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We study the analytic torsion of the cone over an orientable odd dimensional
compact connected Riemannian manifold W . We prove that the logarithm of
the analytic torsion of the cone decomposes as the sum of the logarithm of the
root of the analytic torsion of the boundary of the cone, plus a topological term,
plus a further term that is a rational linear combination of local Riemannian
invariants of the boundary. We also prove that this last term coincides with
the anomaly boundary term appearing in the Cheeger Müller theorem [7] [26]
for a manifold with boundary, according to Brüning and Ma [3]. We also prove
Poincaré duality for the analytic torsion of a cone. October, 2010 ICMC-USP
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Analytic torsion was originally introduced by Ray and Singer in [29], as an analytic
counter part of the Reidemeister torsion of Reidemeister, Franz and de Rham [31] [13] [12].
Since then, analytic torsion became an important invariant of Riemannian manifolds, and
has been intensively studied, several generalizations have been introduced and significative
results obtained. Concerning the original invariant, the first important result was achieved
by W. Müller [26] and J. Cheeger [7] who proved that for a compact connected Riemannian
manifold without boundary, the analytic torsion and the Reidemeister torsion coincide,
result conjectured by Ray and Singer in [29], because of the several similar properties
shared by the two torsions. This result is nowadays known as the celebrated Cheeger-
Müller theorem. The next natural question along this line of investigation was to answer
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the same problem for manifolds with boundary. It was soon realized that the answer to such
a question was an highly non trivial one, since the boundary introduces some wild terms.
The first case to be analyzed was the case of a product metric near the boundary. W. Lück
proved in [22] that in this case the boundary term is topological, and depends only upon the
Euler characteristic of the boundary. The answer to the general case required 20 more years
of work, and has eventually been given in a recent paper of Brüning and Ma [3]. The new
contribution of the boundary, beside the topological one given by Lück, is called anomaly
boundary term and we denote it by ABM,abs. The term ABM,abs has a quite complicate
expression, but only depends on some local quantities constructed from the metric tensor
near the boundary (see Section 2.6 for details). The next natural step is to study the
analytic torsion for spaces with singularities. A first, natural type of space with singularity
is the cone over a manifold, CW . Cones and spaces with conical singularities have been
deeply investigated by J. Cheeger in a series of works [7] [9] [10] (see also [27]). Due to
this investigation, all information on L2-forms, Hodge theory, and Laplace operator on
forms on CW are available. Further information on the class of regular singular operators,
that contains the Laplace operator on CW , are given in works of Brüning and Seely (see
in particular [6]). As a result it is not difficult to obtain a complete description of the
eigenvalues of the Laplace operator on CW in terms of the eigenvalues of the Laplace
operator on W . With all these tools available, namely on one side the formula for the
boundary term, and on the other some representation of the eigenvalues of the Laplace
operator on the cone, it is natural to tackle the problem of investigating the analytic
torsion of CW . What one expects in this case in fact is some relation between the torsion
of the cone and the torsion of the section. A possible extension of the Cheeger Müller
theorem could follow, or not. Indeed, it is general belief that in case of conical singularity
such an extension would require intersection R torsion more than classical R torsion (see
[11]). However, if the section is a rational homology manifold, then the two torsion coincide
(see [7], end of Section 2), and the classical Cheeger Müller theorem is expected to extend.

If C(W ) is the chain complex associated to some cell decomposition of W , then the
algebraic mapping cone Cone(C(W )) gives the chain complex for a cell decomposition of
CW . It is then easy to see that the R torsion of CW only depends on the choice of a
base for the zero dimensional homology. Even if Poincaré duality does not hold, it does
hold between top and bottom dimension, and therefore we can use the method of Ray and
Singer in order to fix the base for the zero homology using the Riemannian structure and
harmonic forms (see [29] Section 3, see also [19]). The result for the R torsion is

τ(CW ) =
√

Vol(CW).

On the other side, one wants the analytic torsion. The analytic tools necessary to deal
with the zeta functions appearing in the definition of the analytic torsion, constructed with
the eigenvalues of the Laplace operator on CW , are available by works of M. Spreafico [36]
[37] [39]. In these works, the zeta function associated to a general class of double sequences
is investigated. In particular, a decomposition result is presented and formulas for the zeta
invariants of a decomposable sequence are given. This technique applies to the case of the
zeta function on CW , and permits to obtain some results on the analytic torsion that we will
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describe here below. Before, we note that this approach has been also followed in [19], [40]
and [18]. The main results of these papers are that in the case of W an odd low dimensional
sphere, then the classical Cheeger Müller theorem with the anomalous boundary term of
Brüning and Ma holds for CW , while if W is an even dimensional sphere, it does not hold.
Explicit formulas for W the sphere of dimensions one, two and three are also given, and
in [18] it is conjectured that the Cheeger Müller theorem with the anomalous boundary
term of Brüning and Ma holds for W any odd dimensional sphere. This is proved to be
true in Theorem 1.1.2 below. In Theorem 1.1.3 the same result is proved for the cone over
a generic orientable compact connected Reimannian manifold of odd dimension. We split
the proof of Theorem 1.1.3 in two parts. We first prove in Section 9 that the result is true
if the dimension of the manifold is smaller than six. A basic ingredient in this proof are
results of P. Gilkey on local invariants of Riemannan manifolds [14]. Next, in Section 10,
we prove the general statement. The reason for giving a different explicit proof for the
low dimensional cases is due to the fact that the proof of the general case is based on a
result that has not been published yet, namely a formula for the anomaly boundary term
of Brüning and Ma with mixed boundary conditions. This result is contained in a preprint
of the same authors [4], and we thanks the author for making available part of their work.

We are now ready to state the main results of this paper, for we fix some notation. Let
(W, g) be an orientable compact connected Riemannian manifold of finite dimension m
without boundary and with Riemannian structure g. We denote by ClW the cone over W
with the Riemannian structure

dx⊗ dx + x2g,

on CW − {pt}, where pt denotes the tip of the cone and 0 < x ≤ l (see Section 4.1 for
details). The formal Laplace operator on forms on CW −{pt} has a suitable L2-self adjoint
extension ∆abs/rel on ClW with absolute or relative boundary conditions on the boundary
∂ClW (see Section 4.3 for details), with pure discrete spectrum Sp∆abs/rel. This permit
to define the associated zeta function

ζ(s,∆abs/rel) =
∑

λ∈Sp+∆abs/rel

λ−s,

for Re(s) > m+1
2 . This zeta function has a meromorphic analytic continuation to the whole

complex s-plane with at most isolated poles (see Section 5 for details). It is then possible
to define the analytic torsion of the cone

log Tabs/rel(ClW ) =
1
2

m+1∑
q=0

(−1)qqζ ′(0,∆(q)
abs/rel).

In this setting, we have the following results (analogous results with relative boundary
conditions also follow by Poincaré duality on the cone, proved in Theorem 5.5.1 below).
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Theorem 1.1.1. The analytic torsion on the cone ClW on an orientable compact con-
nected Riemannian manifold (W, g) of odd dimension 2p− 1 is

log Tabs(ClW ) =
1
2

p−1∑
q=0

(−1)q+1rkHq(W ;Q) log
2(p− q)

l
+

1
2

log T (W, l2g) + S(∂ClW ),

where the singular term S(∂ClW ) only depends on the boundary of the cone:

S(∂ClW ) =
1
2

p−1∑
q=0

p−1∑

j=0

j∑

k=0

Res0
s=0

Φ2k+1,q(s)
(− 1

2 − k

j − k

) q∑

h=0

(−1)h Res1
s=j+ 1

2

ζ
(
s, ∆̃(h)

)
(q−p+1)2(j−k),

where the functions Φ2k+1,q(s) are some universal functions, explicitly known by some
recursive relations, and ∆̃ is the Laplace operator on forms on the section of the cone.

