, as given in equation (9). For a form of type 1 to satisfy this condition
means

Do) o=t = 0,
i.e.

aglu, (A + AT, (M) =0,

and this gives A\ = jﬁq,n,aq,k/l- For forms of type 2, we get

SV oey = 0,

that gives
alg—1)J

Hg—1,n

() + AT, (A) =0,

SO A= jun(i,l)’k’a(i,l)/l. For forms of type 3, we obtain the system

:C"‘Q*l_lJﬂqfl,n()\x)b:l =0,
Oy (2291119, (z= 1], (Ax))) — Az@a—171]

Hg—1,n

(Ax) =0.

z=l

Using classical properties of Bessel functions and their derivative, we obtain A = j,, | nx/l.
For forms of type 4, we get

r&a—2t1 qu_g,n,k(AZ) |7':l =0,

that gives A = j,,,_, n,x/l. Similar analysis gives for forms of types E' and O: X = f‘aq‘,k,aq /1
and \ = j|aq71‘,k,aq71/l, respectively. |

We conclude with the harmonic forms of A. The proofs are similar to the previous ones,
so will be omitted.

LEMMA 4.4.4. [9][27] With the notation of Lemma 4.4.2, and

At,gn = Og £ lgn,

then all the solutions of the harmonic equation Au = 0, are convergent sums of forms of
the following four types:

(@ . atgn (@
d):l:,l,n =z ¢ (pccl,rw

(@ _ atq-1nj,(@—1) at,q—1,n—1 (¢g—1)
w:l:,2,n =g+t dgpccl,n tat,g-1,nT Fah dmA(pccl,n ’

cclyn cclyn

¢f7)4,n =g Fa-2nt gy A dlp(qd).

ccl,n
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LEMMA 4.4.5. Assume dimW = 2p — 1 is odd. Then
HIW), 0<g<p-—1,
{0}, p<qg<2p-1

{0}, 0<q=p,
{z2alda A pla=D pla=1) e HI=Y (W)}, p+1<q<2p.

Hgbs (Ol W) = {

7_((rzel (Cl W) = {

Proof. First, by Remark 4.4.1, we need only to consider the 4+ solutions in Lemma

4.4.4. The proof then follows by argument similar to the one used in the proof of Lemma
(@)

4.4.3. Let see one case in details. Consider z/Jf)l o = x0emp

where a4 qn = Qg+ gn-

In order that w(f,)l,n satisfies the absolute boundary condition (9), we need that

(dw-(g})lm)norm 9CW - aJﬁq’nlaJr’q‘"_ld{L‘ A\ d(p(z) =0

ccl,n
i

and this is true if and only if a4 4, = 0. The condition a4 4, = 0 is equivalent to the

conditions A, , = 0, and oy = —|ay|. Therefore, @Ezin is harmonic, 0 < ¢ < p— 1, and
) (q)
wsil,l,n = rogl,n' I

5. TORSION ZETA FUNCTION AND POINCARE DUALITY FOR A
CONE

Using the description of the spectrum of the Laplace operator on forms Ag‘{))s Jrel given in
Lemma 4.4.3, we define the zeta function on g-forms as in Section 2.5, by

C(57 AEa(ll))s/rel) = Z )\75’

AESPLAL

for Re(s) > ™+, Even if we can not apply directly Proposition 3.3.2, the explicit knowl-

edge of the behaviour of the large eigenvalues allows to completely determine the analytic

continuation of the zeta function, by using the tools os Section 3.3. In particular , it is

possible to prove that there can be at most a simple, pole at s = 0. We will not do this

here (but the interested reader can compare with [39]), because for our purpose it is more

convenient to investigate the analytic properties of other zeta functions, resulting by a

suitable different decomposition of the analytic torsion, as described here below. For we
define the torsion zeta function by

1

(_1)qQC(3a Ag%)s/rd)-
1

m

+

tabs/rcl(s) =

DN | =
_
Il
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It is clear that the analytic torsion of C;W is (in the following we will use the simplified
notation T(CyW) for T((CiW, g); p))

IOg Tabs/rel(ClW) = t;bs/rel(o)'

Our first result is a Poincaré duality (compare with Proposition 2.2.1, [22] and the result
of [11]).

THEOREM 5.5.1. Poincaré duality for the analytic torsion of a cone. Let (W, g) be
an orientable compact connected Riemannian manifold of dimension m, without boundary,
then

log Tabs(ClW) = (71)m log Trcl(ClW)-

Proof. By Hodge duality in equation (7), the Hodge operator x sends forms of type
1,2,3,4, F, and O into forms of type 4,3,2,1,0, and F, respectively. Moreover, x sends
g-forms satisfying absolute boundary conditions, as in equation (9), into m 4+ 1 — g-forms
satisfying relative boundary conditions, as in equation (10). Therefore, using the explicit
description of the eigenvalues given in Lemma 4.4.3, it follows that SpAg{))s = SpA’EZfH_Q).
Using the formulas in equations (25), (26), and (27), and the eigenforms in Lemma 4.4.2,
a straightforward calculation shows that the forms of type 1, 3, and E are coexact, and
those of type 2, 4, and O are exact, and that the operator d sends forms of type 1, 3, and

E in forms of type 2, 4, and O, respectively, with inverse df. Then, set

oo
.22 2
U {mccl,q—lm . ]Mq,ly.,“k/l }

(q) 2 21>
Fccl,abs = {mchq,n : ]uq,n,aq,k:/l } k=1

n,k=1

o
.52 2
@] {mccl,q,o : J‘Oéqlaatbk/l }k—l ’

o0
.2 2
U {md’q_27n : ]Nq72m7k/l }

() _ .02 2
FCl,abS = Melig—1,n Jl‘qflynvaqflvk/l n,k=1

n,k=1

o0
L2 2
U {mcl,q—l,o N }k_l-

F(Q)

welabs 15 the set of the eigenvalues of the coclosed g-forms with absolute boundary

conditions, and F (@ is the set of the eigenvalues of the closed ¢-forms with absolute.

cl,abs
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Since obviously Spqu =F\9 we have that

ccl,abs

UF®,,. and &\ = FUEY)

ccl,abs cl,abs ’

1 m+1 @ 1 m+1 (mt1-q)
tabS(S) = 5 ( ) qC Aa({)s 5 Z S Arcl 7 )
=0 9=
1 - (@)
= (=1)™taa(s) + 5 (m+1) Y (=)™, A
q=0
1 = (g+1) (@)
- (71)mtrcl(5) + i(m + 1) (7]‘) (C(S chl abs) + C(S Fclqabs))
q=0
= (—=1)"tra1(9).
Since by definition log Tans (W) = t.,,(0), the thesis follows. ]

6. THE TORSION ZETA FUNCTION OF THE CONE OVER AN ODD
DIMENSIONAL MANIFOLD

In this section we develop the main steps in order to obtain the proof of our theorems.
This accounts essentially in the application of the tools described in Section 3.3 to some
suitable sequences appearing in the definition of the torsion. So our first step is precisely
to obtain this suitable description. This we do in this section. In the next two subsections,
we will make the calculations necessary for the proof of our main theorems.

We proceed assuming dimW = 2p — 1 odd, and assuming absolute boundary condition;
for notational convenience, we will omit the abs subscript.

LEMMA 6.6.1.

—_ _1)4 § _ —2s
t(s) - 2 . 0( ]') —~ Mecex q,m (2'7#(1 n,k ‘]/Lq g,k ]#q Tu_OquC)
= n,

A > o ) _os
DS i (52 G ™)

n,k=1

— 5 Y (1)K, 8ClWQZ(J aqlk—fi‘f;k)-
k=1
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Proof. Using the eigenvalues in Lemma 4.4.3

[e'S) [e%S) [e%S)

2s (9)y _— ~—2s ~—2s -—2s

l C(Sa A ) - mcex,q,njﬂq)maq’k + mcex,qfl,nj#q_lm,aq_l’k + mcex,qfl,nj#q_l’mk
n,k=1 n,k=1 n,k=1

) o o
:—25 ~—2s ~—2s
+ Z mcex7q72,n¢7y’q72rmk + Z mhanqﬁjmq‘,aq,k + Z mhar7q71,0]|aq71‘,aq717k-
n,k=1 k=1 k=1

Since for each fixed ¢, with 0 < g < 2p — 2,

oo o0
(1% D Meomandugnagn + (DT@HD) D Meonandig o

n,k=1 n,k=1
o0 o0
+ (DM a+1) D meegndi s n + D@ 2) Y meexgndy s
n,k=1 n,k=1
oo oo
+aq(=1)) Mhar.g.0]jo g e T (@ + D(=1)TF thar«q»()jlfqiaqyk
k=1 k=1
oo oo oo
.2 ) 1 )
:(_1)q Z mcex,q,n]#q):dk - Z mcex,q,nj#qj,aq,k + (_1)q+ Z mhar,q,O]‘aqT’aq’k~
n,k=1 n,k=1 k=1
it follows that
125 2P2 o0 R j2s 271 oo A
1s) = 5 220 7 meonam (unn = Iidag) + 5 2 (DD a0
q=0 n,k=1 q=0 k=1

Next, by Hodge duality on coexact g-forms on the section (see equation (7)) A, , =
A2p—2—g¢,n, and recalling the definition of the constants ay and 4, in Lemma 4.4.2, we
have that ay = %(1 +2¢—2p+1)=qg—p+1=—agy_2¢, and pgn = Hop—2—gn. Thus,
fixing ¢ with 0 < ¢ <p — 2,

o] o]

_1\4 -—2s  _ ~—2s _1\(2p—2—¢q) -—2s _ ~—2s

( 1) Z mcex,q,n (]yq,n,k J,uqyn,aq,k) +( 1) mC@X,qy’ﬂ ]pq,n,k J;Lq,n,faq,k
n,k=1 n,k=1

o

_(_1\4 c—2s _ ~—2s _ —2s

=(=1)" 3" Meoram (27250 = In ik~ I )
n,k=1
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while when ¢ =p —1, Ap_1,n = Aap—_1—(p—1),n, and ag = 0. Therefore,

125 p—2 ) Ly
—2s s
t(S) - Z Z Meex 45T (QJHQJU ]Hq nyQq,k ]Hq ns qu,k)
q=0 n,k=1
l2s 0 )
-/ —28
S g (5 G 0)
n,k=1
125 2p—1 0o
q+1 ~—2s
5 2 DY Mhang0dia g
q=0 k=1

where j;, , = ju,O,k are the zeros of J/ . Eventually, consider the sum

2p—1 o]
_1\q+1 ~—2s
§ (-1) E Mhar,q,0] |y | crg k"
q=0 k=1

We will use some classical properties of Bessel function, see for example [41]. Recall
m =dim W = 2p — 1, and therefore oy = ¢ — p+ 1 is an integer. Moreover, o is negative
for 0 < g < p—1. Fixed such a g, we study the function JA_%,% (2) = agJqa,(2)+2J., (2).
Since

2T(2) = —2 1 (2) + 1 (2)

it follows that j_aq,aq(z) = —2J_q,41(2) = —2J_q,_,(2), and hence j|aq|7aq7k = Jag_1,k-
Next, fix ¢ with p — 1 < ¢ < 2p — 1, such that oy is a positive integer. Then, since

2J(2) = 2J1(2) — pdu(2),
the function JA%,% (2) = aga,(2)+2J;,, () coincides with zJq,—1(2), and hence }"aq‘,aq,k

Jag_1,k- Note that when ¢ = p—1, a,_1 = 0 and hence jo,_, 0, 1,k = j()’k = j1,k. Summing
up,

2p—1 oo p—2 m [e's) m
_1\g+1 ~_92s 72 q+lz harqO _ pz har,p—1,0

z :( 1) z :mharquo-]\aq|,aq,k - —29 1) -—2s
q=0 k=1 q=0 J—aq- 1,k k=1 Lk

2p—1

+ § :( +1§ :mhar,q,
95 3
q=p =1 Jago1k
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and since by Hodge duality m, 0 = map—1—-4,0,

p—2
— E +1 §
- ( q Mhar,q, O]_aq 1,k + § Mhar,p—1 0.71 k;
q=0 k=1
p—1 00
2p—q -—2s
+ > (DY Mharap1-q.0dans ok
oy k=1
p—2 o] 00 p—1 0o
“+1 - —25 . —2s5 -2
+ E (—1)? E Mhar,q,0) .,k T (—1)¥ E Mhar,p—1,0J1; + E (—1)1 E Mhar,q,0] —ag,k
q=0 k=1 k=1 q=0 k=1
p—1
—2s
= ( mharqO E (]_(,q 1.k _‘]_O‘qvk) .
q=0
Since Mhar,q,0 = tkH,(0C;W; Q), this completes the proof. 1

It is convenient to introduce the following functions. We set

o
_ - —2s
= § mcex,q,n]#qymkv

n,k=1
= Z mcex,q,n(j;:qm,k)_%’
n,k=1 (33)
Zq+(s Z Meex,qnd iy g
n,k=1
—2. 2
)= 3 (02w E).
=1
for0<g<p-1,and
tp-1(8) = Zp-1(s) — Zp71(5)7 (34)
tq(s) =2Z4(s) — Zg,4(s) — Zg,—(s), 0<q<p—2.
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Then,
128 p—2 125 .
Hs) =5 S (1) (2Zy(5) = Zous () = Zae () + (<1775 (Zym1(s) = Zpea(9))
q=0
— l; 3 (—1)IrkH, (OC,W; Q) z4(s)
q=0
128 p—1 128 p—1
=5 D (1)M(s) = 5 D (= 1) kM, (ACW; Q)24 (s),
q=0 q=0
and

log T(C,W) = t'(0) _loe? (Z_:(l)qﬂrqzq(OH ) (1)qtq(0)>

2
q=0 q=0

p—1 D
+3 <Z<—1>q+1rqz;<o> + (—1>%;<o>> :

q=0 q=0

where 7y, = rkH,(0C;W; Q). In order to obtain the value of log T'(C; W) we use Theorem
3.3.2 and its corollary applied to the functions z,(s), Z,(s), Z4(s), Z4+(s). More precisely,
the functions z, were studied in Section 3.2, and we will study the functions ¢, in Sections
6.1 and 6.2, and eventually we sum up on the forms degree ¢ in Section 7.

6.1. The function t,_1(s)
In this section we study the function ¢,_1(s). For we apply Theorems 3.3.1 and 3.3.2 to
the double sequences Sp_1 = {mp_1., 33’3,,_1,,,&}%0:1 and Sp—1 = {mp_1 : (ij_l,n,,k)Q}%O:h

since Z,_1(s) = (s, Sp_1), Zp_1(s) = ((s,8,_1). First, we verify Definition 3.3.1. For we
introduce the simple sequence Up_1 = {mp_1.n : fip—1.n}50e:-

LEMMA 6.6.2. The sequence Up_1 1is a totally regular sequence of spectral type with
infinite order, e(Up—_1) = g(Up—1) = 2p—1, and {(s,Up—1) = Ceex (%, A(p*1)>, with possible
simple poles at s =2p—1—h, h=20,2,4,....