It is important to observe that the singular term S(∂ClW ) is a universal linear combina-
tion of local Riemannian invariants of the boundary, for the residues of the zeta function
of the section are such linear combination (see Section 9.3 for details).

Theorem 1.1.2. When W is the odd dimensional sphere (of radius a), with the standard
induced Euclidean metric, then the singular term of the analytic torsion of the cone ClW
appearing in Theorem 1.1.1 coincides with the anomaly boundary term of Brüning and
Ma, namely S(∂ClS

2p−1
a ) = ABM,abs(∂ClS

2p−1
a ). In this case, the formula for the analytic

torsion reads

log Tabs(ClS
2p−1
a ) =

1
2

log Vol(ClS
2p−1
a ) + ABM,abs(∂ClS

2p−1
a ),

where

ABM,abs(∂ClS
2p−1
a ) =

(2p− 1)!
4p(p− 1)!

p−1∑

k=0

1
(p− 1− k)!(2k + 1)

k∑

j=0

(−1)k−j2j+1

(k − j)!(2j + 1)!!
a2k+1.

Corollary 1.1.1. The natural extension of Cheeger Müller theorem for manifold with
boundary is valid for the cone over an odd dimensional sphere, namely

log Tabs(ClS
2p−1) = log τ(ClS

2p−1) + ABM,abs(∂ClS
2p−1).

The result in the corollary should be understood as a particular case of the still unproved
general result that the analytic torsion and the intersection R-torsion of a cone coincides
up to the boundary term, for the intersection R-torsion is the classical R-torsion for the
cone over a sphere.
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Theorem 1.1.3. When (W, g) is an orientable compact connected Riemannian manifold
of odd dimension, then the singular term of the analytic torsion of the cone ClW appearing
in Theorem 1.1.1 coincides with the anomaly boundary term of Brüning and Ma, namely
S(∂ClW ) = ABM,abs(∂ClW ).

We conclude with a remark on the even dimensional case, namely when the dimension of
the section W is even. It is quit clear that all the arguments used in the odd dimensional
case go through also in the even dimensional case. So we obtain formulas for the analytic
torsion as in the theorems above. However, in the even dimensional case some further
term appears: this was described in some details for W = S2 in [19]. Since we do not
have a clear understanding of this new term yet, we prefer to omit the non particularly
illuminating formulas for the even dimensional case here.

2. PRELIMINARIES AND NOTATION

In this section we will recall some basic results in Riemannian geometry, Hodge de Rham
theory and global analysis, and the definitions of the main objects we will deal with in this
work. All the results are contained either in classical literature or in [29], [26], [9], [3], [14]
[1]. This section can be skipped at first reading, and it is added exclusively for the reader’s
benefit. From one side, it permits to the interested reader to find out all the necessary
tools to verify the arguments developed in the following sections, with precise reference
to definitions and formulas, avoiding the fuss of searching in several different papers and
books, from the other, it provides a unified notation, whereas notations of different authors
are too often quite different in the available literature.

2.1. Z/2-graded algebras and Berezin integrals
Let V, W be finite dimensional vector spaces over a field F of characteristic zero, with

Euclidean inner products 〈 , 〉. Let V ∗ = Hom(V,F) denotes the dual of V , and fix
an isomorphism of V onto V ∗ by v∗(u) = 〈v, u〉. Then, we identify F-homomorphisms
with tensor product of tensors by Hom(V,W ) = V ∗ ⊗W . If V, W have dimensions m,n
respectively, and {ek}m

k=1, {bl}n
l=1 are orthonormal bases of V and W respectively, then we

identify t ∈ Hom(V, W ) with the tensor T ∈ V ∗ ⊗W with components Tkl = 〈bl, t(ek)〉 =
b∗(t(ek)), namely

T =
m∑

k=1

n∑

l=1

Tkle
∗
k ⊗ bl,

where we denote by {e∗k} the dual base. We use the Euclidean norm of a linear homomor-
phism |t| =

√
tr(t∗t). In the orthonormal base, this gives for the associated tensor

|T |2 =
m∑

k=1

n∑

l=1

T 2
kl.
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We denotes by ΛV the exterior algebra of V (the universal algebra with unit generated by
V with the relation v2 = 0). A Z/2-graded algebra A is a vector space with an involutions
such that A = A+⊕A−, and a product · that preserves the involution, i.e. such that AjAk ⊂
Ajk. The exterior algebra is a first example. Let A and B be two Z/2-graded algebras. The
vector spaces tensor product A⊗B has a natural Z/2-grading, A⊗B = (A⊗B)+⊕(A⊗B)−,
where (A ⊗ B)+ = A+ ⊗ B+ ⊕ A− ⊗ B−, and (A ⊗ B)− = A+ ⊗ B− ⊕ A− ⊗ B+. This
becomes a Z/2-graded algebra, that we denote by A⊗̂B, with the product defined by (we
will omit the dot in the following)

(a⊗̂b) · (a′⊗̂b′) = (−1)|b| |a
′|a · a′⊗̂b · b′.

There are two natural immersions of A in A⊗̂A as an algebra: we identify A with A⊗ 1
and we denote by Â = 1⊗A. Since A⊗ 1⊗ 1⊗B = A⊗B, we have that A⊗̂B = A⊗ B̂.
Let A = B = ΛV , for some vector space V , where we denote the product by ∧, as usual.
Then, V ⊗̂V ∈ ΛV ⊗̂ΛV . If v ∈ V , then v = v⊗̂1 ∈ V = V ⊗̂1, v̂ = 1⊗̂v ∈ V̂ = 1⊗̂V , and
v ∧ v̂ ∈ V ∧ V̂ . Note that, v ∧ v̂ = (v⊗̂1) ∧ (1⊗̂v), while (1⊗̂v) ∧ (v⊗̂1) = −v ∧ v̂, and

û ∧ v̂ = (1⊗̂u) ∧ (1⊗̂v) = 1⊗̂(u ∧ v) = û ∧ v ∈ V̂ ∧ V .

This permits to identify an antisymmetric endomorphism φ of V with the element

φ̂ =
1
2

m∑

j,k=1

〈φ(vj), vk〉v̂j ∧ v̂k,

of Λ̂2V . For the elements 〈φ(vj), vk〉 are the entries of the tensor representing φ in the
base {vk}, and this is an antisymmetric matrix. Now assume that r is an antisymmetric
endomorphism of Λ2V . Then, (Rjk = 〈r(vj), vk〉) is a tensor of two forms in Λ2V . We
extend the above construction identifying R with the element

R̂ =
1
2

m∑

j,k=1

〈r(vj), vk〉 ∧ v̂j ∧ v̂k, (1)

of Λ2V ∧ Λ̂2V . This can be generalized to higher dimensions. In particular, all the con-
struction can be done taking the dual V ∗ instead of V . We conclude with the definition of
the Berezin integral. Assume V to be oriented. We define the Berezin integral be

∫ B

: ΛW ⊗̂ΛV → ΛW,

∫ B

: α⊗ β 7→ cBβ(e1, . . . , em)α,
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where cB = (−1)
m(m+1)

2

π
m
2

. In particular, note that

∫ B

e−
Â
2 = Pf

(
A

2π

)
,

and this vanishes if dimE = m is odd.

2.2. Some Riemannian geometry
Let (W, g) be an orientable connected Riemannian manifold of dimension m without

boundary, where g denotes the Riemannian structure. We denote by TW the (total space)
of the tangent bundle over W , and by T ∗W the dual bundle. We denote by ΛT ∗W the
exterior algebra of T ∗W . We denote by Γ(W,TW ) and Γ(W,T ∗W ) the corresponding
spaces of smooth sections, and by Γ0(W,TW ) and Γ0(W,T ∗W ) the spaces of smooth
sections with compact support. Let x = (x1, . . . , xm) be a local coordinate system on W .
We denote by {∂j}m

j=1 the local coordinate base on TW , and by {dxj}m
j=1 the dual base of

one forms on T ∗W : dxj(∂k) = δjk. We denote by {ej}m
j=1 and {e∗j}m

j=1 local orthonormal
bases of TW and T ∗W , e∗j (ek) = δjk. Then,

g =
m∑

j,k=1

gjkdxj ⊗ dxk =
m∑

j,k=1

δjke∗j ⊗ e∗k,

and the volume element on W is dvolg = e∗1 ∧ · · · ∧ e∗m =
√
|detg|dx1 ∧ · · · ∧ dxm.

Let ∇ : Γ(W,TW ) → Γ(W,End(TW )) denotes the covariant derivative associated to
the Levi Civita connection of the metric g. This is completely determined by the tensor
Γ =

∑m
αβγ=1 Γαβγe∗α⊗e∗β⊗eγ ,∈ Γ(W,T ∗W⊗T ∗W⊗TW ), with components the Christoffel

symbols:

Γαβγ = Γ(eα, eβ , e∗γ) = e∗γ(Γ(eα, eβ , )) = e∗γ(∇eαeβ) = g(eγ ,∇eαeβ) = −Γαγβ ,

that can be computed using the formula:

Γαβγ =
1
2

(cαβγ + cγαβ + cγβα) , (2)

where the Cartan structure constants cαβγ = −cβαγ are defined by

[eα, eβ ] =
m∑

γ=1

cαβγeγ .

The connection one form associated to∇ is the matrix valued one form ω ∈ so(m,Γ(W,ΛT ∗W )),
with components

ωβγ =
m∑

α=1

Γ(eα, eγ , e∗β)e∗α.
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The curvature associated to the Riemannian connection ∇ (of the metric g) is the linear
map r : Γ(W,TW ⊗ TW ) → Γ(W,End(TW )), defined by:

r(x, y, z) = ∇x∇yz −∇y∇xz −∇[x,y]z,

where x, y, z, r(x, y, z) ∈ Γ(W,TW ), and corresponds to the tensor R =
∑m

α,β,γ,δ=1 Rαβγδe
∗
α⊗

e∗β ⊗ e∗γ ⊗ eδ,∈ Γ(W,T ∗W ⊗ T ∗W ⊗ T ∗W ⊗ TW ), with components

Rαβγδ = −Rβαγδ = R(eα, eβ , eγ , e∗δ) = e∗δ(r(eα, eβ , eγ))
= e∗δ(∇eα∇eβ

eγ −∇eβ
∇eαeγ −∇[eα,eβ ]eγ).

The curvature two form associated to R is the matrix valued two form Ω ∈ so(m,Γ(W,Λ2T ∗W )),
with components

Ωγδ =
m∑

α,β=1,α<β

R(eα, eβ , eδ, e
∗
γ)e∗α ∧ e∗β ,

and can be computed by the following formula:

Ωαβ = dωαβ +
m∑

γ=1

ωαγ ∧ ωγβ . (3)

We introduce two more tensor fields. The Ricci tensor Ric =
∑m

α,β=1 Ricαβe∗α ⊗ e∗β ∈
Γ(W,T ∗W ⊗ T ∗W ), defined by

Ric(x, y) =
m∑

k=1

e∗k(∇ek
∇xy −∇x∇ek

y −∇[ek,x]y),

and the scalar curvature tensor, defined by

τ =
m∑

k=1

Ric(ek, ek).

The components of these tensors in terms of the curvature tensor are:

Ricαβ =
m∑

k=1

R(ek, eα, eβ , e∗k),

τ =
m∑

k,h=1

R(ek, eh, eh, e∗k).

2.3. Hodge theory and de Rham complex
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We recall some results on the de Rham complex (see for example [25]) and some results
from [29] and [26]. From now one we will assume that W is compact. In this section we
also assume that W has no boundary.

Let denote by Ωq the space of sections Γ(W,Λ(q)T ∗W ). The exterior differential d defines
the de Rham complex

CDR : . . . // Ω(q)(W )
d // Ω(q+1)(W ) // . . . ,

whose homology coincides with the rational homology of W . The Hodge star ? : Λ(q)T ∗W →
Λ(m−q)T ∗W , defines an isometry ? : Ωq(W ) → Ωm−q(W ), and an inner product on Ωq(W )

(α, β) =
∫

W

α ∧ ?β =
∫

W

〈α, β〉dvolg.

The closure of Ωq with respect to this inner product is the Hilbert space the L2 q-forms
on W . The de Rham complex with this product is an elliptic complex. The dual of the
exterior derivative d†, defined by (α, dβ) = (d†α, β), satisfies d† = (−1)mq+m+1 ? d?. The
Laplace operator is ∆ = (d + d†)2. It satisfies: 1) ?∆ = ∆?, 2) ∆ is self adjoint, and 3)
∆ω = 0 if and only if dω = d†ω = 0. Let Hq(W ) = {ω ∈ Ω(q)(W ) | ∆ω = 0}, be the space
of the q-harmonic forms. Then, we have the Hodge decomposition

Ωq(W ) = Hq(W )⊕ dΩq−1(W )⊕ d†Ωq+1(W ).

All this generalizes considering a bundle over W . In particular, we are interested in the
following situation. Let ρ : π1(W ) → O(k,F) be a representation of the fundamental group
of W , and let Eρ be the associated vector bundle over W with fibre Fk and group O(k,F),
Eρ = W̃ ×ρ F

k. Then, we denote by Ω(W,Eρ) be the graded linear space of smooth forms
on W with values in Eρ, namely Ω(W,Eρ) = Ω(W ) ⊗ Eρ. The exterior differential on W
defines the exterior differential on Ωq(W,Eρ), d : Ωq(W,Eρ) → Ωq+1(W,Eρ). The metric g
defines an Hodge operator on W and hence on Ωq(W,Eρ), ? : Ωq(W,Eρ) → Ωm−q(W,Eρ),
and, using the inner product 〈 , 〉 in Eρ, an inner product on Ωq(W,Eρ) is defined by

(ω, η) =
∫

W

〈ω ∧ ?η〉. (4)

It is clear that the adjoint d† and the Laplacian ∆ = (d + d†)2 are also defined on the
spaces of sections with values in Eρ. Setting Hq(W,Eρ) = {ω ∈ Ω(q)(W,Eρ) | ∆ω = 0},
be the space of the q-harmonic forms, we have the Hodge decomposition

Ωq(W,Eρ) = Hq(W,Eρ)⊕ dΩq−1(W,Eρ)⊕ d†Ωq+1(W,Eρ). (5)
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This induces a decomposition of the eigenspace of a given eigenvalue λ 6= 0 of ∆(q) into
the spaces of closed forms and coclosed forms: E(q)

λ = E(q)
λ,cl ⊕ E(q)

λ,ccl, where

E(q)
λ,cl = {ω ∈ Ωq(W,Eρ) | ∆ω = λω, dω = 0},

E(q)
λ,ccl = {ω ∈ Ωq(W,Eρ) | ∆ω = λω, d†ω = 0}.

Defining exact forms and coexact forms by

E(q)
λ,ex = {ω ∈ Ωq(W,Eρ) | ∆ω = λω, ω = dα},

E(q)
λ,cex = {ω ∈ Ωq(W,Eρ) | ∆ω = λω, ω = d†α}.

Note that, if λ 6= 0, then E(q)
λ,cl = E(q)

λ,ex, and E(q)
λ,ccl = E(q)

λ,cex, and we have an isometry

φ :E(q)
λ,cl → E(q−1)

λ,cex ,

φ :ω 7→ 1√
λ

d†ω,
(6)

whose inverse is 1√
λ
d. Also, the restriction of the Hodge star defines an isometry

? :d†Ω(q+1)(W ) → dΩ(m−q−1)(W ),

and that composed with the previous one gives the isometries:

1√
λ

d? : E(q)
λ,cl → E(m−q+1)

λ,cex ,

1√
λ

d†? : E(q)
λ,ccl → E(m−q−1)

λ,ex .