LEMMA 6.6.3. The logarithimic Gamma functions associated to the sequences Sp_lyn/,uf;_lyn
and Sp—l,n/ﬂgq,n have the following representations, with A € Dg., 0 < 6 < 7, ¢ =
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min(jy G, )7)

2“2—1,1

)

N1
log D(= A, Sp—1.n/tio_1 ) = 1ogH (1—|— p—1, )

jﬂp 1,n,k

10g Hp—1, n(:up—lm v _)\) + (,U’p—l,n) log v _A
+ tp—1,n10g(Hp—1,n) = tp-1,n1l0g2 —log T'(p1p—1.n + 1),

2
logr(_)hspfl,n/,uifln = logH <1+ ( lup ln) )

T, ,“k})2
—logI’ - (up_l,n\/j) + (pp—1,n — 1) log V=X
+ pp—1,n10g(tp—1,n) = pp—1,nl0g2 —logI'(pp—1,n + 1).

Using the expansions of the Bessel functions, it follow from Lemma 6.6.3 that there is a
complete asymptotic expansion for the functions log T'(=\, Sp—1,5/pi2_; ) and log (=X, Sp—1.n/82_1 ),
and then the sequences S,_1.,/p>_; ,, and Sp_l,n/ugfl)n are sequence of spectral type. A
simple calculation shows that they are totally regular sequences of infinite order.
PROPOSITION 6.6.1. The double sequences Sp—1 and Sp 1 have relative exponents (p7 21 %)
relative genus (p,p —1,0), and are spectrally decomposable over U,_1 with power k = 2
length ¢ = 2p and domain Dg.. The coefficients oy, appearing in equation (19) are
op=h—1, with h=0,1,...,/ = 2p.

Proof. The values of the exponents and genus of S follow by classical estimates of the
zeros of the Bessel functions [41], and zeta function theory. In particular, to determinate
So = p, we use the Young inequality and the Plana theorem as in [33]. Note that « >
%, since sy = % The exponents and genus of S are the same, since the zeros of the
derivative of the Bessel function are correlated by those of the Bessel function, namely
Juk < jL7 i < Juk+1. As observed, the existence of a complete asymptotic expansion of the
Gamma function logT(=\, S, 1.,) and logT'(—=\, S,_1.,) follows by Lemma 6.6.3. This
implies that Sp_1 ., and Sp_l,n are sequences of spectral type. A direct inspection of the
expansions shows that S,_;, and S,_;, are totally regular sequences of infinite order.
The existence of the uniform expansion follows using the uniform expansions for the Bessel
functions and their derivative given for example in [28] (7.18) and Ex. 7.2, and classical
expansion of the Euler Gamma function [15] 8.344. We refer to [18] Section 5 or to [19]
Section 4 for details. This proves that S,_;, and Sp_l,n are spectrally decomposable
over U,_1, with power k = 2. The length ¢ of the decomposition is precisely 2p. For

e(Up—1) = 2p — 1, and therefore the larger integer such that o), =h —1<2p—11is2p. |
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REMARK 6.6.1. By Theorem 3.53.1, only the terms with oy, =1, 0p, =3, ..., op, =2p—1
namely h = 2,4,...,2p, appear in the formula of Theorem 8.3.2, since the unique non
negative poles of ((s,Up—1) are at s=1,s=3, ... s=2p—1, by Lemma 6.6.2.

Since we aim to apply the version of Theorem 3.3.2 given in Corollary 3.3.1, for linear
combination of two spectrally decomposable sequences, we need more information on the
uniform asymptotic expansion of the difference .S, 1 —Sp,l. This will also give the functions
®o,, (M), necessary in the following.

LEMMA 6.6.4. The difference of the logarithimic Gamma functions associated to the se-
quences Sp_lm/ug_l and Sp_Ln/,u]Z,_Ln have the following uniform asymptotic expansions
for large n, A € Dy,

10g T (=X, Sp—1,n/(1o_1 1)) = 1og T(=A, Sp1.n/ (D _ ,)?) =
= —log I(ptp-1,nV—2A) +1og I'(p—1,nV=A) + log V=X

2p—1

= %log(l - M)+ Z (bj,p—l()\)ﬁ +0 <2p1> :

Fp—1m Pp—1,n

Proof. By Lemma 6.6.3

log I'(—A, Sp—l,n/(ﬂp—l,n)z) —logI'(—A, Sp—lyn/(ﬂp—l,ny) =

(36)
= —log I(ptp—1.nV—A) +1og I' (ftp—1.,V—A) + log vV —A.

Recall the uniform expansions for the Bessel functions given for example in [28] (7.18)
pg. 376, and Ex. 7.2,

vVIFz2 0108 1+\/21+7 1 U; 1
o =2 X o))

V2ru(1 + 22)% = V2P
where
Uo(w) —1,
2 2 d v 2
Uj(w) =51 —w?) 1(w)+7/0 (1= 52U, (H)dt
with w = ﬁ, and

vlog Z 2p—1

1 2\1 V1422 14+/1422 P V. 1

vy = LEZ)Te . ¢ 1+ J(.Z)+O< ) :
VaTTVz
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Vo(’w) =1,
d
Vi) =Uj () — % (1= w?)Uj 1) — w1~ 0?) U ()
Then,
logl,(vz) =vvV1+ 22 +vlogz —vlog(l+ 1+ 22)
2p—1
1 1 ) U;(2) 1
_§log27w— Zlog(l—f—z )+log [ 1+ ;::1 74—0 T
logI!(vz) =vV1+ 22 +vlogz —vlog(l ++/1+22) —logz
2p—1
1 1 2 Vj(2) 1
_510g27ru—|—ilog(1+z)+log 1+;7+O ) ,

and substitution in equation (36) gives

logI'(—A, Spfl,n/(upfl,n)Q) —log I'(—A, Spfl,n/(/ipfl,n)Q)

zélog(l—/\)—log 1+im+0< ! )

J 2p
7j=1 Iu‘pfl,n Mp—l,n

+ log 1+pz_:vj(j\/j/\)+0< ! )

2p
i=1 HMp—1n

:up— 1n

Expanding the logarithm as

log 1—|—j§_:1zj :ZZJ"

where ag = 1, a; = Iy and
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we have that

. 1
logT( = A, Sp—1.n/(Hp—1,0)*) = 108 T(=A, Sprn/ (pp-1,0)?) = 5 log(1 = )

¥ Z T (Vj<m> SUWN + kZ P (000 — U0 ) )

1
tup—l,n

where we denote by ij(A) the term in the expansion relative to the sequence S (thus the
one containing the V;(z)) and by [;(\) the term relative to S (thus the one containing the
Uj(z)). Setting

bp-1,;(N) = [;(N) = 1;(N)

= V(YN = G (VR) + 3T (Vi(V=N)ij-1 () = (V=D)L (N))

k=1

we have the formula stated in the thesis. |

REMARK 6.6.2. Note that there are no logarithmic terms log pip—1,n in the asymptotic
expansion of the difference of the logarithmic Gamma function given in Lemma 6.6.4. This
permits to apply Corollary 3.5.1.

Next, give some results on the functions ¢, ,_1()), and on the functions ®; ,_1(s) defined
in equation (20).

1
1-X

LEMMA 6.6.5. For all j, the functions ¢; ,—1(\) are odd polynomial in w =

3541
Gip-1(N) =D ajp 1 g
k=j

Proof. This follows by the definition in equation (37) in the proof of Lemma 6.6.4. |
LEMMA 6.6.6. For all j, ¢;j,-1(0) =0.

Proof. We use induction on j. For j =1

b1p-1(N) =11(A) — L(N) = Vi(vV =) = U1 (V=))
1 1 1 1

2afm%+2@fm%

)
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and hence ¢1,,—1(0) = 0. Assume ¢ ,—1(0) =0 for k =1,...,7 — 1. For simplicity, write
¢ as a function of w = (1 — A\)~2. Then, by definition

bjp-1(w) = [;(w) = 1;(w)

j=1 . s .
= Vj(w) = Us(w) + > 222 (Us(w)ly—(w) = Va(w)l;—o(w))

J
= Vi(w) = Ujw) + 3 = (Uaw)loalw) ~ - (w))

j—1
# Y =0) (JUs(0) + ) ) )

Since U;(1) = V;(1) for all j, and ¢; 1 1 (w) = I;_1(w) —1;_1(w), using the induction’s
hypothesis, the thesis follows. |

COROLLARY 6.6.1. For all j, the Laurent expansion of the functions ®a;11,-1(8) at
s =0 has coefficients: for1 <j<p-—-1

3j+1 k
1
Resg ®oj41,p—1(5) =2 Z @jp—1,k Z %1’ Res; ®3j41,,-1(s) =0,
s=0 k=i +1 i—2 s=0
and for j =0
RGSOO @17;0_1(8) = 20,04,_171 = 1, RGSO1 @17]3_1(8) =0.
s= s=

Proof. The proof follows from the definition in equation (20), classical results on the Eu-
ler Gamma function (see equation (61) in the appendix), and calculation based on the for-
mula (62) in the appendix. See [17] for further details. The formula for j = 0 follows by ex-

plicit knowledge of the coefficients ag 1. |

Next, we determine the terms Ago(0) and Aj ;(0), defined in equation (22). Using an
upper dot to denote the ones relative to the sequence Sp_l, we have the following result.

LEMMA 6.6.7.

Aoop-1(8) = Apop-1(5) — Agop-1(s) =0,
. 1
Ao1.p-1(8) = Ao1p-1(8) = Ao1p-1(s) = 5C(28, Up-1).
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Proof. The defining equation (22) reads

Ao0,p-1(5) = Z Meex,p—1,n | @0,0,n,p—1 — Zb2j—1,o,o,p—1ug,2j1,+nl ,u;,zin,
n=1 j=1
00 D _

Ao1p-1(s) = Z Meex,p—1,n | @0,1,n,p—1 — szj—l,o,l,pqugfjl;l ,u;fin
n=1 j=1

in the present case. We need the expansion of the functions log (=, Sp—1,n/p2 1 .,,),
loj—1(N), 1ogF(f)\,Sp_1,n/pz2,_1’n), and igj_l(A), for j = 1,2,...,p, and large A. Using
classical expansions for the Bessel functions and their derivative and the formulas in equa-
tion (21), we obtain (see [17] for further details)

1 1
,0mp-1= 5 log 27 + <up_17n + 2) log ptp—1,n — pp—1,nlog2 —log T'(pp—1,n + 1),

1 1
a0, 1,n,p—1 = 5 Pp—1,n + 5)

b2j—1,0,0p—1 =0, b2j_101p-1=0, j=1,2,...p,

note that ba;j_1,0,0p—1 = 0 since ly;_1(A) don’t have constant term.

. 1 1
a0,0,n,p—1 = 5 IOg 21 + </~Lp—1,n + 2) IOg Hp—1,n = Hp—1,n 10g 2 - IOgF(MP—l,n + 1)7

. 1 1
ap,1,n,p—1 = 5 Hp—1,n — 5 ’

baj—1,0,0p-1=0, b2j_101p-1=0, j=1,2,...p,

and by; 1,001 = 0 since Ip;_1(\) don’t have constant term. The thesis follows. |

We now have all the necessary information to apply Theorem 3.3.2 and its corollary. We
obtain the following result, where we distinguish the reqular part and the singular part, as
in Remark 3.3.1.

PROPOSITION 6.6.2.

tp—l(o) = tp—l,reg(o) + tp—l,sing(o)v
t1(0) =t 1 1eg(0) 4+ 17,1 ¢ing(0),
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where

1 1 < (e
tp—l,reg(o) = 7§C(O’ Up—l) = 7§€cex (Oa A(p 1)) 3
tp—l,sing(o) = Oa

1 X (p—
b1 res(0) = =¢'(0,Up-1) = = 3Clux (0. A1),

15
t;—l,sing(o) = 5 Z RSSOO (I)2j+1,q(5) Resy C(57 Up—l)
Jj=0 "

s=2j+1

152 S o
= 5 Z Reso (I)gj+1,q(8) Resl Ccex (7, A(;D 1)> .
=5 5=0 s=2j+1 2

Proof. By definition in equations (33) and (34),

where Z,_1(s) = ((s,Sp_1), and Z,_1(s) = ((s,Sp_1). By Proposition 6.6.1 and Lemma
6.6.4, we can apply Theorem 3.3.2 and its Corollary to the difference of these double zeta
functions. The regular part of Z, 1(0) — Z,_1(0) is then given in Lemma 6.6.7, while the
singular part vanishes, since, by Corollary 6.6.1, the residues of the functions ® ,—1(s) at
s = 0 vanish. The regular part of Z, ;(0)— Z.g/;71(0) again follows by Lemma 6.6.7. For the
singular part, since by Proposition 6.6.1, xk = 2, { = 2p, and o, = h—1, with 0 < h < 2p, by
Remark 6.6.1 we need only the odd valuesof h—1 =2j41,0 < j < p—1, and this gives the

formula stated for ¢}, ; 4., (0). 1

6.2. The functions t4(s), 0 < g<p—2
In this section we study the functions ¢,(s). For we apply Theorems 3.3.1 and 3.3.2 to
the double sequences Sy = {mq,n : jiq,n,k}%o:l and S+ = {mgn : jﬁqmiaq’k}ff:l, since we
have that Z,(s) = ((s,S¢), Zg,+(s) =¢(s,S¢,+), where g=0,1,...,p—2, ¢ =p—¢q— 1.
Note that the sequence S, coincides with the sequence S,_; analysed in Section 6.1, with
q =p—1. So we just need to study the other two sequences. First, we verify Definition
3.3.1. For we introduce the simple sequence U, = {mgn : fign}o2;-

LEMMA 6.6.8. For all 0 < g < p —1, the sequence U, is a totally reqular sequence of
spectral type with infinite order, e(U,) = g(Uy) =2p — 1, and

C(5,Ug) = Ceew (3,2 +a2).
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The possible poles of ((s,U,) are at s =2p—1—h, h=0,2,4,..., and the residues are
completely determined by the residues of the function (ees(s, A(‘I)), namely:

p—1—k

2k+1 S A@Y 20
Res1 ((s,Uy) Z Res; Ceex <§,A )a

s=2k+1 i= s=2(k+j)+1

Proof. By definition Uy = {Mcex,q,n © thgn e, Where by Lemmas 4.4.2 and 4.4.3

Hg,n = 4/ /\q,n + 0427

and the A\, ,, are the eigenvalues of the operator A on the compact manifold W. Counting
such eigenvalues according to multiplicity of the associated coexact eigenform, since the
dimension of the eigenspace of A, , are finite, by Proposition 3.3.2, A, ,, ~ nw for large n.
This gives order and genus. Next, by definition

Uq) = f: mcex,q,n()\q,n + ai)_% = Z <_) Z Meex,q,n )\_’E_jagj

3=0

—Z( )c( +5,A9) ¥ = Gooa (5.80) = 2w (5 +1.A@ ) a2+

The last statement follows by Proposition 3.3.3. |

The analysis of the double sequences S, + is little bit harder than that of the sequences
of the previous Section 6.1, since now the elements of the sequences are not multiple of
zeros of Bessel functions (and their derivative). However, they are the zeros of some linear
combinations of Bessel functions and their derivative, and this makes possible the following
analysis.

For ¢ € C, let define the functions

Ju.c(2) = e, (2) + 2J,(2).