(7)

2.4. Manifolds with boundary
Next consider a manifold with boundary. If W has a boundary ∂W , then there is a

natural splitting near the boundary, of ΛW as direct sum of vector bundles ΛT ∗∂W⊕N∗W ,
where N∗W is the dual to the normal bundle to the boundary. Locally, this reads as
follows. Let ∂x denotes the outward pointing unit normal vector to the boundary, and
dx the corresponding one form. Near the boundary we have the collar decomposition
Coll(∂W ) = (−ε, 0]× ∂W , and if y is a system of local coordinates on the boundary, then
(x, y) is a local system of coordinates in Coll(∂W ). The metric tensor decomposes near
the boundary in this local system as

g = dx⊗ dx + g∂(x),

where g∂(x) is a family of metric structure on ∂W such that g∂(0) = i∗g, where i : ∂W → W
denotes the inclusion. The smooth forms on W near the boundary decompose as ω =
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ωtan + ωnorm, where ωnorm is the orthogonal projection on the subspace generated by dx,
and ωtan is in C∞(W )⊗Λ(∂W ). We write ω = ω1 +dx∧ω2, where ωj ∈ C∞(W )⊗Λ(∂W ),
and

?ω2 = −dx ∧ ?ω. (8)

Define absolute boundary conditions by

Babs(ω) = ωnorm|∂W = ω2|∂W = 0,

and relative boundary conditions by

Brel(ω) = ωtan|∂W = ω1|∂W = 0.

Note that, if ω ∈ Ωq(W ), then Babs(ω) = 0 if and only if Brel(?ω) = 0, Brel(ω) = 0
implies Brel(dω) = 0, and Babs(ω) = 0 implies Babs(d†ω) = 0. Let B(ω) = B(ω)⊕B((d +
d†)(ω)). Then the operator ∆ = (d + d†)2 with boundary conditions B(ω) = 0 is self
adjoint, and if B(ω) = 0, then ∆ω = 0 if and only if (d+d†)ω = 0. Note that B correspond
to

Babs(ω) = 0 if and only if
{

ωnorm|∂W = 0,
(dω)norm|∂W = 0,

(9)

Brel(ω) = 0 if and only if
{

ωtan|∂W = 0,
(d†ω)tan|∂W = 0,

(10)

Let

Hq(W,Eρ) = {ω ∈ Ωq(W,Eρ) | ∆(q)ω = 0},
Hq

abs(W,Eρ) = {ω ∈ Ωq(W,Eρ) | ∆(q)ω = 0, Babs(ω) = 0},
Hq

rel(W,Eρ) = {ω ∈ Ωq(W,Eρ) | ∆(q)ω = 0, Brel(ω) = 0},

be the spaces of harmonic forms with boundary conditions, then the Hodge decomposition
reads

Ωq
abs(W,Eρ) = Hq

abs(W,Eρ)⊕ dΩq−1
abs (W,Eρ)⊕ d†Ωq+1

abs (W,Eρ),

Ωq
rel(W,Eρ) = Hq

rel(W,Eρ)⊕ dΩq−1
rel (W,Eρ)⊕ d†Ωq+1

rel (W,Eρ).

2.5. The form valued zeta functions and the analytic torsion
By the results of the previous sections, the Laplace operator ∆(q), with boundary con-

ditions Babs/rel has a pure point spectrum Sp∆(q)
abs/rel consisting of real non negative eigen-

values. The sequence Sp+∆(q)
abs/rel is a totally regular sequence of spectral type accordingly
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to Section 3.1, and the forms valued zeta function is the associated zeta function, defined
by

ζ(s, ∆(q)
abs/rel) = ζ(s, Sp+∆(q)

abs/rel) =
∑

λ∈Sp+∆
(q)
abs/rel

λ−s,

when Re(s) > m
2 (see Propositions 3.3.2 and 3.3.3). The analytic torsion Tabs/rel((W, g); ρ)

of (W, g) with respect to the representation ρ : π1(W ) → O(k,R) is defined by

log Tabs/rel((W, g); ρ) =
1
2

m∑
q=1

(−1)qqζ ′(0, ∆(q)
abs/rel).

We will omit the representation in the notation, whenever we mean the trivial represen-
tation.

Theorem 2.2.1. Poincaré duality for analytic torsion [22]. Let (W, g) be an ori-
entable compact connected Riemannian manifold of dimension m, with possible boundary.
Then, for any representation ρ,

log Tabs((W, g); ρ) = (−1)m+1 log Trel((W, g); ρ).

We now use results of section 2.3 to define closed, coclosed, exact and coexact zeta
functions. We again restrict ourselves to the case of a manifold without boundary (see
[29] for the case of manifold with boundary). By the very definition, we have

ζ(s,∆(q)) =
∑

λ∈Sp+∆(q)

dim E(q)
λ λ−s = ζcl(s,∆(q)) + ζccl(s, ∆(q)),

where

ζcl(s,∆(q)) =
∑

λ∈Sp+∆(q)

dim E(q)
λ,clλ

−s,

ζccl(s,∆(q)) =
∑

λ∈Sp+∆(q)

dim E(q)
λ,cclλ

−s.

Since, by (6), ζcl(s,∆(q)) = ζccl(s, ∆(q−1)), we obtain from the above relations the fol-
lowing formulas for the torsion of a closed m dimensional manifold W :

log T ((W, g); ρ) =
1
2

m∑
q=1

(−1)qqζ ′(0, ∆(q)) =
1
2

m∑
q=1

(−1)qζ ′cl(0, ∆(q))

= −1
2

m−1∑
q=0

(−1)qζ ′ccl(0, ∆(q)).

Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



ANALYTIC TORSION OF CONES 195

In particular, using again duality, for an odd dimensional manifold W of dimension
m = 2p− 1,

log T ((W, g); ρ) =
p−1∑
q=1

(−1)qζ ′cl(0, ∆(q)) +
(−1)p

2
ζ ′cl(0,∆(p))

= −
p−2∑
q=0

(−1)qζ ′ccl(0,∆(q)) +
(−1)p

2
ζ ′ccl(0,∆(p−1)).

(11)

2.6. The Cheeger Müller theorem for manifolds with boundary, and the
anomaly boundary term of Brüning and Ma

In case of a smooth orientable compact connect Riemannian manifold (W, g) with bound-
ary ∂W , for any representation ρ of the fundamental group (for simplicity assume rk(ρ) =
1), the analytic torsion is given by the Reidemeister torsion plus some further contribu-
tions. It was shown by J. Cheeger in [7], that this further contribution only depends on
the boundary, namely that

log Tabs((W, g); ρ) = log τ(W ; ρ) + c(∂W ).

In the case of a product metric near the boundary, the following formula for this boundary
contribution was given by W. Lück [22], where χ(X) denotes the Euler characteristic of X,

log Tabs((W, g); ρ) = log τ(W ; ρ) +
1
4
χ(∂W ) log 2.

In the general case a further contribution appears, that measures how the metric is far
from a product metric. A formula for this new anomaly boundary contribution is contained
in some recent result of Brüning and Ma [3]. More precisely, in [3] (equation (0.6)) is given
a formula for the ratio of the analytic torsion of two metrics, g0 and g1,

log
Tabs((W, g1); ρ)
Tabs((W, g0); ρ)

=
1
2

∫

∂W

(B(∇1)−B(∇0)) , (12)

where ∇j is the covariant derivative of the metric gj , the forms B(∇j) are defined as
follows, according to Section 1.3 of [3] (observe, however, that we take the opposite sign
with respect to the definition in [3], since we are considering left actions instead of right
actions, and also that we use the formulas of [3] in the particular case of a flat trivial
bundle F ). Using the notation of Section 2.1 (in particular see equation (1)), we define the
following forms
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Sj =
1
2

m−1∑

k=1

(i∗ωj − i∗ω0)0k ∧ ê∗k,

î∗Ωj =
1
2

m−1∑

k,l=1

i∗Ωj,kl ∧ ê∗k ∧ ê∗l

Θ̂ =
1
2

m−1∑

k,l=1

Θkl ∧ ê∗k ∧ ê∗l .

(13)

Here, ωj are the connection one forms, and Ωj , j = 0, 1, the curvature two forms as-
sociated to the metrics g0 and g1, respectively, while Θ is the curvature two form of the
boundary (with the metric induced by the inclusion), and {ek}m−1

k=0 is an orthonormal base
of TW (with respect to the metric g). Then, set

B(∇j) =
1
2

∫ 1

0

∫ B

e−
1
2 Θ̂−u2S2

j

∞∑

k=1

1
Γ

(
k
2 + 1

)uk−1Sk
j du. (14)

Taking g1 = g, and g0 an opportune deformation of g, that is a product metric near the
boundary, it is easy to see that (see equation (31) of Section 4.2)

log
Tabs((W, g1); ρ)
Tabs((W, g0); ρ)

=
1
2

∫

∂W

B(∇1).

Note that the right end side of this equation is (as expected) a local quantity, and is well
defined if there exists a regular collar neighborhood of the boundary. If this is the case, we
define the Brüning and Ma anomaly boundary term by

ABM,abs(∂W ) =
1
2

∫

∂W

B(∇1), (15)

and we have

log Tabs((W, g); ρ) = log τ(W ; ρ) +
1
4
χ(∂W ) log 2 + ABM,abs(∂W ). (16)

3. ZETA DETERMINANTS

In this section we collect some results on the theory of the zeta function associated to a
sequence of spectral type introduced in works of M. Spreafico [35] [36] [37] and [39]. This
will give the analytic tools necessary in order to evaluate the zeta determinants appearing in
the calculation of the analytic torsion in the following sections. We give the basic definition
in Section 3.1, some results concerning simple sequences in Section 3.2, the main results for
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double sequences in Section 3.3, and we specializes to the zeta functions associated to the
Laplace operator on Riemannian manifolds in Section 3.4. We present here a simplified
version of the theory, that is sufficient for our purpose here; we refer to the mentioned
papers for further details (see in particular the general formulation in Theorem 3.9 of [39]
or the Spectral Decomposition Lemma of [37]).

3.1. Zeta functions for sequences of spectral type
Let S = {an}∞n=1 be a sequence of non vanishing complex numbers, ordered by increasing

modules, with the unique point of accumulation at infinite. The positive real number
(possibly infinite)

s0 = lim sup
n→∞

log n

log |an| ,
is called the exponent of convergence of S, and denoted by e(S). We are only interested in
sequences with e(S) = s0 < ∞. If this is the case, then there exists a least integer p such
that the series

∑∞
n=1 a−p−1

n converges absolutely. We assume s0 − 1 < p ≤ s0, we call the
integer p the genus of the sequence S, and we write p = g(S). We define the zeta function
associated to S by the uniformly convergent series

ζ(s, S) =
∞∑

n=1

a−s
n ,

when Re(s) > e(S), and by analytic continuation otherwise. We call the open subset
ρ(S) = C− S of the complex plane the resolvent set of S. For all λ ∈ ρ(S), we define the
Gamma function associated to S by the canonical product

1
Γ(−λ, S)

=
∞∏

n=1

(
1 +

−λ

an

)
e
∑g(S)

j=1
(−1)j

j
(−λ)j

a
j
n . (17)

When necessary in order to define the meromorphic branch of an analytic function, the
domain for λ will be the open subset C− [0,∞) of the complex plane. We use the notation
Σθ,c =

{
z ∈ C | | arg(z − c)| ≤ θ

2

}
, with c ≥ δ > 0, 0 < θ < π. We use Dθ,c = C − Σθ,c,

for the complementary (open) domain and Λθ,c = ∂Σθ,c =
{
z ∈ C | | arg(z − c)| = θ

2

}
,

oriented counter clockwise, for the boundary. With this notation, we define now a particular
subclass of sequences. Let S be as above, and assume that e(S) < ∞, and that there exist
c > 0 and 0 < θ < π, such that S is contained in the interior of the sector Σθ,c. Furthermore,
assume that the logarithm of the associated Gamma function has a uniform asymptotic
expansion for large λ ∈ Dθ,c(S) = C− Σθ,c of the following form

log Γ(−λ, S) ∼
∞∑

j=0

aαj ,0(−λ)αj +
g(S)∑

k=0

ak,1(−λ)k log(−λ),

where {αj} is a decreasing sequence of real numbers. Then, we say that S is a totally regular
sequence of spectral type with infinite order. We call the open set Dθ,c(S) the asymptotic
domain of S.
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3.2. The zeta determinant of some simple sequences
The results of this section are known to specialists, and can be found in different places.

We will use the formulation of [34]. For positive real numbers l and q, define the non
homogeneous quadratic Bessel zeta function by

z(s, ν, q, l) =
∞∑

k=1

(
j2
ν,k

l2
+ q2

)−s

,

for Re(s) > 1
2 . Then, z(s, ν, q, l) extends analytically to a meromorphic function in the

complex plane with simple poles at s = 1
2 ,− 1

2 ,− 3
2 , . . . . The point s = 0 is a regular point

and

z(0, ν, q, l) = −1
2

(
ν +

1
2

)
,

z′(0, ν, q, l) = − log
√

2πl
Iν(lq)

qν
.

(18)

In particular, taking the limit for q → 0,

z′(0, ν, 0, l) = − log
√

πlν+ 1
2

2ν− 1
2 Γ(ν + 1)

.

3.3. Zeta determinant for a class of double sequences
Let S = {λn,k}∞n,k=1 be a double sequence of non vanishing complex numbers with

unique accumulation point at the infinity, finite exponent s0 = e(S) and genus p = g(S).
Assume if necessary that the elements of S are ordered as 0 < |λ1,1| ≤ |λ1,2| ≤ |λ2,1| ≤ . . . .
We use the notation Sn (Sk) to denote the simple sequence with fixed n (k). We call
the exponents of Sn and Sk the relative exponents of S, and we use the notation (s0 =
e(S), s1 = e(Sk), s2 = e(Sn)). We define relative genus accordingly.

Definition 3.3.1. Let S = {λn,k}∞n,k=1 be a double sequence with finite exponents
(s0, s1, s2), genus (p0, p1, p2), and positive spectral sector Σθ0,c0 . Let U = {un}∞n=1 be
a totally regular sequence of spectral type of infinite order with exponent r0, genus q, do-
main Dφ,d. We say that S is spectrally decomposable over U with power κ, length ` and
asymptotic domain Dθ,c, with c = min(c0, d, c′), θ = max(θ0, φ, θ′), if there exist positive
real numbers κ, ` (integer), c′, and θ′, with 0 < θ′ < π, such that:

1.the sequence u−κ
n Sn =

{
λn,k

uκ
n

}∞
k=1

has spectral sector Σθ′,c′ , and is a totally regular
sequence of spectral type of infinite order for each n;

2.the logarithmic Γ-function associated to Sn/uκ
n has an asymptotic expansion for large

n uniformly in λ for λ in Dθ,c, of the following form

log Γ(−λ, u−κ
n Sn) =

∑̀

h=0

φσh
(λ)u−σh

n +
L∑

l=0

Pρl
(λ)u−ρl

n log un + o(u−r0
n ), (19)
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where σh and ρl are real numbers with σ0 < · · · < σ`, ρ0 < · · · < ρL, the Pρl
(λ) are

polynomials in λ satisfying the condition Pρl
(0) = 0, ` and L are the larger integers such

that σ` ≤ r0 and ρL ≤ r0.