Recalling the series definition of the Bessel function

VOO

2 (—1)k 22k
Tu(2) =55 kZ:O 2RED(v+k+1)

we obtain that near z =0

Zl/

2'T'(v)’

This means that the function z*”jw(z) is an even function of z. Let j‘yyc,k be the positive

Joez) = (14+5)

zeros of JAV’C(Z) arranged in increasing order. By the Hadamard factorization theorem, we
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have the product expansion

+oo
27" AV(Z%C = z_”j,,,c(z) H (1 — = i ) ,

and therefore

= (04 D) 115

Next, recalling that (when —7 < arg(z) < %)

we obtain

Jye(iz) = e (eI, (2) + 21 (2)) .
Thus, we define (for —m < arg(z) < %)

Iy,c(2> = eigwju,c(iz)v (38)

2
(1 . ) L (39)
k=1 -]V ,tag,k

Recalling the definition in equation (17) we have proved the following fact.

and hence

Iya, (2) = a1, (2) + 21(2) = (1 °2) =2

LEMMA 6.6.9. The logarithmic Gamma functions associated to the sequences Sg + » have

the following representations, when X\ € Dy o+, with ¢’ = %min(jﬁqvo,qu_’miaq),

1og T(=A, Syt m) = logH <1+ — — )

J/—Lq nyEagk
— log qu,n,iaq (V=A) + tgnlog V—A — pgnlog2

—logT'(j1q,n) + log <1 + aq> .
Hq,n

PROPOSITION 6.6.3. The double sequences S, + have relative exponents (p, 2;;17 %),
relative genus (p,p — 1,0), and are is spectrally decomposable over U, with power k = 2

7
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length ¢ = 2p and domain Dy . The coefficients oy, appearing in equation (19) are op, =
h—1, withh=1,2,...,0=2p.

Proof. The proof is the same of the one of Proposition 6.6.1. |

REMARK 6.6.3. By Theorem 3.3.1, only the term withop =1, 0, =3, ..., op =2p—1
namely h = 2,4,...,2p, appear in the formula of Theorem 3.3.2, since the unique poles of
C(s,Uy) areat s=1,s=3, ... s=2p—1.

Since we aim to apply the version of Theorem 3.3.2 given in Corollary 3.3.1, for linear
combination of two spectrally decomposable sequences, we inspect directly the uniform
asymptotic expansion of 25, — Sy, — §y,+. This give the functions ¢, .

LEMMA 6.6.10. We have the the following asymptotic expansions for large n, uniform
in A, for X € Dy o,

21081 (= A, Sqn/ g n) =108 (=X, Sq 4 n /15 ) =108 T (=N, Sg,— /b3 1)
q,n (/’(“Ln v _A) + log fﬂq,nyaq (/‘qm v _A) + log fﬂq,n,—aq ('Uq,n v _)\)

a2
— 2log jg,n, — log (1 — 2q>

=—2logl,

q,n
] 1 1
=log(l— M)+ ?;, (/\).+O<).
( jz:; i Han (Hgn )P

Proof. Using the representations given in Lemmas 6.6.4 and 6.6.9, we obtain

2log I'(=A, Sq,n//fég,n) —log'(—A, Sq,-i—,n/,ug,n) —logI'(—A, Sq,—,n/ug,n)
on (Hg,nV—=A) + log juq,n,aq (HgnV—A) + log j\ltq‘n,—aq (HgnV=A)

a2
— 2log pig,n, — log (1 — 2") .

q,n

=—2logl,

Using the expansion given in Lemma 6.6.4 for I, (vz) and I, (vz), we obtain the following
expansion for I, +q,(v2),

I +a,(vz) = xagl,(vz) + vzl (vz)

v/ 1422 vlog 1+\/Zl+22 2p—1 1 1
o 2,1€ e ) L
=Vr(l+2°)7 o 1+ j§:1 Wia,.j(2) 5+ ) <u2p> ,

Publicado pelo ICMC-USP
Sob a supervisiao da CPq/ICMC



ANALYTIC TORSION OF CONES 227

where Wio, j(2) = Vj(2) £ %Uj (2). Thus,

N 1
log I +a,(vz) =vV/ 1+ 22 +vlogz —vlog(l + 1+ 22) +logv + 1 log(1 + 2?)

e 1 1
_§log27w+log 1+ Z Wia, j(2)— i +0 (u)

2p
Jj=1

This gives,

2 logF(f)\, Sq,n//j“g,n) - IOgF(f)\, Sq,+,n/lu’§,n) - IOg F(f)‘a Sq,—,n/:ug,n)

2p1 1
=log(1 — \) — 2log 1—1—2 (2;;)

q,n

2p—1 2p— 1

Wia, (V=X 1 ST EVED 1
+log [1+ ) —F2ed )+O( 2p> +log {1+ ) )+O<)
ji=1 'Lan j=1

2p
q,n ,Uq n Hq,n

Using the same expansion for the logarithm as in the proof of Lemma 6.6.4
2 IOg F(7>‘7 Sq,n//‘g,n) - lOg F(7>‘ Sq + n/p’(zl n) - IOgF(fA, Sq,—,n/p“g,n)

- 1
=log(l— A Z —2l251( 15_1()‘) +15;-4(N) e

q,n

+ - ag’\ 1 1
+Z —2l5; (A +12j(A)+12j(A)+7 —+0(— |

Hq;n Ha.n

where we denote by I;(A) the term in the expansion relative to the sequence S (thus the
one containing the U;(z)) and by ljt(/\) the terms relative to S+ (thus the ones containing
the Wi, ;(2)). Setting

baj-1.4(N) = =2la; 1 (N) +13; 1 (N) +15; 1 (V)
ag! (40)
G2j.q(A) = —2l2;(A) + 13 (N) + I5;(N) + Tq

the result follows. |

REMARK 6.6.4. Note that there are no logarithmic terms log g, in the asymptotic
expansion of the difference of the logarithmic Gamma function given in Lemma 6.6.10.
This permits to apply Corollary 3.5.1.

Next, we give some results on the functions ¢; 4()), and on the functions ®; 4(s) defined
in equation (20).
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LEMMA 6.6.11. For all j and all 0 < ¢ < p—2, the functions ¢;4()\) are odd polynomial
- 1
nw=

1—X
2j—1
2k+25—1
$2j-1.4(N) = D agj 1 gpw T
k=0
25 oY
$2j.0(\) = Y agj g s 4~
k=0 J

The coefficients aj q 1 are completely determined by the coefficients of the expansion given
i Lemma 6.6.10.

Proof. This follows by direct inspection of the last equality in the statement of Lemma
6.6.10. 1
LEMMA 6.6.12. For all j and all 0 < g <p—2, ¢;4(0) =0.

Proof. The proof is by induction on j. We will consider all the functions as functions
of w = ——. We use the following hypothesis for the induction, for 1 < k < j — 1:

VI-XT
P2r-1,4(1) = 0, (41)
Par,q(1) =0, (42)
72042]671
L1 (1) = I3y 1 (1) = 2]{7(1_17 (43)
lQ_k(l) - l;k(l) =0, (44)

where the functions ¢; ,(\) are defined in equation (40), and the function /() in the course
of the proof of Lemma 6.6.10.

First, we verify the hypothesis for j = 1. Equations (43) and (44) follow by the definition
when k = 1. For equations (41) and (42), we have by definition when k =1 that

$14(A) = =2L(N) + 1T (V) +17 (V)

= —2U1(m) + Vl(\/—i/\) + aqUo(\/jA) + Vl(\/—i/\) - OéqUO(\/jA)
1 1
ERNCESVERN TRV

and

B2.4(N) = —212(\) + 13 (\) + I3 (\) + o2

= —2Us(V=N) + 2V (V=) + U1 (V-N)? = i (V=N)?

S LS 531
21 =)) T(1=N2 2(1=A3 7
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and hence equations (41) and (42) are also verified when k = 1.

Second we prove that the equations (41), (42), (43), and (44) hold for k = j. Recalling
that Ug(1) = Vi (1) for all k, we have from the definition that

loj—1(1) = 1551 (1) =Usj—1(1) — agUszj—2(1) — Uzj—1(1) — aqUs;j—2(1)

25—-2

-2 2]2;i 1 (Uk( )(lj 1 (1) _l;j—l—k(l)))
k=1
25— 2
* Z (aquil(l)(lej—l—k( )+12] 1— k(l)))a

and hence, using the hypothesis we obtain

lj—1(1) —13;_1(1)

i=1l o0 2(j—k)
2(j — k) Qyq
=—20,U5;_5(1 ——— v Usp—2(1) | 2lo(i_py —
aqUsj—a( )+k:1 57— 1 YU 2()( 2G-0) T T
j—1 2(j—k)—-1  j—1 .
-2 20/ — k) — 1
— 1 1 2 logi—gy—1(1
;U%() 2 —1 +Z: 1 aqUak—1(1)la(j—ry-1(1)
2a2j 1 o
S—1 200,Us;_5(1 LUy _o(1
5j 1 20aUi-2() + 57 U2 (1)
20 25—-3
+ 2 jl <2(] — l)lgj,Q + Z (2] —2— k‘)aqu(l)lngk(l)>
k=1
202771 20 2004(25 — 2)Uy,
=— % 20,0y _5(1 9y (1 g 22
2‘771 Oéq 2] 2()+2j71 23 2()+ 2-]71
20271
-1’

thus proving (43) for k = j. For (41), note that

P2j-1,4(1) = = 2251 (1) +13;_, (1) +15;_, (1)
25—2

_ Z 2J2;i1 (Uk(l)(Qsz_l_k(1) — () —lz‘jflfk(l)))

2]2

- Z &t O‘qu 1(1 )(lgjflfk(l) _l;j—lfk(1)>7
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and using the induction hypothesis, and (43) with k& = j just proved, this means that

Joo. N
‘ 2 -1-(2k—1) a(i)?0—k)
¢2J*1,q(1) = ; 2 — 1 UQkil(l)ﬁ
7 .
2j—1-2k a(i)2-R-1Ny
—2’; 71 (i) Usp—1 (1) (2(]—k)—1 =0.

and (41) with k& = j follows. For (44), using the hypothesis, we have

I3; (1) — i3;(1)
=U;(1) — agUzj—1(1) = Us;(1) — aqUa;_1(1)

25—1 2] .
- (Uk D5 () = (1))
2j—1 .
2j—k _
+30 Fo (ol () + 15 4)
k=1
imly 2j—2k
25 — 2k ol
= — QOAqUZj—l(l) + Z J O[qUQk_l(l) (212j—2k(1) — jq— k‘ )
I (i 2(j—k)+1
2 —k)+1 20y
+ ————— | U1 (1) 77— + aqUar—2(1)2l5(,— 1
1;1 5] ( 2k—1( )2(j—k)+1 qU2k—2(1)2lo(j—py11(1)
20qu2j,1(1) 20[q %= 1
= — QOCqUQj*l(l) + T + 23 (27 - ].)ZQJ 1 -|— 2aq Z Uk 1 )le,k(].)

2j—2
= —2a,Us; 1(1) + % (Uzjl(l) +(2) = Digjma (1) + > (25 —1- k)Uk(l)zzjlk(n)

k=1
(ag(25 — 1) + ag)Uz;—1(1)
J

=— 20éqU2j,1(1) + =0.

Publicado pelo ICMC-USP
Sob a supervisiao da CPq/ICMC



ANALYTIC TORSION OF CONES 231

Eventually, for (42)

Oézj
haj.q(1) = = 25 (1) +13;(1) + I5;(1) + 7‘1

Ckzj 25—-1 . .
=03 AR () ety 1) 1)~ I (1)

J k=1 2j

2j—1

2] —k _

- Z 2 aqufl(]‘) <l2] k(l) l2j—k‘(]‘))>

k=1
Jj—1 2(5—k) J 2(j—k)+1

25 — 2k g fa%
= Usi (1 -2 Usk_o(1 =0,

P 2] 2 ( ) j k_ I;aq 2k 2( ) 2]

We also give a recurrence relation satisfied by the functions ¢, (), that will be funda-
mental in the proof of Theorem 1.1.3.

LEMMA 6.6.13. Forallj and all0 < g < p—2, the functions ¢, 4(w) satisfy the following
recurrence relations (where w = \/1177)\ )

=
B2-1,4(A) = w2]72a3J72¢q,1(w) + Z K2j71,t(w)043t +2¢25-1,p-1(w)
t=1

(w2 —1)a2 14
P2j,4(A) = —fq + > Kaju(w)ag' + 26,1 (w),
t=1

where the K; (w) are polynomials in w.

Proof. The proof is by induction on j. For j =1,

P1,4(w) =2¢1 p—1(w) = —w + w*

2 6
Bo.q(w) = —(w? = 1)a2 + 26 1 (w) = —(w? — 1)a2 + (—“’7 — ot — 3%).
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Assuming the formulas hold for 1 < k£ < j — 2. Then, by definition of the functions
¢j.q(A) and [(X) in the proof of Lemma 6.6.10, we have that

l;_s (W) + g4 (w) = 2j23—1(w) +w?” 20425 2 (g1 (w ZKZS 1,t( )
2SOé2S s—1
l;rs(w)+l2_s( ) _2129( +ZK2‘? I
2 s—2
ls—1(w) = Iy (w) = 95— 10435711”2871 tag Z Doy (w)ai’,
t=0

13, (w) = Iy, (w) = a2 "W g1 (w) + g B Do y(w)al,

for all s =1,2,...,5 — 1, and where the D, are polynomials in w. We proceed as in the
proof of Lemma 6.6.12 (see [17] for further details). For the odd index we have:

2j-2 .
_ 2j—1-k _
l;_] (w )*lzj—1(w) =2a4Uzj_2(w) — Z 2]7_1‘/( )(l;—] 1—k(w) = l2j—1—k(w))
k=1
22 .
2] —1—k _
+ Wwaqu,l(w)(z;j_l_k(w) +ly gy (w)),
k=1
9512k
=204Uzj—2(w) — Z %7_1‘/%(“’)(@]'—1—21@(“’) - l;j—l—Qk(w))
k=1

2j —1— 2%k _
- Z 27 —1 = wagUak—1 (w) (I ;o (W) + Ly gy, (w))

j—1
27 — 2k _
< 2j - V2k 1(w )(l;j—Qk(w) — Ly o (w))

25 — _
Z 2j waqUQk*Q(w)(l;j—Zk(w)+l2j—2k(w))
k=1
2 2

T2 10‘3 Tt b ag Y Doje(w)al,
t=0
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and this gives

2j—2
1

2j—1—-k
62j-1.4(w) = = 2Wa; 1 (w) + 2V (w) + Y Feem

k=1 j—1 (2Uk (w)l2j-1-k(w))

S H L )1y )+l ()

k=1 271
U 00 0)
L (e a0 5 a0)
w2022y ( ))+§K2J Le(w)ag + 262151 (w).

For the even index, using the result proved for the odd index, we get

j—1

_ 2] _
lé;(w) —ly; (w) =20gUzj 1 ( Z V2k )(l;jfzk(w) - l2j—2k(w))
k=1
=195 — 2%
- TwaqU2k—1(w)(l;j—2k(w) + 1y _op(w))
k=1
j—1
27 —2k+1 _
- Z 27‘/216 1( )(l;j—2k+1( ) 12] 2k+1( ))
k=1 J
j—1
2j —2k+1
- Z 2j waquk_Q(w)(ng 2k+1( )+ lQJ 2k+1( )
k=1
j—2
=— o2 ¥ 1y (W) + aq ZDQJ ,5(10)04;7
t=0
and proceeding as before, this gives the last formula in the thesis. |
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COROLLARY 6.6.2. Forall j and all0 < g < p—2, the Laurent expansion of the functions
D®yjt1,4(s) at s =0 has coefficients: for 1 <j<p-—1

Rf_l%o DPojr1,4(s) = 4 Z kojt1, ta f+2 RGSO Dojt1,p—1(5), RESO1 Pojtr1,4(s) =0,

2j+1 q

where the kj; are real numbers, and for j =0

Resp @1,4(s) = 2Resp P1,p—1(s) = 2, Res; @4 4(s) = 0.

s=0 s=0 s=0

Proof. By Lemma 6.6.11,

2541

P2j+1,4(A) = Z a2j+1,q7kw2k+2j+lv
k=0

1
Vi x’
equation (62) and the residues for the Gamma function in equation (61) in the appendix,
we obtain

where w = and ¢g;11,4(0) = 0, therefore 337" " agj i1 44 = 0. Using the formula in

2541
Resl Poj41,4( E azj+1,g,k = 0.

Using the same formulas in the appendix, but the result of Lemma 6.6.13, we prove the
formula for the finite part. The formula for j = 0 follows by explicit knowledge of the coeffi-

cients ag1. |

Next, we determine the terms Ag ¢(0) and A ;(0), defined in equation (22).