When a double sequence S is spectrally decomposable over a simple sequence U , Theorem
3.9 of [39] gives a formula for the derivative of the associated zeta function at zero. In order
to understand such a formula, we need to introduce some other quantities. First, we define
the functions

Φσh
(s) =

∫ ∞

0

ts−1 1
2πi

∫

Λθ,c

e−λt

−λ
φσh

(λ)dλdt. (20)

Next, by Lemma 3.3 of [39], for all n, we have the expansions:

log Γ(−λ, Sn/uκ
n) ∼

∞∑

j=0

aαj ,0,n(−λ)αj +
p2∑

k=0

ak,1,n(−λ)k log(−λ),

φσh
(λ) ∼

∞∑

j=0

bσh,αj ,0(−λ)αj +
p2∑

k=0

bσh,k,1(−λ)k log(−λ),

(21)

for large λ in Dθ,c. We set (see Lemma 3.5 of [39])

A0,0(s) =
∞∑

n=1

(
a0,0,n −

∑̀

h=0

bσh,0,0u
−σh
n

)
u−κs

n ,

Aj,1(s) =
∞∑

n=1

(
aj,1,n −

∑̀

h=0

bσh,j,1u
−σh
n

)
u−κs

n , 0 ≤ j ≤ p2.

(22)

We can now state the formula for the derivative at zero of the double zeta function. We
give here a modified version of Theorem 3.9 of [39], more suitable for our purpose here.
This is based on the following fact. The key point in the proof of Theorem 3.9 of [39] is
the decomposition given in Lemma 3.5 of that paper of the sum

T (s, λ, S, U) =
∞∑

n=1

u−κs
n log Γ(−λ, u−κ

n Sn),

in two terms: the regular part P(s, λ, S, U) and the remaining singular part. The regular
part is obtained subtracting from T some terms constructed starting from the expansion
of the logarithmic Gamma function given in equation (19), namely

P(s, λ, S, u) = T (s, λ, S, U)−
∑̀

h=0

φσh
(λ)u−σh

n −
L∑

l=0

Pρl
(λ)u−ρl

n log un.
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Now, assume instead we subtract only the terms such that the zeta function ζ(s, U)
has a pole at s = σh or at s = ρl. Let P̂(s, λ, S, U) be the resulting function. Then
the same argument as the one used in Section 3 of [39] in order to prove Theorem 3.9
applies, and we obtain similar formulas for the values of the residue, and of the finite part
of the zeta function ζ(s, S) and of its derivative at zero, with just two differences: first,
in the all the sums, all the terms with index σh such that s = σh is not a pole of ζ(s, U)
must be omitted; and second, we must substitute the terms A0,0(0) and A′0,1(0), with the
finite parts of the analytic continuation of A0,0(s), and A′0,1(s). The first modification
is an obvious consequence of the substitution of the function P by the function P̂. The
second modification, follows by the same reason noting that the function Aαj ,k(s) defined
in Lemma 3.5 of [39] are no longer regular at s = 0 themselves. However, they both admits
a meromorphic extension regular at s = 0, using the extension of the zeta function ζ(s, U),
and the expansion of the coefficients aαj ,k,n for large n. Thus we have the following result.

Theorem 3.3.1. The formulas of Theorem 3.9 of [39] hold if all the quantities with
index σh such that the zeta function ζ(s, U) has not a pole at s = σh are omitted. In such a
case, the result must be read by means of the analytic extension of the zeta function ζ(s, U).

Next, assuming some simplified pole structure for the zeta function ζ(s, U), sufficient for
the present analysis, we state the main result of this section.

Theorem 3.3.2. Let S be spectrally decomposable over U as in Definition 3.3.1. Assume
that the functions Φσh

(s) have at most simple poles for s = 0. Then, ζ(s, S) is regular at
s = 0, and

ζ(0, S) =−A0,1(0) +
1
κ

∑̀

h=0

Res1
s=0

Φσh
(s)Res1

s=σh

ζ(s, U),

ζ ′(0, S) =−A0,0(0)−A′0,1(0) +
γ

κ

∑̀

h=0

Res1
s=0

Φσh
(s)Res1

s=σh

ζ(s, U)

+
1
κ

∑̀

h=0

Res0
s=0

Φσh
(s) Res1

s=σh

ζ(s, U) +
∑̀

h=0

′
Res1
s=0

Φσh
(s)Res0

s=σh

ζ(s, U),

where the notation
∑′ means that only the terms such that ζ(s, U) has a pole at s = σh

appear in the sum.

This result should be compared with the Spectral Decomposition Lemma of [37] and
Proposition 1 of [38].

Remark 3.3.1. We call regular part of ζ(0, S) the first term appearing in the formula
given in the theorem, and regular part of ζ ′(0, S) the first two terms. The other terms gives
what we call singular part.
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Corollary 3.3.1. Let S(j) = {λ(j),n,k}∞n,k=1, j = 1, ..., J , be a finite set of double
sequences that satisfy all the requirements of Definition 3.3.1 of spectral decomposability
over a common sequence U , with the same parameters κ, `, etc., except that the polynomials
P(j),ρ(λ) appearing in condition (2) do not vanish for λ = 0. Assume that some linear
combination

∑J
j=1 cjP(j),ρ(λ), with complex coefficients, of such polynomials does satisfy

this condition, namely that
∑J

j=1 cjP(j),ρ(λ) = 0. Then, the linear combination of the zeta
function

∑J
j=1 cjζ(s, S(j)) is regular at s = 0 and satisfies the linear combination of the

formulas given in Theorem 3.3.2.

3.4. Zeta invariants of compact Riemannian manifolds
We recall in this section some known facts about zeta invariants of a compact manifold.

We will rewrite such results in the terminology of zeta functions associated to sequences of
spectral type just introduced. Our main reference are the works of P. Gilkey, in particular
we refer to the book [14].

Let (W, g) be a compact connected Riemannian manifold of dimension m, with metric g.
Let ∆(q) denote the metric Laplacian on forms on W , and Sp∆(q) = {λn}∞n=0 (λ0 = 0) its
spectrum. Then, there exists a full asymptotic expansion for the trace of the heat kernel
of ∆(q) for small t,

TrL2e−t∆(q)
= t−

m
2

∞∑

j=0

eq,jt
j
2 , (23)

where the coefficients depend only on local invariants constructed from the metric tensor,
and are in principle calculable from it.

Proposition 3.3.1.

eq,0 =
1

(4π)
m
2

(
m

q

) ∫

W

dvolg,

eq,2 =
1

6(4π)
m
2

((
m

q

)
− 6

(
m− 2
q − 1

))∫

W

τdvolg,

eq,4 =
1

360(4π)
m
2

(
5
(

m

q

)
− 60

(
m− 2
q − 1

)
+ 180

(
m− 4
p− 2

)) ∫

W

τ2dvolg

+
1

360(4π)
m
2

(
−2

(
m

q

)
+ 180

(
m− 2
q − 1

)
− 720

(
m− 4
p− 2

)) ∫

W

|Ric|2dvolg

+
1

360(4π)
m
2

(
2
(

m

q

)
− 30

(
m− 2
q − 1

)
+ 180

(
m− 4
p− 2

))∫

W

|R|2dvolg.

Proposition 3.3.2. The sequence Sp+∆(q) of the positive eigenvalues of the metric
Laplacian on forms on a compact connected Riemannian manifold of dimension m, is a
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totally regular sequence of spectral type, with finite exponent e = m
2 , genus g = [e], spectral

sector Σθ,c with some 0 < c < λ1, ε < θ < π
2 , asymptotic domain Dθ,c = C − Σθ,c, and

infinite order.

Proposition 3.3.3. The zeta function ζ(s, Sp+∆(q)) has a meromorphic continuation
to the whole complex plane up to simple poles at the values of s = m−h

2 , h = 0, 1, 2, . . . ,
that are not negative integers nor zero, with residues

Res1s= m−h
2

ζ(s,Sp+∆(q)) = eq,h

Γ(m−h
2 ) ,

the point s = −k = 0,−1,−2, . . . are regular points and

ζ(0,Sp+∆(q)) = eq,m − dimker∆(q),

ζ(−k, Sp+∆(q)) = (−1)kk!eq,m+2k.