LEMMA 6.6.14. For all0 < q<p-—2,

Mg,n

Ao,o,q(s) = 2A0)07q(8) - A0,07q,+( ) AO ,0,q,— Z log (1 - Iu) 25 5

Ao1,4(8) =240,1,4(5) — Ao1,4,+(5) — Ao1,4-(5) = C(287 Uq)-
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Proof. For S, equation (22) reads

) p
_ —274+1 —2s
A00.4(5) =D Meexgn | @0.0ma — P b2j-1.00.akig it T | tg s,
n=1 j=1
) p
_ —27+1 —2s
A01g(5) =D Meexgn | @01mg — D b2j-1.0.1akig it T | tg .
n=1 j=1

for S +:

) p
_ —25+1 —2s
A0.0.4(5) =D Meexgm | 60.0mat — D b2j-1.0005Hg0 " |t
n=1 j=1

) P
. —27+1 —2s
A01g5(8) =D Meexgm | G01mg — D b2j-101q4tg0 | g
n=1 j=1

We need the expansions for large A of ;1 (A), l2ij—1(>\)7 forj=1,2,...,p,10gT (=, Sq.n/p12 )
and logT'(—=A, S +.n/ /137”). Using classical expansion for Bessel functions and their deriva-
tive (see [19] or [17] for details), we obtain

1 1
log D(=A, Sqn /e ) =3 log 2w + (uq,n + 2) log pig,n — tqn log 2

1 1
—logI(ugn +1) + 5 (uq,n + 2) log(—A) + Oe HanV =AY,

For S, +, by the same expansions in the definition of the function I , equation (39), we
obtain

jyyiaq(z) ~ \522% <1 + Zbkz_k> + O(e—z)7
k=1

and hence

1 1
IOgF(_)‘qu,ﬂ:,n//‘g,n) = PgnV—A+ 5 log 27 + (Nq,n - 2) log pg,n — Hgnlog2

1 1
—log M'pg,n) + 5 (uq,n - 2) log(—A) + log <1 + aq> + O(e*“w\/:\),

2 q,n
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This gives
1 1
a0,0,n,qg = 3 log 27 + (uq’n + 2) log tig.n — fig,n10g2 —logI'(pgn + 1),
1 1
ag,1,n,q = 5 Hq,n + 5 )

[t

1 «
a0,0,n,q,+ = B} log 2m + (Hq,n - 2) log Hqmn — log 2#q’nr(ﬂq,n) + log <1 + q> )

Hq,n
1 1
ao,1,n,q,+ = 9 Hgn — 5 )

while the ba;_1,0,0,4, b2j—1,0,0,4,+ all vanish since the functions lo;_1 (), lzijfl(/\) do not
have constant terms. Therefore,

2
aq
2a0,0,n,qg = G0,0,n,q,+ — @0,0,n,q,— = —10g | 1 = —— ],
q,n
2a0,1,n,q¢ = @0,1,n,9+ — Q0,1,n,q,— = 1,
and the thesis follows. |

Applying Theorem 3.3.2 and its corollary, we obtain the values of ¢,(0) and #,(0).
PROPOSITION 6.6.4. For0<q<p-—2,

tq(o) = tqyreg(o) + tq,sing(o)
tq(0) = g 1 (0) + 14 Ging (0),

q q,reg q,sing

where
tgreg(0) = —C(0,Uy) = —Ceex (0, A@ 4 ag) ,

tq,sing(o) =0,
t;,rcg(o) = _AQ»O,O(O) - :],0,1(0)7
15

t. == E Dy

q,sing (O) ) = fzi%o 2]+1,q(5) 3526_‘78-11-1 C(Sv Uq)
1 p1 S ~ ( )

= =3 Reso @ R X(f,Aq 2).
5 2 Sisoo 2j+1,4(5) S:;?jsil(ce 5 + oy

Proof. By definition in equations (33) and (34),

tq(o) :2Zq(0) - Zq7+(0) - Zq,—(o)»
t,(0) =27,(0) — Z, . (0) — Z; _(0).

Publicado pelo ICMC-USP
Sob a supervisiao da CPq/ICMC



ANALYTIC TORSION OF CONES 237

where Z,(s) = ((s,5;), and Z4 1.(s) = ((s,Sq,+). By Proposition 6.6.3 and Lemma 6.6.10,
we can apply Theorem 3.3.2 and its Corollary to the linear combination above of these
double zeta functions. The regular part of 2Z,(0) — Z, +(0) — Z, _(0) is then given in
Lemma 6.6.14, while the singular part vanishes, since, by Corollary 6.6.2, the residues of
the functions @ 4(s) at s = 0 vanish. The regular part of 27;(0) — Z; . (0) — Z; _(0)
again follows by Lemma 6.6.7. For the singular part, since by Proposition 6.6.3, k = 2,
£ =2p,and op, = h— 1, with 0 < h < 2p, by Remark 6.6.3 we need only the odd values

of h—1=2j+1,0<j<p-1, and this gives the formula stated for ¢, ; 3;,,(0). |

7. THE ANALYTIC TORSION, AND THE PROOF OF THEOREM 7?7

In this section we collect all the results obtained in the previous one in order to pro-
duce our formulas for the analytic torsion, thus proving Theorem 1.1.1, that follows from
Propositions 7.7.1 and 7.7.2 below. By equation (35), the torsion is

log T(CW) = #(0) 8L (i(—m“quzq(m v i(—nqtqw))

q=0 =0
+3 (ZWQHWO) + Z<1>qt;<o>> |
q=0 q=0

However, it is convenient to split the torsion in regular and singular part, accordingly
to remark 3.3.1 and the results in Propositions 6.6.2 and 6.6.4. First, observe that the
functions z,(s) where studied in Section 3.2, where it is showed that there is no singular
contribution to 2,(0) and z;(0). So 24(0) = 24 reg(0), and z;(0) = z; 10, (0). Therefore, we
set

log T(C/W) = log Treg (Ci W) + log Tying (C1 V),

with
, log {2 L 1 Lk
108 Toeg (CUI1) =t (0) =5 { D2 (~1)7rg24(0) + 3 (~1)%guesl®) | (45)
q=0 q=0
1 p—1 p—1
+ 5 < (_1)q+1rqzl (0) + Z(_l)qt;7reg(0)> ’
q=0 q=0
, log {2 L, 15 ,
10g Tsing(ClW) = tsing (0) - 9 Z(fl)qtq,sing (O) + 5 Z(il)qtq,sing (O) (46)
q=0 q=0
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LEMMA 7.7.1. For all0 <qg<p-—1,

Z‘Z(O) - 755

2g(0) = log 2 + log(p — q).

Proof. This follows by equation (18). |

LEMMA 7.7.2.
treg(0) = —Ceex (0, ALD), 0<qg<p-2,
t;,reg(o) = éex(07 A(q))7 0<qg<p—-2,
1 -
tp—1,reg(0) = *§Ccex(0, AP=1))
1 < (p—
ty1,reg(0) = =5 G0, AP7Y).

Proof. The first and the third formulas follows by Propositions 6.6.2 and 6.6.4, and the

fact that for the zeta function associated to any sequence S, and any number b, (0, S+b) =
¢(0,5). For the derivatives, when 0 < ¢ < p — 2, by Proposition 6.6.4,

t;,reg(o) = _A070,(1(0) - /0,1,q(0)'

By Lemma 6.6.14

o0 a2 m §
Ao oq(s) == log (1 — | Meexan
n=1 Han Han
(oo}

Ao1,q(5) = C(25,U,) = 3 oo,

2s
1 HMan
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Recalling that jiq,, = \/Ag,n + a4, and expanding the binomial, we obtain

Mecex,q,n - Mecex,q,n
~A0,0,4(8) = Af 1 (s Zlog <1>23qquoguqn

n Hgn n=1 q,n
Meex, Teex,q,n
= E log Agn—>.
n=1 Qa
—S mcex, s i
= log ) SN 25
q,n j /\s+j q
j=0 q,n

=—Z< ) Clals+ 5, AD)a2

that gives the second formula. Eventually, the result for ¢, ; .,

6.6.2 and the fact that a,_; = 0 since the dimension is m =2p — 1. |

(0) follows by Proposition

PROPOSITION 7.7.1.

p—1 p—1

log Thes (C1W) :% (—1)Ir, log% - % Z(—l)qrq log(p — q) + %logT(W, g)
q=0 q=0
p—2
— | 2D %ea(0, A1) 4 2 (=1)P e (0, AP >> log!
q=0
152 151
=3 (=1)rq log§ 3 Z( )77y log(p — q) + 5 log T(W, 1%g)
g=0 q=0

where r4 = rkH,(0C,W; Q)

Proof. Substitution in the formula in equation (45) of the values given in Lemmas 7.7.1
and 7.7.2 gives

122 o1
log Tres (CiW) =5 (—1)9r, log 375 Z(—l)qrq log(p — q)
q=0 q=0
p—2 1
- < (—=1)%ee1 (0, A@) + 5(—1)1’*14@1(0,&1’ 1>)> log!
q=0
1 [ 22
i (2 (1)L (0, A1) + (~1)7¢y 0 A@-l)))
q=0
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By the second formula in equation (11)

<22 1)+ (0, A@) 4 (= 1)174“;61(0,&@‘”))zélogT(W,g),

and this gives the first formula stated. For the second formula, note that the boundary of
the cone OC;W is the manifold W With metric [?g. The restriction of the Laplace operator
on the boundary is then Age,w = —2 Since for the zeta function associated to any sequence
S, and any number a,

¢'(0,a8) = =¢(0,8)loga +¢'(0, 5),

a simple calculation shows that

p—2
_ (Z(l)chcl(O,A(q)) + ;(l)pICCCI(OaA(pl))> log 12

q=0

<22 DI (0, A) + <—1>P<éd<0,A<P—”>>

=t(0, W) logl® + (0, W) = log T(dC,W).

|
PROPOSITION 7.7.2.
1 p—1 p—1 _
log Tsing (C1W) =3 (-1)¢ ZReso Dyj11(s) R651 Ceex (s, A 4+ ag)
q=0 j=0 °7 s=j+3
1 p—1 p—1 q _
=5 Z(—l)q Z R,ESO Doit1(s) Z(—l)l Resl ¢ (s, AW 4 ag)
4=0 j=0 =0 1=0 s=j+3
11)—1 p—1 j _1l_ - -
25 Z(_l)q Z R’iSOO (I)2k+17q(8)( j2_ k > }}¢S11 Ccem (57 A\ ) Oéq J
q=0 j=0k=0 ° s=i+3
1p*1p*1 J _7_k q ‘
=3 ZZRSSO Pogt1,4(s < > Z ! Res; ¢ (s AW ) a2k,
9=0 =0 k=0 =9 1=0 s=j+3

Proof. The first formula follows by substitution in equation (46) of the values given in
Propositions 6.6.2 and 6.6.4, and observing that, for the zeta function associated to any
sequence S

aRes; ((as, S) = Res; ((s,S5).

s=sp s=asg
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The second by duality, see Section 2.5,

o (5 5) = (3 50) G (3 50) = (039) G (530) =S8 (. 59).

k=0
The third formula follows by Lemmas 6.6.2 and 6.6.8, and some combinatorics, and the

last by the previous ones. |

8. THE PROOF OF THEOREM 7?7

On order to prove Theorem 1.1.2 we calculate the regular and the singular parts of the
torsion in the case W = S, according to Propositions 7.7.1 and 7.7.2. Recall we are
considering the absolute BC case. The result for the regular part follows easily, the one for
the singular part requires more works, that will be developed in the following subsections.
Here we recall the underlying geometric setting. Let S;" be the sphere of radius b > 0 in
R™H, S = {z € R™ | |z| = b} (we simply write S™ for S7*). Let C;S™, ., denotes

sin o
the cone of angle « over S in R™*2. We embed C;S™ , in R™2 as the subset of the

segments joining the origin to the sphere S% . % {(0,...,0,lcosa)}. We parametrize the
cone by
r1 = rsinasinb,, sinf,,_1 ---sinf3 sin 5 cos 6,
r9 = rsinasing,, sinf,,_q - --sinf3 sin 6, sin 6,
r3 = rsinasing,, sinf,,_q---sinfs cos by
CiSina =
Tmy1 = Tsinacosb,
Tmao = TCOSQ
with r € [0,1], 6, € [0,27], Oa,...,60p, € [0, 7], and where « is a fixed positive real number

and 0 < a = % =sina < 1. The induced metric is (r > 0)

g = dr @dr + ’I“nglnz

m—1

=dr ® dr + ra> Z H sin® 0; | do; @ db; + db,, @ dbp, |,
i=1 \j=i+1
and \/|detgg| = (rsina)™(sinf,,)" 1 (sin 0, _1)™ 2 - (sinf3)?(sin ).
8.1. The regular part of the torsion

PROPOSITION 8.8.1.

1
10g T (C1S2P7 1) = 5 log Vol(C; 8221,

sin o sin a

Publicado pelo ICMC-USP
Sob a supervisao CPq/ICMC



242 L HARTMANN AND M. SPREAFICO

Proof. By Proposition 7.7.1, when W = SZ 2P~1 with the standard Euclidean metric 9,

sin «

l
logTreg(ClS2p H = logf—flogp—i— logT(Szp ' %gp).

sin « sin « ?

By [23], T(Sgp—1 ’gp) = Vol(S?SnL,gE) and this proves the proposition since, if W

sina ?
has metric g and dimension m, then

Vol(C;W / Vdet(z2g)dx A dvol, / / dvol, VOI(W q),
W
and
o pm
Vol(Sy", gi) = 2.
: r(759)

8.2. The conjecture for the singular part
Assuming that the formula for the anomaly boundary term Apn,abs(0W) of Briining
and Ma [3] is valid in the case of C;S?*~! we computed in [18] (note the slight different

sina ?

notation), by applying the definition given equation (15) of in Section 2.6, that
p—l Yhy—2p=i+h)+1 (o) 1))
Apt as (C, 521 P—_r
BM, b( l smoz) Z (2(p ] 1”2( ) p ]+h)71) 4p(p71)|a

where 2 = sina. Our purpose now is to prove that (this was proved in [18] for m < 4)
10 Tuing (C1S%1) = Apwt ans(9C1S2271) (47)

where log Tsmg(C’l Sma ) is given in Proposition 7.7.2. For it is convenient to rewrite the
second term as follows:

p—l p—J J ; p2p=ith)+L (9 — 1)1
Apaabs (00152771 = i
BM, b( lblna ]ojl 7]71 Z() 7]+h)—1) 4?(1)—1)'
B pl 97 +1 P—z:l—ﬂ <p 1 —j) (—1)hy =26+ (95 1))
_j:O (p—1-)W2+ 1 = h 2(j+1+h)—1 4r(p—1)!
:<m—1'p1 1 (“DFIPH p—1—
dr(p — 1)1 4 2k+1)1/2k+1 p—1—-N2j+DN\ Ek—j
2p—1|”1 k ’f121+1 1
Wiz (p— 1= k)I(2k + 1) Jz: N(27 + 1) p2et1?
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8.3. The eigenvalues of the Laplacian over C; S |

Let A be the self adjoint extension of the formal Laplace operator on Cy ST , as defined
in section 4.3. Then, the positive part of the spectrum of A (with absolute BC) is given
in Lemma 4.4.3, once we know the eigenvalues of the restriction of the Laplacian on the
section and their coexact multiplicity, according to Lemma 4.4.2. These information are
available by work of Tkeda and Taniguchi [20]. The eigenvalues of the Laplacian on g-forms

2p—1
on SP™° are

Xo.n = v2n(n +2p — 2),

M =V?n+q)(n+2p—q—2), 1<qg<p-—2,
Ap—2.n = V2((n —1+4p)* = 1),

Ap—1n =123(n— 1+ p)?,

with coexact multiplicty

2 u , .
Meex,0,n = m]ﬂ(n —14+5)2p+n—1-3j),
9 P
cex,q,m — -1 1) (2 717',1§ 727
Meexan = Cion = o] ]H (n—1+j)(2p+n 7) q<p
i#qt1
9 P
Meex, —-2n = 7 a1 77,714’] 2p+n717‘77
J#p—1

2 , _
Meex,p—1,n = W H(n —1+j)2p+n—1-7j),
j=1

thus the indices fi4,,, are

fion = /P2(n(n+2p —2)) + (p — 1)2,
fgn = \/y2(n+q)(n+2p—q—2)—|—a3, 1<g<p-2,

fp—2n = V2 ((n—1+p)? —1)+1,
fip—1,n = v(n —1+p).

8.4. Some combinatorics
We introduce some notation. Let

Uq752p—1 = {mcex,q,n : )\q7n,52p—1},

denotes the sequence of the eigenvalues of the coexact g-forms of the Laplace operator over
the sphere of dimension 2p — 1 and radius 1. Let aq,...,a, be a finite sequence of real

Publicado pelo ICMC-USP
Sob a supervisao CPq/ICMC



244 L HARTMANN AND M. SPREAFICO

numbers. Then,

m
Hm—i—a] g em—jlar,...,am)z’
j=1

where the eq,...,e,, are elementary symmetrlc polynomials in aq, ..., a,,. Let define the
numbers:

di =(G—-q-1)2p—q—j—1),
forq=0,...,p—1,j#q+ 1, and

dq = (d?,d%,...,d\g+17~-')d§))7

where, as usual, the hat means the underling term is delated.

LEMMA 8.8.1. The sequence Uy_; 1is a totally regular sequence of spectral type with
infinite order, exponent and genus: e(Up—1) = g(Up—1) =2p — 1, and

¢(s,Up-1) _18,2 Zep 15 (AP H)CR (s — 29).

Proof. The first part of the statement follows from Lemma 6.6.2. In order to prove the
formula, note that {(s,U,—1) = v~°¢ (%, U, 1)52;:—1)7 where

p—
) )

C (5 U ) 1) o Meex,p—1,n o Z Meex,p—1,n

5 Yp—1,52%p - s - — 1\s

2 n=1 )‘;71,n,s2p71 n=1 (n+p—1)

Shifting n to n — p + 1, and observing that the numbers 1,...,p — 1 are roots of the
polynomial Z?;é ep—1—j(dP1)n? | we obtain

o0 oo

)2
—s Meex,p—1,n—p+1 1 n - (p _-7)
<(57Up—1) =v Z = £ = . 1 12 Z j

ns
n=p

2 s 2

7=0

Note that, using the formula of the lemma, ((s,U,—1) has an expansion near s = 2k + 1,
with £ =0,1,...,p— 1, of the following type:

2 1
C(s,Up-1) = mep—l—k(dp )m + Lp-12k41(5),
where the L,_1 2x+1(s) are regular function for £ =0,1,...,p— 1.
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COROLLARY 8.8.1. The function ((s,Up—1) has simple poles at s = 2k + 1, for k =
0,1,...,p—1, with residues

2
Res Uy_1)=—— " ¢, 1 p(d?P™).
5:261341—1 (s, P 1) l/2k+1(p —1)e €p—1 K ( )

LEMMA 8.8.2. The sequence U, is a totally regular sequence of spectral type with infinite

order, exponent and genus: e(U,) = g(U,) = 2p — 1, and (where i =+/—1)
s s+2t—2j5 . Oégt
¢l Ua) = 2p—q— 'Z< 2>Zep ()2 ( 2 ’mq> V2t

The function ((s,Uy) has simple poles at s = 2(p — k) — 1, with k =0,1,2

Proof. The first statement follows by Lemma 6.6.8. For the second one, consider the
sequence Hy p = {mcean S/ Agn,s2m-1 + } . Then ((s,Uy) =v=°C(s,H .z), and

’ 1/2

- m X,4q, 2 m x,q,n = -3
(5, Hyp) = Z T T ZZ 2) Heeman e 2 S (7E) (s 2t Hyo)'
— qn S2p—1 + h =1 =0 /\an%*l =0 t

Next observe that the zeta function associated to the sequence Hy g is

o0 o0
m m —
(o Hy) = o Uyt = 3 st = 37 et

S
= q n,52P=1 Aq,n—PH,SQP*l

9 00 HP;& il(nQ_(p_j)2)
B <2p—q—2'zp (n* —a2)

Recall that a? = df, and note that

P P

Zep]l n—a Zepjldq n—dq) = H(n2—dg+d‘;-)= 1—[(712—(;0—j)2)7
Jj=1, Jj=1,
Jj#q+1 J#q+1

and that the numbers n = 1,2,..., —a, are roots of this polynomial. Therefore, we can

write

pP—q—2
¢(2s,Hyp) = Zep 1—;(dY) | z2(s — j,iay) — Z n® —a2)""
2p q- —
= (2p Q* [Zep 1— J S_j7iaq)7
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and

> 1
2(s = jyiag) = Y 55—
2 ez

Expanding the binomial, as in [36], Section 2, z(s,a) = Zk o (3)a?*¢r(2s + 2k), and
hence z(s,a) has simple poles at s = % —k,k=0,1,2,.... Since

2 =
C(2s, Hyo) = E :ep—l—j(dq)z(s — Jyiayg),
¢'(2p —q = 2)! =

((2s, Hq,0) has simple poles at s = %—}—p—l—k, k=0,1,2,..., ((s, Hq o) has simple poles at
s=2(p—k)—1,k=0,1,2,..., and this completes the proof. |

COROLLARY 8.8.2. The function ((s,Uy) has simple poles at s = 2k + 1, for k =
0,1,...,p— 1, with residues

op—2k—1 PR 4 2k41 p-! -1 S
Res; ((s,Uq) = 5o———per ( ) > eplj(dq)(j_;_t)aq“‘)

s=2k+1 q'(2p —q—2)! e v? j=k+t

Proof. Since the value of the residue of the Riemann zeta function at s =1 is 1,

1, 2j+2k
_1 E\ a2
Resy z(s —j,a) = Res; z(s,a) = ( 2_+j+ )a )
szé—k szé—j—k J +k 2

for k =0,1,2,.... Considering ((2s, H, ), we have, for k=0,1,...,p—1,

Res; ((2s,Hy 0
o=L+k (25, Hoo) = 2p q—2

1 . 2j—2k
Z o3 +i-k\a
k 2 q

d'(2p—q-2)! 1y (@) ( j—k ) 2

and the thesis follows. |

The result contained in the next lemma follows by geometric reasons. However, we
present here a purely combinatoric proof.

LEMMA 8.8.3. Forall0 <q<p-—1, ¢(0,U, g20-1) = (—=1)7"1.

Proof. Consider the function

o0 o0 1
el nz::l n(n + 2t - n;1 (n2 —%)5—¢’
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Since

z(s — ¢ it) = Z ﬁ = Z <_S + C) (—1)7t% R(25 4 25 — 2¢),

n= 7=0 J
; c42c _ c 2
we have when s = 0, that z(—c,it) = (—1)t*°Cz(0) = (—1)“"' &~, and hence

t
1
Crels) = 2(s —ciit) = ) 2=y
n=1

and for ¢ =0 and s = 0 (;,0(0) = —1 — t. Next, consider ¢ > 0, then:

tzc t—1
— ct+1 2 2\c
Gal0) = (1) = S = "
For ¢ =0,...,p— 1, we have
- Mceex,q,n > Meex.g.n
CS,U S2p—1) = 7’(1’: ,q,
( q, ) — )\q%Szpfl ;((n+q)(n+2p_q_2))s
- f: _Meex.gn—g__
2 (nln —20,))°

Recalling the relation given in Section 8.4

p
H (n—g—1+j)(n+2p—q—1-7)

Meex,q,n—q — W
]:
i#at
P
(2p q—2)! ].1:1 )+
J#a+1
9 p—1

= oo 2 er—1-5(d) (n(n — 204)).
¢'(2p —q-2)! =

Thus

g 1
((s,Uy 520-1) = 2p .2 'Zep —j—1(d?) <C—aq7j(8)_2(n(n_2aq))5j>

n=1

T e )
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where

q 1 —
2 e O G gy ey

for 1 <n < g, by result of [42]. For s = 0, we obtain

C(0, Uy s201) = 2p po ,Zep j=1(d)Ca,.5(0)
:m (ep_1<dq> (-3-@-a-2+1)
+Zep —ja(d) (( 1y —pg(#—ai)ﬁ)
g2 —2q -2)! (ep-ald)
+j§_§ewl<dq> (( 1>j+1“23j pgmtabﬂ)
- (2p—2q—2) <( 1)q+1ql(2p_2q_2'
+§ep-j_1<dq) <(1)j+10§j - p;Z_:zmQ - ai)ﬂ)

To conclude the proof, note that the second term vanishes. For first, as showed in
the proof of Lemma 8.8.2, the numbers n = 1,2,..., —ay are roots of the polynomial

Ej 0 €p—j—1(d9)(n* — a2)?, and second:

P P
Zep] 1dq ZJ—ZEPJ 1 dq) = H (—dg+d?):— H(p—j)QZO.
i=1, =1,
et promil
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8.5. The proof of the conjecture
We need some notation. Set

2 kg1 R “l 4
D 7) 2 2(1—k)
@it = () X a2 T e,
I=ktt
F(q,k) =Resp ®og41,4(5), 1<k<p-—-1,
s=0

for0<g<p-—1,F(q,0)=2for 0 <¢g<p-—2,and F(p—1,0) = 1. Then, by Corollary
8.8.2, the residues of ((s,Uy), for 0 < ¢ <p—2, are

p—1—k 1
Res s,Uq) —D(q, k, t),
o 0= b 3 ot
for k=0,...,p—1, and when ¢ =p — 1:
sE’;:ilC(s’Up71) = mD(p - 17k70)7

with £ =0,...,p— 1. Now, for 0 < ¢ <p—1, it is easy to see that

p 1—k
1
I‘ii%o Pog1,4(5) SR;:}H C(s,Uq) 2;9“ tz:; ot D(q,k,1)
and hence
15 152 Fg k) 'S0 1
b sine(0) == ) Resy @ R Uy == . — k,t
q,smg( ) 2 Z Si%o 21€+1,Q<S) 82261cSJ1r1 C(S7 (I) 92 ~ p2k+1 pore 2t (q’ )
On the other side, set:
p—1 1 k
1 - -
Apm abS(ClSSIZI)IO( )= WQP(k)7 Qp(k) = Z N;(p, k),
k=0 j=0
where
(2p —1)! 1 (—1)k—d2i+1

N k) = ) TRk T D =) D

LEMMA 8.8.4. %Zg;é(— )7t} ing (0) s an odd polynomial in +.
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Proof. This follows by rearrangement of the finite sum:

1 P—l 1p—l p—1 p—1—k
5 0 q,smg ) = 1 - _1)qZF(Qa ZO V2(t+k)+1 (Qa kvt)
q= q= = t=
1P= 1 k
1 > V2k+1 Z )Y F(q,5)D(g,5,k — j)
k=0 7=0
1 p—1 k p—1
:Z V2k+1 ZZ QF (L (qaj7k7j)
k=0 7=0qg=0
|
Then, set:
1 p—1 p—1 1 k
§ (_1)qt:1,sing(0) = Z WQF(’C% Qp(k) = ZMj(pv k)
q=0 k=0 §=0
where
p—1
M;(p. k)= ) (=1)*F(q.j)D(q,j,k — j)
q=0
p—1 . 1
2F(q,5) (2p—2 o _1
= 1) —_227 J 2 ).

q:O( ) 4(2p —2)! q Zep 1 l—k

This shows that all we need to prove to prove the conjecture is the identity: M;(p, k) =
N;(p,k). This is in the next two lemmas. Before, we need some further notation and
combinatorics. First, recall that if

fr(x) =epn (:v2 —(p— 1)2,:102 —(p— 2)2, ot 12,x2) ,
then fr(ayq) = en(d?), and fi(z), for h > 1, is a polynomial of the following type:
fal) = > @)= =) = ( ) e Zch o8
0<j1<j2<... <jp<p—1

Second, we have the following four identities. The first three can be found in [15], 0.151.4,
0.154.5 and 0.154.6, but see [21] for a proof. The fourth is in [16], equation (5.3).

Publicado pelo ICMC-USP
Sob a supervisiao da CPq/ICMC



ANALYTIC TORSION OF CONES 251

> G () =G (0 ) = () o)
’Czn%(—l)” <Z> (a+ k)" =(=1)"n! (50)
kzj;(—l)” (Z) (a+ k)" ' =0, 1)
:0 CZI;) (l_—%k> - (Zt i) N 2"—’6(77(,2?15122 + 1) (52)

with 1 <n < N and o € R.

LEMMA 8.8.5. For 0 <k <p—1, we have that My(p, k) = No(p, k).

Proof. Since j =0,

B (i)
" 2p—1). 1 S

No k) = s — T =T =i @E £ 1) F

Consider first k£ # 0. Then,
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Using the identity in equation (51), the second term in the last line vanishes since
2s 4+ 21 < 2p — 2. Thus,

Mo(p, k) = (]f) p::(—l)qM<2pq2> ;- 22( 1 )(z-i)

B2 )L
)

L=\ ( p O\ D)!(2p— 12k
2\ k J\k+1) p (2k+1)!l 2v
o S ¢ r
Ko (p—k— 1! (2k+1) 22-1(p —1)! o(p, k)
Next, consider k = 0. Then
p—2 p—1 )
! =2 2 (3 1
M, = —1)¢ o ! 1
o0 =3 (1) w7 ) > fyslon) ()
pil 1 2p — 2 pil 1
- (=1)1 < > fp—l—l(aq)aq ( 2) -1+
q=0 (Qp— 2)' q o l
:p (_1)q ! 2p—2 S p a2r—2 _%
e G AN A=A AN
p—1

:Z::<—1>q(2p12<2p_2>§( —1—l> " (_l;> "
Sergtm( ) S ) ()

1= p ) DL C/ T W T W
2l \p1-\ 1) T o T iy )T 00
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LEMMA 8.8.6. For1l<j<p—1, we have that M;(p,k) = N;(p, k).