4. GEOMETRIC SETTING AND LAPLACE OPERATOR
4.1. The finite metric cone

Let (W, g) be an orientable compact connected Riemannian manifold of finite dimension
m without boundary and with Riemannian structure g. We denote by CW the cone over
W , namely the mapping cone of the constant map : W → {p}. Then, CW is compact
connected separable Hausdorff space, but in general is not a topological manifold. However,
if we remove the tip of the cone p, then CW −{p} is an open differentiable manifold, with
the obvious differentiable structure. Embedding W in the opportune Euclidean space Rk,
and Rk in some hyperplane of Rk+h, with opportune h, disconnected from the origin, a
geometric realization of CW is the given by the set of the finite length l line segments
joining the origin to the embedded copy of W . Let x the euclidean geodesic distance from
the origin, if we equip CW − {p} with the Riemannian structure

dx⊗ dx + x2g, (24)

this coincides with the metric structure induced by the described embedding. We denote
by C(0,l]W the space (0, l] × W with the metric in equation (24). We denote by ClW

the compact space C(0,l]W = C(0,l]W ∪ {p}. We call the space ClW the (completed finite
metric) cone over W . We call the subspace {l}×W of ClW , the boundary of the cone, and
we denote it by ∂ClW . This is of course diffeomorphic to W , and isometric to (W, l2g).
For the global coordinate x corresponds to the local coordinate x′ = l− x, where x′ is the
geodesic distance from the boundary. Therefore, g∂(x′) = (l−x)2g, and if i : W → C(0,l]W
denotes the inclusion, i∗(dx ⊗ dx + x2g) = g∂(0) = l2g. Following common notation, we
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will call (W, g) the section of the cone. Also following usual notation, a tilde will denotes
operations on the section (of course g̃ = g), and not on the boundary. All the results of
Section 2.4 are valid. In particular, given a local coordinate system y on W , then (x, y) is
a local coordinate system on the cone.

We now give the explicit form of ?, d† and ∆. See [8] [9] and [27] Section 5 for details.
If ω ∈ Ωq(C(0,l]W ), set

ω(x, y) = f1(x)ω1(y) + f2(x)dx ∧ ω2(y),

with smooth functions f1 and f2, and ωj ∈ Ω(W ). Then a straightforward calculation
gives

?ω(x, y) = xm−2q+2f2(x)?̃ω2(y) + (−1)qxm−2qf1(x)dx ∧ ?̃ω1(y), (25)

dω(x, y) = f1(x)d̃ω1(y) + ∂xf1(x)dx ∧ ω1(y)− f2(x)dx ∧ dω2(y),

d†ω(x, y) = x−2f1(x)d̃†ω1(y)− (
(m− 2q + 2)x−1f2(x) + ∂xf2(x)

)
ω2(y)

− x−2f2(x)dx ∧ d̃†ω2(y),

(26)

∆ω(x, y) =
(−∂2

xf1(x)− (m− 2q)x−1∂xf1(x)
)
ω1(y) + x−2f1(x)∆̃ω1(y)− 2x−1f2(x)d̃ω2(y)

+ dx ∧
(
x−2f2(x)∆̃ω2(y) + ω2(y)

(−∂2
xf2(x)− (m− 2q + 2)x−1∂xf2(x)

+(m− 2q + 2)x−2f2(x)
)− 2x−3f1(x)d̃†ω1(y)

)
.

(27)

4.2. Riemannian tensors on the cone
We give here the explicit form of the main Riemannian quantities on the cone. All

calculation are based on the formulas given in Sections 2.2 and 2.6. Recall that a tilde
denotes quantities relative to the section, that we have local coordinate (x, y1, . . . , ym) on
ClW , and that the metric is

g1 = dx⊗ dx + x2g.

Let {bk}m
k=1 be a local orthonormal base of TW , and {b∗k}m

k=1 the associated dual base.
Then,

e0 = ∂x e∗0 = dx,

ek =
1
x

bk, e∗k = xb∗k, 1 ≤ k ≤ m.
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Direct calculations give Cartan structure constants

cjk0 = 0, 1 ≤ j, k ≤ m,

c0kl = −ck0l = −δkl

x
, 1 ≤ k, l ≤ m,

cjkl =
1
x

c̃jkl, 1 ≤ j, k, l ≤ m.

The Christoffel symbols are

Γ0kl = 0, 1 ≤ k, l ≤ m,

Γj0k = −Γjk0 =
δjk

x
, 1 ≤ j, k ≤ m,

Γjkl =
1
x

Γ̃jkl, 1 ≤ j, k, l ≤ m.

The connection one form matrix relatively to the metric g1 has components

ω1,00 = 0,

ω1,0j = −ω1,j0 = − 1
x

e∗j = −b∗j , 1 ≤ j ≤ m,

ω1,jk =
m∑

h=1

Γhkje
∗
h =

1
x

m∑

h=1

Γ̃hkje
∗
h =

m∑

h=1

Γ̃hkjb
∗
h = ω̃jk, 1 ≤ j, k ≤ m.

(28)

To compute the curvature we calculate

dω1,0j = −
m∑

l=1

(∂lb
∗
j ) ∧ dyl = −

m∑

l,k=1

(∂lbkj)dyk ∧ dyl,

where b∗j =
∑m

k=1 bkjdyk, and, for 1 ≤ j, k ≤ m,

dω1,jk = d̃ω̃jk;

while

−(ω1 ∧ ω1)k0 = (ω1 ∧ ω1)0k =
m∑

l=0

ω1,0l ∧ ω1,lk =
m∑

l=1

ω1,0l ∧ ω1,lk = −
m∑

l=1

b∗l ∧ ω̃lk,

(ω1 ∧ ω1)jk =
m∑

l=0

ω1,jl ∧ ω1,lk = ω1,j0 ∧ ω1,0k +
m∑

l=1

ω1,jl ∧ ω1,lk = −b∗j ∧ b∗k + (ω̃ ∧ ω̃)jk,
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for 1 ≤ j, k ≤ m. The curvature two form has components

Ω1,00 = 0,

Ω1,0j = −
m∑

l,k=1

(∂lbkj)dyk ∧ dyl −
m∑

l=1

b∗l ∧ ω̃lk, 1 ≤ j ≤ m,

Ω1,jk = d̃ω̃jk − b∗j ∧ b∗k + (ω̃ ∧ ω̃)jk = Ω̃jk − b∗j ∧ b∗k, 1 ≤ j, k ≤ m.

Next, considering the metric g0 = dx⊗ dx + g, similar calculations gives:

ω0,0j = 0, 0 ≤ j ≤ m,

ω0,jk = ω̃jk, 1 ≤ j, k ≤ m.
(29)

By equations (28) and (29),

S1 = − 1
2l

m∑

k=1

e∗k ∧ e∗k = − l

2

m∑

k=1

b∗k ∧ b∗k = −1
2

m∑

k=1

b∗k ∧ e∗k, (30)

S0 = 0. (31)

We also need the curvature two form Θ on the boundary ∂ClW . A similar calculation
gives

Θjk = Ω̃jk.

Note in particular that it is easy to verify the equation (1.16) of [3]: Θ̂ = î∗Ω1 − 2S2
1 .

For

2S2
1 = − l2

2

m∑

j,k=1

b∗j ∧ b∗k ∧ b̂∗j ∧ b̂∗k,

Θ̂ =
l2

2

m∑

j,k=1

Ω̃jk ∧ b̂∗j ∧ b̂∗k,

while (i∗Ω)jk = Ω̃jk − b∗j ∧ b∗k, gives

̂i∗Ω1,jk =
l2

2

m∑

j,k=1

(
Ω̃jk − b∗j ∧ b∗k

)
∧ b̂∗j ∧ b̂∗k.