Proof. Note that j <k, and hence 1 < j <k < p— 1. Recall that

2
F(q,j) = 511 +Zk2a+1t04 +2Reso ®aj41p-1(5),

by Corollary 6.6.2. Set k11,0 = 2Resg,—g Paj+1,p—1(s). We split the proof in three cases.
First, for j =k < p — 1, we have

. _P—l F(q,5) (2p—2 p—1 N _%
M;(p,j) = q_o(_l)qw( q > l; ep—1-1(d?)ayg (l B j)
p—1 O‘gj 2 — 2 N L
= qgo(—l)q 2j +1)(2p —2)! ( ) Z fo—1-1(ag)a? 21—2j (l 2j)
+§kt'p_1(1)qgt<2p 2)Zf (o 2]( ;)
=0 7 = (2p — 2)! q — P q 1

Using the formula in equation (48) for the functions f,—1_;(ag), we get

pd 1 2 — 2\ X2 D 1
M;(p,j) = —1)9— a2p22la2l( gb)
) (;0( )(2J+1)(2p—2)!( q )l;(p—l—l> ‘ T\ -j
p— p—2p—2—1
1 2p—2 29+21
2J+1(2p2)!( )Z 2 e ]

=5 s=0

p_l 2p—2 D op_atat2i( —3

k oszrtJ( 2,)

e 0 2;0 2)( q )Z(p—l—l) ! I
1

,_.

_|_

+

M“"“‘M

l=y

1 217_2 L& 25+214+2t—2j %
+ koji1,e » (—1)7 (2p ) Z Z Cs 0y, [

t= q=0 1=j s=0

= 2p—2\ o9, 9 -3
p— 2
2j+1 j2 (- 2pf2 ( q )a E;<p1)<lj>

q=

R - p 7y 1 1 (2p — 1)l 291
_2(2j+1)§<p—1—z>(l_2j) T2 ) (1) (2j ) 2r
_ 1 (2p—1)! 27 o
2+ D(p—1—45) (25 +1)1122p=1 (p—1)! = N;(p,7),

. o~
[l
- o
’U »Q

(=)
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where the first three terms in the first equation vanish because s+! < p—1andt—j < —1.
The second case is j = k = p — 1. Then,

-1
M, 1 (pop ] qp1)<2p2>
p— )
qo 2(2p-2)t'\ ¢
p—1 a2p—2 2p_2
_qz 2p—1)(2p—2)!< q )

p—2 2t 2 — 2
Z 2J+1tz 2p—2)< q )

=0

-2
n Z k23+1 t 1 af;t—l 2p—2
22p—2)!\p—1

2p — 2
T22p-1) H%HOZ 2(2p — 2)’< q >

1 2p — 2

— o S Y 2t
R TP E] p—1>

ko 1 2p — 2
n 23+1,o(_1)p71 P )

2 22p—-2)!1\p—1
__ 1 R G ) N - YRS WO G O
2(2p—1) 2 (p-Dip—-1)! 2 (p-Dip—-1)!
)

1
= :N _ — 1 .
sy 1) 1(p,p

Publicado pelo ICMC-USP
Sob a supervisiao da CPq/ICMC
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The last case is 1 < 7 < k. Then,

=

p—

e ()3 o),
() :i(‘”q sy ) ; <p e ()
( )g—”q@jﬂiap—z ()8 % ()
D Bt TE )
()%

2 — 2 p 2! 1
- 25+21+4+2t—275 2
k2a+1 tz 2p 2 (29 — 2\ ( q CsQy s2lt J (l 2k:>

M;(p, k)

l

'EN

*U
,_.

J
J

(2J+1)t2p 2)! (229 2) " 22( -1-1 )(l_ék)

()5
(a5 )
i

k

-Q

= N;(p, k).

1-j (2p — !
k- > 202/ + 1) (p— 1 — k)!(2k + 1)l12p—F~1
_(=1)k=3 27 (2K — DN 1 (2p—1)N
(K ,]>, 2k (25 — DN 2(25 + 1) (p — 1 — k)!(2k + 1)12p—k—1
_(—1)F 21 1 (2p —1)!
(

k—y)' 220 1(p— 1)1 (2j + DI (p— 1 — k)I(2k + 1)

9. THE PROOF OF THEOREM 77: LOW DIMENSIONAL CASES

We prove the two cases m = 2p — 1 = 3, and m = 2p — 1 = 5 independently, in the
following two subsections. In the last subsection we give some remarks on the general case.
Even if the proofs of the two cases m = 3 and m = 5 follow the same line, we prefer to
give details separately, for two reasons: first, in order to improve readability, and second
to avoid a problem that will be made clear in Section 9.3 below. In each case the proof is
in two parts: in the first we compute the anomaly boundary term, as defined in Section
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4.2, in the second we compute the singular term in the analytic torsion, using Proposition
7.7.2.

9.1. Casem =3
9.1.1. Part 1

Since m = 3, the unique terms that give non trivial contribution in the Berezin integral
appearing in equation (14) are those homogeneous of degree 3. By definition

é_“2512:1— 6—u28f+...,

1
e 2

N

(recall that © = Q, see Section 4.2) and therefore the terms of degree 3 in

oo

—10_u2s? 1 k—1 ok
e 2 1 —)U S
% 1
;F(frl)
are
2 5.3 1 =
———u*Sy — —=085].
3/m LT m ot

Applying the definition in equation (14), this gives

B(Vl);/ol

;/01 /B (—3\2/7?16253 - \}Efzs» du (53)

By equation (30)

3
1 [ & 3
S} = -3 (Z bi A é*,;) = S dvoly N &] NE5 N &5, (54)
k=1
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This follows by direct calculation. For example
1< ’
St=7 (Zb;;m@;;)
k=1
1 * Ak * Ak * Ak 2
= Z(bl NE+ b5 N és+ by Neés)

1
= JOTAGTADIAG - B NG ABTAE + )

—_

= (b ANDsNETNES+ - —byANb]NEe3NET+...)

—

= (=20 Ay ANETNES+...)

e

3
1
=—5 D AN AE,
j<k=1

while
(b AND5 ANET NES) A (b NES) =b] ANbSADE ANETNES N e

Thus,

B 3
/ S} = —dvol,.
42

By equations (30) and (13),

3 3
2 1 ~
08 =~ QuAépne A<Zb;;Aé;;>.
k=1 k=1
Direct calculations give
2 1
S =— 5(923/\17’{ — Qg AD5 4+ Qua ADS) AN ETAESNES

1 Ak ~ Ak
== §(R2332 + Ri3z1 + Ri201)€] A é5 A é;
1. A% Ak Ak
= — 1761 Ney Aeg,

and hence

B . 1 3 ~
/ QSl e 47.[% kgz:l Rkllkd’UOlg.
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Substitution in equation (53) gives

1 (B 1 (B
B(V1)_4\f QSI_Q\f i
1 . 1

= 82 Tdvol, 1572 dvolg

By the formula in equation (15), the anomaly boundary term is

1 1
Apabs(OCW) = —— rdvoly = 5% dvoly.
BM,abs (0CIW) 1672 /achT Y T a2 /aC,W "

9.1.2. Part 2
By Proposition 7.7.2, with p = 2,

1 1
1 -
log Tying (C1W) =3 Z(—l)q ZReso Dojt1,4(s) Rgsll Ceex (s, A 4 ag) .
q=0 j=0 =0 s=j+3
Since p =2, ap = —1 and a1 = 0. Since there are no exact 0-forms

Geos (5,20 +03) = (5,40 + a3)
By Lemma 6.6.8,

R6831 ¢ (s, A 4 ag) = Res; ¢ (s, A(O)) ,

s=% s=4
R € (5,80 o) = ey ¢ (5. 80) e ¢ (. 4)

By duality (see Section 2.5)
Ceex (8, AM) = (5, A) — G5, A1) = (5, A1) = Ceex(5,A),
and also

Res; (s, AM) = —3Res; ¢(s, A"),

2 2
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Putting all together, we obtain

1 -
log Tsing (CIW) = 3 (Re%o Dy o(s) + Rgsoo Q1 4(s) + 3RS%O @171(5)> Re§1 (s, A(O))

2

1 1 .
+ 3 (Reso D3 1(s) + Reso P3o(s) — 3 Resp ®1,0(s) — 3Resg @3,1(8)> Res; (s, A(O)).
s=0 s=0 s=0 s=0 s=3

2

By Corollaries 6.6.1 (when ¢ = 1), and 6.6.2 (when ¢ = 0)

2
® =1 P =
Reso 11(s) =1, Res 31(8) = 515
214
RGSO (I)l 0(8) = 2, RGSO ‘1)3 0(8) = —.
s=0 s=0 315

This gives

N 1 -
log Tsing (CiW) = 3Resy ((s, A(O)) ~ 3 Res; ((s, A(O)),
s=1 s=32

2 2

and by Propositions 3.3.1 and 3.3.3

1

1
log Tgine (CIW) = 7dvol, — ——= dvol,.
08 Tying (C1WV) 162 /achT voly — 51— /aclw vol,,

9.2. Casem =25
9.2.1. Part 1

Since m = 5, the unique terms that gives non trivial contribution in the Berezin integral
appearing in equation (14) are those homogeneous of degree 5. After some calculation, the
terms of degree 3 in

oo

—10-u2s? 1 k—1 ck
e 2 1 Z = u” ST
k=1 r (5 + 1)
are
1, 1,2
= 85 - 295«3
5ﬁu 1 + 3ﬁu 1 +

Integration in wu, as in equation (14) gives

1

025,
4yr
B(V)) = /B Loy Lipges | Ling (56)
W 251 " 9 VIR A
We calculate the three terms appearing in the integrand.
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Proceeding as for equations (55), starting from equation (30), we obtain

5
1
532—5 Db AL AE Néj,

Jj<k=1
and
2
1 1< 5
ST =(S)Si=—5 | -5 X HAsiAgAG | dbiag
j<k=1 k=1

) Ak Ak A Ak A A A A
= —Zdvolg NETNEsNEsNeéy N ez,

and recalling the definition in (13) of fl,

3
> QuAEEAe | Advolg NETNESNESNEGAES
k,l=1

0S8 =

ool w ool w

F Advoly AEENESNESNEL AL

The last term is

3 5
= 1 § * 2 : * Aok
9281 —2? le AN ek AN el ( bk AN 6k> .
k=1 k=1

This term requires some noisy explicit calculations, that we omit here. The result is

0%s,

1 . .
—s (4|R\2 —16|Ric|? + 4%2) dvoly NEEAESAELNEL A e

1 - 1 - 1
(—8|R|2 - 5|Rz'c|2 — 8%2) dvoly N & NéE5 N5 NeEs Nes.
Substitution in equation (56) gives

B(V,) = 3dvol,  Tdvol, |R|?dvol,, B |Ric|>dvol,  72dvol,
VT 0n% 48 6473 1673 6473

By the formula in equation (15), the anomaly boundary term is

3 1 1 -
ApM abs(OC, W) =—— dvol, — —— Fdvol, + —— R|%dvol
BM,abs (0CI W) 8073/@ch volg 967T3~/801WT vog+128ﬂ3/aclw |*dvol,,
1

~ 1
- |Ric|*dvol, + 7/ 72dvol,,.
3273 /mw 9712873 Joo,w g
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9.2.2. Part 2
By Proposition 7.7.2, with p = 3,

2 2
1 -
log Tsing (C1W) =3 E (=1) E RSSOO Pajt1,4(5) Rest Ceex <87A(q) +04(21)~
i=0 °7

s:j+%

Since p =3, agp = —2, a1 = —1, and ay = 0. By duality (see Section 2.5)

Coex(3, A®) = ¢(5,A),
Goox (5, A = ¢(5, AW) — (5, AW = ¢(5, A1) — (oo (s, ALD),
Coex (8, AP = (5, A®)) — (o (5, AP)) = ¢(5,AP)) = Coex(s, A1)
= ((s,A®) = ((s,AM) + ((5,A).

By Lemma 6.6.8, with ¢ =0 and 1,
Psigsgl ¢ (s AW@ 4 ag) = }s{isgl ¢ (S A(q)) 7
132%1 ¢ (s, A 4 af]) = 3221 ¢ (S’ A(q)) B
o € (804 07) = e € (5 87) - s (55 e ¢ (8.

By Proposition 3.3.1

A €0,4 1 ~2 B 12 (2
Res; ¢(s,A0)) = = = <5/ 7dvol —2/ | Ric|“dvol —|—2/ |R|*dvol ),
s:%l ( ) I(1/2)  2°32573 ac,Ww J ac, W 7 aC,W g
~ 1
AOy= 2 ° Fdvol
E{E?C(S’ )= TG/2) ~ 96 o
< 1
A0y = 200 dvol,;
Resr € A = 5579) = 243 Jo
Res; ¢(s,AM)) = “l4
tem e, T(1/2)
1 - -
= —35/ 72dvol —|—170/ Ric|*dvol —20/ R|*dvol >,
253257r3< oC,W J ac,W| | J 801W| | !
- 1 -
Ay = 92 _ / Fdvol, = — R A©
Rost o 80 = 1572) = 7 06m3 oy %0 = T Ry < AT,
- 5 -
Ay = Lo _ 2 dvoly = 5 R, A0,
}jisglg(& ) I'(5/2) 2473 Joc,w o SESgIC(& )
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A(Q) _ €2.4
1 . .
=—— 50/ #2dvol —200/ | Ric|*dvol +110/ | R|2dvol )
253257T3( 9w I oW I 90, W I
A2y €2 _ 8 - __ A
R €05, 8) = 2 = = [y 70010 = -8R (0, A,
- 10 -
R Ay = 220 dvol, = 10 R, LAY,
sisgl e ) I'(5/2) 2473 Joo,w o — s )

2

Summing up, after some calculations, we obtain
logTing (C1WV)

1 -
:i (RGSO @1’0(8) + RGSO @1’1(8) + ReSO (1)1’2 (S)) Re51 C(S, A(O))
s=0 s=0 s=0 s=%

1 ~
~5 <Reso @4 1(s) + Reso @172(8)> Res; ¢(s, AM)
s=0 s=0 1

s=3

1 -
+ = Resp @1 2(s) Resy ((s, A(z))
2 s=0 1

S:§

1 1 ~
+ ReSo (2(1’3,0(8) + ‘1)371(8) — (1’3,2(8) — ‘1)170(8) — ‘1)1,1(5)) RGS?} C(S, A(O))

s=0 2
2

1 3 3 ~
+ ReSOo (2(1)5,0(8) — 2@571(8) + 3@5’2(8) - 3@3’0(8) + Z(I)Lo(S) + 4(1)171(8)> ReS:l C(s, A(O))

-2

By Corollaries 6.6.1 (when ¢ = 2), and 6.6.2 (when ¢ =0, 1)

2 346
) =1 P = __ P —_ 0

Pii%o 1,2(5) s fiisoo 3,2(8) 315’ fiisoo 5,2(8) 92522
214 31706

R S q) :2 R S (D = — R 3 (I) _

teso 11(s) =2, deso Pa.i(s) = 375 teso ®5.1(s) = 7075

844 487876
Resg @ =2 Resg ®- = — Resg @ = .
teso r0(s) =2, teso Pao(s) = 315 teso Ps.0(s) = 75575

This gives

5 N 3 < 1 -
log Ting (C1W) =5 Resll C(s, A0y — 5 Resll C(s, AWy + B Resil C(s,A®)
s=3 s= s=3
_ 9 .
— Res; ¢(s, A®) + = Res; ¢(s,A?),
s=3 10 s=35

2
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and by Propositions 3.3.1 and 3.3.3

3 1 -
log Tyine (CIW) =—— dvol, — — dvol R?dvol
0g Tying (C1W) 80773/30LW vol, 967r3/30WTU0 +1283/801W| |*dvol,
1
- Ric|*dvol, #2dvol .
9.3 /aclwl ZC| vo +128 3/¢90le vol,

9.3. A remark on the general case

Assume m = 2p — 1 is odd, p > 1. Then, logTying(C:W) depends only the functions
@y, 4(s) and ((s, A@), by Proposition 7.7.2. Tt follows from the definition in Section 3.3
that the functions @y 4(s) are universal functions that depend only on the decomposition of
the spectrum of the Laplace operator on forms on the cone on the spectrum of the Laplace
operator on forms on the section. This decomposition is independent from the section, so
the functions @ 4(s) do not depend on the particular section (they obviously depend on the
dimension). This follows also from Corollaries 6.6.1 and 6.6.2. Therefore, we can use the
functions @y 4(s) calculated when the section is a sphere of odd dimension. It follows that
log Tsing (C;W) is a polynomial in the residues of the functions ((s, AW) | with coefficients
that are the same as in the case when W is a sphere. Now, the residues of ((s, A(q)) are
polynomials in the coeflicients e, ; of the asymptotic expansion of the heat kernel of the
Laplacian on forms on (W, g). In turn, the e, ; are the integrals of some polynomial in the
metric tensor g, its inverse and its derivatives. By work of P. Gilkey [14], the coefficients
of these polynomial are universal, namely are the same for any manifold W [14] Theorem
1.8.3. More precisely, by the above considerations and invariance theory as developed in
[14] Theorem 4.1.9, it follows that

log Tying (Ci1W) :/ P(z),
oC,

where P belongs to the ring of all invariant polynomials in the derivative of the metric
defined for manifolds of dimension m, B,,(g) (see [14] Section 2.1.4, and Lemma 2.4.2).
Bases for this ring are given in terms of covariant derivatives of the curvature tensor using
H. Weyl invariants of the orthogonal groups [14] Section 2.4.3. It is possible to prove
that these polynomial are universal up to a constant factor depending on the dimension
P = ¢,,Q, where @) does not depends on the dimension [14] Lemma 4.1.4 and Theorem
4.1.9.

On the other side, by inspection of [3], the term Apnabs(OC;W) is also the integral
of some universal polynomial in some tensorial quantities constructed from the metric g.
Therefore

ApM,abs (OCITW) = / R(z),
ac,

R € B,,(g). Fixing a base for B,,,(g), the proof of Theorem 1.1.3 in the general case follows
if we are able to prove that P(z) — R(z) = 0, for (W, g).
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We have some remarks on this point. First, by Theorem 1.1.2, it follows that P(x) —
R(z) =0, for (W,g) = (5525;17915) Unfortunately, this does not implies the general case.
For using the base for B,,(g) in Theorem 4.1.9 of [14], we see that there are variable in
P(z) — R(x) that involves derivative of the curvature when m > 3. Second, by the same
argument, the proof of Theorem 1.1.3 in the case m = 5 is a fundamental indication for the
general case: indeed if m < 5 the proof of Theorem 1.1.3 follows by that of Theorem 1.1.2,
by the previous considerations. Third, the proof of the general case along this line depends
on the availability of some further information on the coefficients of the heat asymptotic.
A recursion relation should probably be sufficient. However, this seems at present an hard

problem (see remarks and references in Section 4.1.7 of [14].

10. THE PROOF OF THEOREM 7??: THE GENERAL CASE

Since the argument is very closed to the one described in details in the previous sections,
we will just sketch it here. We consider the conical frustum (or more precisely its external
surface) that is the compact connected oriented Riemannian manifold

C[ll,ll]W = [ll,lg} X W,

with 0 < Iy < Iy, and with metric

g1 = dz @ dz + z2g.

We study the analytic torsion of (7, ;,) with relative boundary conditions at z = [; and
absolute boundary condition at = = lo, and we respect to the trivial representation for the
fundamental group. We denote by 0, ,2C, 1, W, or simply 9, /2, the two boundaries, and
by log Tre1 8, ,abs 0, (Cfiy,1,)W) the torsion.

10.1. Spectrum

First, we describe the spectrum of the Laplace operator on forms. The proofs of the
next lemmas are analogous to the proofs of Lemmas 4.4.2 and 4.4.3 and will be omitted.

LEMMA 10.10.1. With the notation of Lemma 4.4.2, assuming that pq , is not an inte-
ger, all the solutions of the equation Au = \?u, with X # 0, are convergent sums of forms
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of the following twelve types:

w'('f,)l,n,)\ =z Jl"q,n ()\x)wggzc,n?
w@,)l,n,)\ ::ranqu,n (/\w)éﬁggl,m
U0 x =22 Ty, QM)A D) + a0 Ty, (A2))da A )
Dy =Y O)del ) 0, (201 Y,, (Ae))da A el
PO =2, (om0 g, () dplh)

+ zo‘q*ﬁlJMfl‘n (A\x)dx A cﬁci(pg‘é;i)
P9, =g, (e m0Y, L () dpl Y

+ %17y, (Az)dz A ddplaD)

Hq—1,n cex,n
W0,y =L (a)da A dplis?)
WOy 8 =2y, Oa)d A dplS?)

Wi =20 e, A0)elD
1/)81,)E7)\ :-Tanaq‘ ()\x)gog)rm

Qg— —1
1/’.5??@»\ =02 (29" Jjo,_, | (AT))dx A Pl

har,n

1;[}81))0))\ :6x(xaq_l}/\a471|()‘x))dx A @(q—l)

har,n *

When piq.n 15 an integer the — solutions must be modified including some logarithmic
term (see for example [41] for a set of linear independent solutions of the Bessel equation,).

Note that the forms of types 1, 3 and E are coexact, those of types 2, 4 and O exacts.
The operator d sends forms of types 1, 3 and E in forms of types 2, 4 and O, while df
sends forms of types 2, 4 and O in forms of types 1, 3 and E, respectively. The Hodge
operator sends forms of type 1 in forms of type 4, 2 in 3, and F in 0. Define the functions,

for ¢ # 0,

Ee(z) = Ju(lox) (Y, (ha) + haY,(hz)) — Y, (lex) (e (hx) + had, (b)),

Fuo(x) = Ju(hx)(cYu(lox) + aY,(lax)) — Yu(hz) (e, (lox) + oz ] (lox)),

and when ¢ =0,

LEMMA 10.10.2. The positive part of the spectrum of the Laplace operator on forms on

Cly i)W,

with relative boundary conditions on 01CY, 1,)W and absolute boundary condi-
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tions on 02CY, 1,)W is:

o0

(@) _ L f2 e P2
SP4 Al d1,abs by — | Mcex,q,n * fuq,n,aq,k - U Meex,g—1,n fuqfl,n,aqfl,k N

s

2 ° 2 o
U {mceX;q—Ln : Mq71’7L’7aq717k}7L,k:1 U {mcex7q—2,n . M‘I*Z*"“iaquk}n,k:l
.2
U {mhar,q,O : f\aq\,aq,k}

> ;2
U {mhar,qfl,() : f|aq_1\,aq_1,k}
With absolute boundary conditions on 01Cy, 1)W and relative boundary conditions on

oo

k=1 k=1

(920[11712]W 18:
oo oo
S A(‘I) =Im . —2s m _ . —2s
p+ abs 91,rel 95 cex,q,n Hq,n,Qq,k n k=1 U cex,q—1,n g—1,n,0q—1,k k=1
F—2s > F—2s e
U {mcex,q—lm . fﬂq—l,m—uq—lvk}n’kzl U {mcex,q—Q,n : qu—l,na—aq—%k}n’k:l

) )
U {mhar,q : f|aq|,aq,k}k:1 ) {mhar,qfl : f|aq_1\,aq_1,k}k:1 )

where the f, .1 are the zeros of the function F, .(x), the f%c,k are the zeros of the function

F,c(x), ce R, og and pgn are defined in Lemma 4.4.2.

10.2. Torsion zeta function

We define the torsion zeta function as in Section 2.5 by (for Re(s) > L;l)
1 © q (9)
tabs,rel(s) = 5 (71) q((s, Aa‘bs,lrel)'
q=1

By a proof similar to the one of Theorem 5.5.1, we obtain the expected duality:

log Tabs 0y rel 0, (Cliy 1)W) = (=1)" 10g Trel 8y ,abs 0, (Cliy 1) W)-

We proceed assuming dimW = 2p — 1 odd, and assuming relative boundary condition
on 01Cy, 1,)W and absolute boundary condition on ds; for notational convenience, we will
omit the abs, rel subscript. We define the functions

(z)
()
Note that, with these definitions Fy(z) = Fy(z) and Fy(z) = Fi(z) (remember that
Y_,n(x) = (-1)"Y,(z) and J_,(x) = (—=1)"J,(x)). The proof of the following lemma is
analogous to the proof of Lemma 6.6.1. The main step is to prove that fia,|a,.k = f-aq_1.k>
that fla, ag.k = fag,ks Whenp—1 < ¢ < 2p—1, and that fo,o = f1,5, where the f.x, hatfe,
are the zeros of the functions F,, F,, respectively.

Je(loz)Ye 1 (liw) — Ye(low) Jo1 (L),
Jc(llx)Y;,1(12£L‘) — K(lll')Jc,l(lQl‘).

E.
F.
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LEMMA 10.10.3.

1 p—2 00
_ - § /‘ —2s —2s _ F—2s _ F—2s
72 mcex,q,n ('ffufq,nvatlvk + f“qm»_aq»k fﬂq,naaqvk fﬂq,nv_aq7k>
q=0 n,k=1
1 oo
p—1-= 2s Ff—2s
D75 D meexpron (£ 0k = Fuok)
n,k=1
1 p—1 00
—2s F—2s
=5 D NRH, W @) > (122 - L)
q=0 k=1
We set
oo oo
_ § 2s 7 _ E 2s
S) - Meex,q, nf/tq n,xog,k? Z‘Li(s) - Mecex,q, nf/tq n,Etag,k?
n,k=1 n,k=1

Z mcex,p lnfp 1,n,0,k? Zp 1:|: Z mcex,p lnfp 1.m,0,k? (57)

n,k=1 n,k=1

i(f*aq Lk aq 1k>

k=1

for0<g<p-—1, and

tp—1(s) = Zp_1(s) = Zp_1(s),

A (59)
tq(s) = Zg+(8) + Zg,—(8) = Zg,+(5) — Zg,—(s), 0<qg<p-—2
Then,

p—2
1) =5 S (Zost(5) + Zo-(5) = 20,2 (5) = 20, () + (-1 5 (Zpa(s) = Zpa ()

q=0

5 S )RH, (7 Q) (s)
q=0
=5 S 1)y(5) — 5 S (1)K (DCT Q)% ()

q=0 q=0
and
IOgTrel O1,abs 0o (C[ll,lg]W) = t/(O) :% Y (—1)qt;(0) — % Y (—1)quHq(8ClW; Q)Z;(O)

q=0 q=0

(59)
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10.3. Expansions of the logarithmic Gamma functions

We study the zeta functions Z, +, Z4 4, by the method of Section 3. The double series
associated to these zeta functions, as defined in equation (57), are denoted by Si,,, Siaq.
We show that all these double sequences are spectrally decomposable on the sequence Uy,
defined at the beginning of Section 6.2. We verify all requirements precisely as in Sections
6.1 and 6.2. First, we need suitable representation for the associated logarithmic Gamma
functions. Proceeding as in Section 6.2, consider for example the function

Fo(z) = Ju(laz)(cY,(li2) + llel:(llz)) — Y, (lo2) (e, (lhz) + llzJ;L(llz)).

Recalling the series definition of the Bessel function [15]pg. 910, near z = 0,

DN el
neto = (G a) -5 (-

Thus F), .(2) is an even function of z, and we obtain the product representation

17/ c (1% M\ I 22
F, —— 2 4 1)z (2 1 1— = 1.
pel?) w<(z¢+zs> u<l’f w) ) {5

Recalling that

COos Um 1

Ju(z) —

Y.(2) = J_u(2), I_,.(2)= %sin,mrK#(z) +1,(2),

sin pm

and that (when —7 < arg(z) < %) Ju(iz) = e2'1,(2), and J}(iz) = e2#e2'I)(z), we
obtain

s i 2 .
(i) = (Mot £ 20 1,() - 2o E o)
s

sin pum sin pm

4 . i , ,
Y!(iz) = e % CSHT giny © = ) (z) — 2 o~Fig-Fing (2).
# sin um sin um T "

So
F,c(iz) = % (=Ku(l2z)(cly(liz) + h20, (1 2) + Lu(lez) (cK (i 2) + L 2K, (1 2)))

and if we define (for —m < arg(z) < ) Gu.c(z) = i*F, o(i2),

s

1//1E c (1% MY\ 1 22
o= (5 5) - (55D T (105).
g m\\if ) o\l ) ) ek

Proceeding in the similar way
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F oiz) = % (Kou(h2)(elu(la2) + 120 (122)) — L(L2) (K,

()T 1+

Q
=
)
—~
N
~—
|
"E’jj)

IR A ey
=z ()
. 2
Foo(iz) = - (=Ku(l22)I) (I12) + I, (l22) K, (1 2))
1[N\ 22
(2 o= .
Lar (zf; i kl;[l e
(Ku(lLi2)I,(lzz) — 1,(li2) K, (122)))

- & o 1 (N 22
G%O(Z):F#,O(ZZ):% E-i—g H 14+ > .

k=1 0,0,k

GM,O(Z) = i2FM,O(i2) =

These give the following representations for the logarithmic Gamma functions with z =

V=2,

logD(=A, Sta,) = logH <1+ f2( A) )

Hq,n,tag,k

(ng) + ZQZKL(ZQZ))) 5

22 ) .
2 )
f ¢k

m

269

1 1/21’!11” l{“l“lw" aq ll;q.n l,lllfq,n
_logG“‘L"’iaq( _)\) +1Og7 +10g Hq,n Hq,n + Hgn — jHqmn
™ 0l Iy Hqn \ 1} 15
N (=X)
logI'(—\, S+qa,) = logH 14— >
Mq n,xag,k
N 1 ly"-L" l/‘qfﬂ l”q,n l,“fq,n
__logGunqiaq(\/—)\)—i—log+log<( iqn + Lqﬂ) Y </21 _ 1
: T e 5" Hqn \I1" 5"
A
log T'(— A, So) 7710gH <1+ 2( ) )
fﬂp lng k
Hq,n l#q-,n
=—logGp, , 1 0(V=A)— 3 log —A—logl; + log + log (l“q — + lbq'">
2
(=)
log (=, Sp) = —logH 14—
:Ll‘p 1,n 0 k
1 Hp—1,n l:ﬁltp—l,n
= 7logGMp Lo(V=X) — ilogf)\ log [ +log + log <l“” — + luan)
2

These representations and uniform asymptotic expansions of Bessel functions and their
derivative (see the proof of Lemma 6.6.4 for the functions I, and [28] pg. 376 for the
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functions K,) will give the expansion required in equation (19) of Definition 3.3.1. Let see
one case in some details. We have

lOg F(*)h Sn,:l:aq /:ug,n) =

i I N
—logGy, . +a, (HgnV—A) +log p + log + T .

Hq,n Hq,n Hq,n - Hq,n
Iy Iy Han \ 1y I

Using the cited expansions we obtain

1 L(1+/1+1222) 1. (1+132?)
log G..(pz) = log — + ( 141322 — 1+l222>+ lo — + ~log g 50
8 Gpc(pz) =log — + \/ 2 \/ i H gl1(1+ 1122 4 1+ 1222)

2p—1 j—1
1 ; i -
+log | 1+ E o (Uj(lzz)+(—1)fwc’j(llz)+E (1) kUk(zzz)WC,jk(llz)> +o(u) |,
j=1

k=1
where
c
Wei(z) =Vi(z) - —=U,_ )
7./(2) ](Z) m J 1(Z)
Thus
Io(1 4+ /1 —12)
108 G, . 2y (g V=) = fgm <\/1 —BA - /1- 1§A> + g log ZQEl . ﬁ;
1 — 2
2p—1
11, (1=12)) ljta,(N) o
log — + = log ~o 17 20Eaq \ 7 p
TsT T Ogu_ng)*; W)
with
aO,iaq ()\) = 1a

aj.+a, ()\) = Uj(ZQ\/TA) + (—l)jWia(I’j(ll\/j)\) + z_: Uk(ZQ\/T/\)(—I)jikWiamj_k(h\/j),
k=1

ll,:l:aq ()‘) = Ql,+a, ()\);

j—1

j — k
ljta,(N) = a5 +a,(A) — Z J 7 Ak, ta, (MNl—k+a, (A).
k=1

Substituting in the log (= A, Sy +a,/12.,,), We have
lo(1++/1—13))
_ 2y _ _ 72y _2y ) — 2 1
log T(=A, S oy /Myn) = —Han (\/1 IZA \/1 ll)\> Hq.n log WY

1 (1= & e,V R A W VI A S _
— =1 A g 1 q 2 1 2p ]
1% 12)) > 7 +log [ + R T + Opg,n)

Hg,n — 7Hq.n
j=1 HMan Han \y ly

Publicado pelo ICMC-USP
Sob a supervisiao da CPq/ICMC



ANALYTIC TORSION OF CONES 271

Proceeding in a similar way we obtain

) (1+ /115N
— 2 = — - 2 - - ? - 2
log F( /\7 Sn,iaq/u'q,n) = THqn (\/1 12)\ \/1 llA) ,qul ll 1+ \/ﬁ
1 (1 _ 12)\) 2p—1 [j e ()\) lgfq,n li‘#q,n o l#q,n l#q,n
— Zlog %) dteas) 4 + | e
15BNy — ) T Tl o +ol

Hq,n Haq,n Hq,n
= Han ly Pgn \1 Iy

1 2P),
with

CAlO,:I:ozq ()‘) = ]-7

@20, (N) = Wea,j(l2V=2) + (=1)U; (L V=X) + z_:(_l)kUk(ll\/TA)Wianfk(h\/j)\)a
k=1

[1,iaq ()\) = dl,:l:ozq (A)a

j—1

lj,:l:aq ()‘) = aj’ioéq Z j

CLk :taq )ljfk,:i:aq <)\)
k=1

. ! (14 /1—2X)
2 2 2 2(
108 T(=\, Sn0/t2 1 ) = — iy 1n<\/1—l A1 /\) " HW
1 1=y 20 I _2p
_ZIO 1712)\ Z ] +10g(lﬂpln+ >+O( )

- lgp,m Hp—1n
with
doo(N) =1,
d50(0) = Vi (lV'=X) + (~ 1)U (1iV/=X) + jf(—nm(hﬁ)mazﬁ»
b o(A) = a1 0(N), .
.0V Z] )j-r0(2).

lo(1++/1— 12X
10g T(=A, Sn0/ 115, 1) = —Hp—1,n <\/1 - \/1 _ l%\) iy 1 log lzgl - \/\/%i
1 i3
1 1— 2\ 2p—1 Lol =t pHp—in
— —log @ ]70( ) + log <li”1'” + l}tpl,n> +O(p,, Fop— 1 n)
1 2

Publicado pelo ICMC-USP
Sob a supervisao CPq/ICMC



272 L HARTMANN AND M. SPREAFICO

with
aoo(A) =1,
ajo(A) = Uj(laV=N) + (=1)7V; (V=X +ZUk (I V=) (=1Y " V(v =),
l1,0(A) = a1,0(N),
o) = a5000 ~ 31 Far o0 400

k=1

We conclude this section with the expansions for large A, accordingly to equation (21).
Using classical expansions of Bessel functions I,u and K, and their derivative for large
argument, we obtain the expansions of the functions G and G, and then those for the
Gamma functions:

log F(—)\, Sn,iaq//hz;,n) ~

1 ll lgq,n llllq,n qu n lﬂq n 1
~ — lo —1 —A—=log—=+1
i (B ) 2 () o o).
IOgF(_)‘aS’n,iaq/Mg,n) ~
1 12 lﬂq,n lﬂq.n qu n lHq \n 1
~— lo —1)V=X—=log = +1lo <(2 + = +0|(—
,U,q,n( 2 1) 2 g ll g lian ll‘q,n //Lq, lﬂq n l#q n \/7)\
) lll«p 1,n lll«p 1,n 1
log I'(=A, Sno/bp—1n) ~ —tp-1n(lz = L)V=A+ 5 log l1 2 +log <lup T l”” T ) +0 <\/—>\>
N .1 e 1
IOgF(—)\, Sn,O/:U’pfl,'rJ ~ _Mpfl,n( A+ S 9 log Iy + log (lup 1,n lup 1 n> + O (ﬂ)

10.4. The function t,(s)

By definition in equation (58), we need to consider the difference between log I'(—A, Sn. +a, /tiq,n)
and logI'(=\, Sy +a, /lgn). The expansions given in the previous subsection give expan-
sion for large

logr(_Aa Sn,aq//f['q,n) + IOgF(_)‘v Sn,aq//’éq,n) - logr(_)‘7 gn,aq //f"q,n) - IOgF(_)‘v gn,—aq //J/q,n) =
2p—1

(1-X\3) 1 . - -2
=log —=~ + —(l,a,(A) + 1 —a,(A) =l a,(N) =1 —a, (N) + Oy 1),
(17)\[%) ; ,Uf;.n(J (A) +1; (M) J (N J (A) (Mq )

and for large A
logF(—/\, Sn,a /.uq,n) + logF(f/\, Sn,aq/.uq,n) - logF(f)\, gn,aq /,uq,n) - logF(f)\, Sn,—aq /:Uq,n) =

Iy 1
=21 +0 .
Ogll <\/—)\>
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Proceeding as in the proof of Lemma 6.6.14, we obtain

I2
a0,0,q,n = 2 IOg 77
1
ap,1,q,n = Oa
b2j-1,00.4 =0, b2j-1,01.4 =0,

and hence

l Mg.n Iy o=~ [—s . .o
Ap,0,4(s) = 2log l? Z ’u2qs = QIngZ ( i >a(21](cc1(s + 7, A,
q,n 3=0

n=1

AO,I,q (S) = 0

This gives

1 q
Apo.4(0) = 210g gcdq(o Ay = 9(— q1og72 YerkHE (W, Q),
k:O
and
l q
/ — q+1 _1\k k
tareg(0) = 2(=1)"""log = 2 g,o( 1)*rkH* (W, Q)

Similarly, we consider the difference of log T'(=\, Sy.0/ttp—1.n) and log T(—=A, Sn.0/ftp—1.n)
for the function t,_1, and we obtain

lo
a0,0,n,p—1 = log Ey
ao,1,n,p—1 = 0,
b2i-1.00p-1 =0, baj-1,0,1,p-1 =0,
ly e~ m I
2 -1, 2 ~
Ao p—1(s) = log A Z poln _ og Tgccl,p—l(s, A@),

1o=1 Ho-1n 1

A0,0p-1(0) =108 7 Ceer (0, APTV) = (=1)P"log = Y " (~1)krkH* (W, Q)
h k=0
and
I P2
£ 1 reg(0) = (—1)Plog = 3" (—1)"1kH* (W, Q)
p g ll =
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10.5. The regular term of the torsion
We use equation (59). First, note that as in Section 7 there is no singular contribution by
the functions z,4(s). Using equation 18, and recalling that —ay—1 = —(¢—1—p+1) =p—gq,

we compute as in Lemma 7.7.1

/

l l
#(0) =log 2 — 2(p — q) log .

1 1
Therefore, substitution in equation (59) gives

10g Trel O1,abs Bz,reg(C[ll,lg]W) = t;eg(O) =0.

10.6. The singular term of the torsion
We show that the singular part of the torsion is twice the singular part of the torsion on
the cone, namely that
1Og Trel O1,abs Og,sing(c[ll,ZQ]W) = 2108; Tabs7sing(ClW)- (60)

For we need the following lemma.

LEMMA 10.10.4. We have the following equations:

Lo, (V) = L(I3X) + (11 (13N,
[ ta,(\) = LF(IBN) + (1) L;(13N),
Lio(\) = Li(I3N) + (=17 [;(03N),
Lio(\) = 53N + (—1)Y1;(3N),

where the functions [ , ij are defined in the proof of Lemma 6.6.4, the functions l]i in the
proof of Lemma 6.6.10, and the other function in Subsection 10.3.

Proof. The proof is by induction. We give details for the first equation. For j =1, we
have

l14a,(N) = Up(lavV/=X) — WI,I(Zl\/T)\)
=1L\ + (=)' (3V=N).
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Assume the equation is valid for all n < j. By definition

ljta, (A ZUk V=) (1)) " Wea, jr(LLV=N)

Jj—1 .

= Uj(l2V/=N) + (~ 1Y Wa, j (LVA) = Y =

k=1

k
ak,:':aq ()\)lj*k’q:aq (>\)

and using the inductive hypothesis for I;_ +a,()), and collecting similar terms, this gives

Lo, (A ZUk (V=) (=1) " Wxa, j-s(LV=2)

j—1
k
LN + (DI — 30 L ) W, VN (BN)
k=1

723 (Un(l2V/ =) (— 1) M7, (12N)

- Z] ZUh lz\/i ( ) 7hWIaq,k—h(ll\/j>\)lj—k(lg)‘)

h=1
-y 1]’ ZUh V=N () W a0V =) (1) (120).
k=1

Rearranging the summation’s indices, this reads

ljta, (A ZUk IV =A) (1) " Wea, i k(v =A)

1
=1;(I30) + (—1)”?(1%)\) ) (—D)*Waa, k(L V=A)U;_k(l2V=X)

1

<.
|

e
Il

S MW R Y PN
= h=1

+ 3 (=DFU; k(=N Z S Woea, ko n (L V=NIF (120)

=S jj;.’“gj_k(lgx) Un (V=) (— 1) "W, 5n (i V=N)

Jj—1 . k—1

S IR T 020 UV R (- )F W ()

k=1 J h=

—
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Reordering the first two double sums as

S P W, VD S RN RT3

k=1 h=1

E

—Z—'% (BN S Un (V=AY (D) W, (/= R),

1

>
Il

j—1 k—1
S DUtV =R) Y = W, VN
k=1 h=1
j—1 . k—1
=ng;-k<—1>j"“lf_k<l%> Un(l2v/=X) (= D)* "W, k-n(lV/=2),
k=1 h=1

the result follows. |

We are now in the position of proving equation (60). Proceeding as in the proof of
Propositions 6.6.2 and 6.6.4, the singular part of the torsion is given by some residua of
the zeta function associated to the sequence U and some residua of the functions ®. Since
the sequence U is the same for the conical frustum and for the cone, and the range of
the indices are the same, we only need to compare the functions ® in the two cases. The
functions ¥ are defined in equation(20), we introduce the linear operation

0 e—At
B () = Tn ) = [ 715 [ Son, arae

27
Let use the notation ¢°°"¢ and ¢T"st. We have

21, = —2l2j—1(\) + 12] 1(A) + 151 (M),

et = L (BN = L (BN + L (BA) + [ (13N).

Note that all the functions appearing in the definition of the functions ¢(X) are polyno-

mial in w = \/11_7)\ Applying the formula in equation (62), we have that

T (L (13N)(5) = BT (L (13N)) (9),
and similarly for the other. Using Lemma 10.3, and odd indices, we obtain for example

DL () = (12 + )25, (5)

Since by Corollaries 6.6.1 and 6.6.2 all the residua Res; of the function ®53° (s) at s =0
vanish, equation 60 follows.
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10.7. Conclusion

As recalled in Section 2.6, if OW = 01 W 13, W, is the union of two disjoint components,
and since the boundary term is local,

10g Trel d1,abs 92 ((‘/V? g)v P) = IOg T(((I/Va alw)a g)a P) + ABM,rel(alw) + ABM,abs(a2W)~

Applying this formula to the conical frustum we have
log Trel 8, ,abs 0 (Cliy 1)W) = log 7(Cpyy i)W, 0107, 1)W) + ABM,re1 (01) 4 ABM,abs(02)-

Let X be a manifold of dimension 2p with boundary X = 02CY;, 1,)W, and assume there
is an isometry of a collar neighborhood of the boundary of X onto a collar neighborhood
of 02CYj, 1,)W. Let Z be the manifold obtained by glueing smoothly X to Cj, ;,W along
the boundary 02CYj, ;,W. Applying duality of analytic torsion [22] Proposition 2.10 to
Z, and since the anomaly boundary term is local, it follows that Apwm,re1(91C7, 1,)W) =
—ABM,abs (010, 1,)W).  Since it follows by the definition that Apnabs(91C], 1,)W) =
_ABM,abs(82C[ll,l2]W)a we obtain

log Trel 8y ,abs 02 (Cliy1)W) = log 7(Cpyy i)W, 01011, 15)W) + 2ABM,abs (02C71, 1) W)-

Considering the exact sequence of chain complex associated to the pair (Cy, 1,)W, 01Cpy, 1) W),
it is not difficult to see (see for example [24] Section 3) that the Reidemeister torsion of
the pair vanishes, and hence

log Trel 8y ,abs 05 (Cliy1)W) = 2ABM,abs (02C7, 1) W).

Since the anomaly boundary term is local Apwm,abs(92C[1,,1,]W) = ABM,abs(OCIW), and

l1,l2
hence

log Trel 8y ,abs 05 (Cliy 1]W) = 2ABM,abs (OCIW).

This formulas also follows using the formulas for the variation of the torsion with mixed
boundary conditions given in the new paper of Briining and Ma [4]. We thanks the authors
for making available to us this part of the results of their still unpublished paper. Since by
the calculations of the previous subsections

log Trel 8y ,abs 0 (Cliy,1]W) = 10g Trel 0, ,abs 85,sing (Cliy )W) = 2108 Taps sing (C1W) = 2S(0C, W),

this completes the proof of Theorem 1.1.3.

Appendix
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278 L HARTMANN AND M. SPREAFICO

is

The next two formulas follow from the definition of the Euler Gamma function. Here j
any positive integer.

o
2% —1’

F(8+2j+1> J

Resg ———=——2—+ = —y —2log2+2

), C
[(s+ 24

R681%:1,

s=0 F(jT)S

(61)

The next formula is proved in [35] Section 4.2. Let Ag. = {A € C | |arg(A — ¢)| = 6},

0<6f<m0<c<l1,areal, then

o0 1 e M 1 I'(s+a)
A ————d\dt = ———. 2
/0 2mi /Ae,c A (1=X)e A I'(a)s (62)
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