4.3. The Laplace operator on the cone and its spectrum
We study the Laplace operator on forms on the space ClW . This is essentially based

on [9] and [6]. Let denote by L the formal differential operator defined by equation (27)
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acting on smooth forms on C(0,l]W , Γ(C(0,l]W,ΛT ∗C(0,l]W ). We define in Lemma 4.4.1 a
self adjont operator ∆ acting on L2(ClW,Λ(q)ClW ), and such that ∆ω = Lω, if ω ∈ dom∆.
Then, in Lemma 4.4.2, we list all the solutions of the eigenvalues equation for L. Eventually,
in Lemma 4.4.3, we give the spectrum of ∆.

Lemma 4.4.1. The formal operator L in equation (27) with the absolute/relative bound-
ary conditions given in equations (9)/(10) on the boundary ∂ClW defines a unique self
adjoint semi bounded operator on L2(ClW,Λ(q)T ∗ClW ), that we denote by the symbol
∆abs/∆rel, respectively, with pure point spectrum.

Proof. Let L(q) denote the minimal operator defined by the formal operator L(q), with
domain the q-forms with compact support in C(0,l]W , namely domL(q) = Γ0(C(0,l]W,ΛT ∗C(0,l]W ).
The boundary values problem at the boundary x = l, i.e. ∂ClW , is trivial, and gives the
self adjoint extensions stated. The point x = 0 requires more work. First, note that L(q)

reduces by unitary transformation to an operator of the type

D2 +
A(x)
x2

, D = −i
d

dx
, (32)

where A(x) is smooth family of symmetric second order elliptic operators [6] pg. 370. More
precisely, the map

ψq : C∞0 ((0, l],Λ(q)T ∗W × Λ(q−1)T ∗W ) → C∞(C(0,l]W,Λ(q)T ∗C(0,l]W ),

ψq : (ω(q), ω(q−1)) 7→ xq−m/2π∗ω(q)(x) + xp−1−m/2π∗ω(q−1)(x) ∧ dx,

where π : C(0,l]W → W , is bijective onto forms with compact support. Moreover, ψq is
unitary with respect to the usual L2 structure on the function space F(ClW,Λ(q)T ∗ClW )
and the Hilbert space structure on F([0, l], Λ(q)T ∗W × Λ(q−1)T ∗W ) given by

∫ l

0

(
||ω(q)(x)||2Λ(q)T∗W,g + ||ω(q−1)(x)||2Λ(q−1)T∗W,g

)
dx.

Under the transformation ψq, L(q) has the form in equation (32), with A(x) the constant
smooth family of symmetric second order elliptic operators in Γ(W,Λ(q)T ∗W×Λ(q−1)T ∗W ):

A(x) = A(0) =
(

∆̃(q) +
(

m
2 − q

) (
m
2 − q − 1

)
2(−1)qd̃

2(−1)qd̃† ∆̃(q−1) +
(

m
2 + 2− q

) (
m
2 + 1− q

)
)

Next, by its definition, A(x) satisfies all the requirements at pg. 373 of [6], with p = 1
(in particular this follows from the fact that A(x) is defined by the Laplacian on forms on
a compact space). We can apply the results of Brüning and Seeley [5] [6], observing that
in the present case we are in what they call “constant coefficient case” (Section 3 of [6]).
By Theorem 5.1 of [6], the operator L extends to a unique self adjoint bounded operator
∆(q). Note that this extension is the Friedrich extension by Theorem 6.1 of [6]. Note also
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that bundary condition at x = 0 are necessary in general in the definition of the domain
of ∆(q), see (L2) (c), pg. 410 of [6] for these conditions.

Eventually, by Theorem 5.2 of [6], the square (here p = 1, so m = 2) of the resolvent of
∆(q) is of trace class. This means that the resolvent is Hilbert Schmidt, and consequently
the spectrum of ∆(q) is pure point, by the spectral theorm for compact operators. Note
that we do not need the cut off function γ appearing in Theorem 5.2 of [6], since here
0 < x ≤ l.

Lemma 4.4.2. [9] Let {ϕ(q)
har,n, ϕ

(q)
cex,n, ϕ

(q)
ex,n} be an orthonormal base of Γ(W,Λ(q)T ∗W )

consisting of harmonic, coexact and exact eigenforms of ∆̃(q) on W . Let λq,n denotes
the eigenvalue of ϕ

(q)
cex,n and mcex,q,n its multiplicity (so that mcex,q,n = dim E(q)

cex,n =
dim E(q)

ccl,n). Let Jν be the Bessel function of index ν. Define

αq =
1
2
(1 + 2q −m),

µq,n =
√

λq,n + α2
q .

Then, assuming that µq,n is not an integer, all the solutions of the equation ∆u = λ2u,
with λ 6= 0, are convergent sums of forms of the following six types:

ψ
(q)
±,1,n,λ =xαqJ±µq,n(λx)ϕ(q)

cex,n,

ψ
(q)
±,2,n,λ =xαq−1J±µq−1,n(λx)d̃ϕ(q−1)

cex,n + ∂x(xαq−1J±µq−1,n(λx))dx ∧ ϕ(q−1)
cex,n

ψ
(q)
±,3,n,λ =x2αq−1+1∂x(x−αq−1J±µq−1,n(λx))d̃ϕ(q−1)

cex,n

+ xαq−1−1J±µq−1,n(λx)dx ∧ d̃†d̃ϕ(q−1)
cex,n

ψ
(q)
±,4,n,λ =xαq−2+1J±µq−2,n(λx)dx ∧ d̃ϕ(q−2)

cex,n

ψ
(q)
±,E,λ =xαqJ±|αq|(λx)ϕ(q)

har,n

ψ
(q)
±,O,λ =∂x(xαq−1J±|αq−1|(λx))dx ∧ ϕ

(q−1)
har,n .

When µq,n is an integer the − solutions must be modified including some logarithmic
term (see for example [41] for a set of linear independent solutions of the Bessel equation).

Proof. The proof is a direct verification of the assertion, using the definitions in equa-
tions (25), (26), and (27). First, by Hodge theorem, there exist an orthonormal base of
Λ(q)T ∗W as stated. Thus, we decompose any form ω in this base. Second, we compute ∆ω,
using this decomposition and the formula in equation (27). This gives some differential
equations in the functions appearing as coefficients of the forms. All these differential equa-
tions reduce to equations of Bessel type. Third, we write all the solutions using Bessel func-
tions. A complete proof for the case of the harmonic forms can be found in [27] Section
5.
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Note that the forms of types 1 and 3 are coexact, those of types 2 and 4 exacts. The
operator d sends forms of types 1 and 3 in forms of types 2 and 4, while d† sends forms of
types 2 and 4 in forms of types 1 and 3, respectively. The Hodge operator sends forms of
type 1 in forms of type 4, 2 in 3, and E in 0.

Corollary 4.4.1. The functions + in Lemma 4.4.1 are square integrable and satisfy
the boundary conditions at x = 0 defining the domain of ∆rel/abs. The functions − either
are not square integrable or do not satisfy these conditions.

Remark 4.4.1. All the − solutions are either not square or their exterior derivative
are not square integrable. Requiring the last condition in the definition of the domain of
∆rel/abs, it follows that there are not boundary conditions at zero. This was observed by
Cheeger for harmonic forms when the dimension is odd in [9] Section 3.

Lemma 4.4.3. The positive part of the spectrum of the Laplace operator on forms on
ClW , with absolute boundary conditions on ∂ClW is:

Sp+∆(q)
abs =

{
mcex,q,n : ĵ2

µq,n,αq,k/l2
}∞

n,k=1
∪

{
mcex,q−1,n : ĵ2

µq−1,n,αq−1,k/l2
}∞

n,k=1

∪
{

mcex,q−1,n : j2
µq−1,n,k/l2

}∞
n,k=1

∪
{

mq−2,n : j2
µq−2,n,k/l2

}∞
n,k=1

∪
{

mhar,q,0 : ĵ2
|αq|,αq,k/l2

}∞
k=1

∪
{

mhar,q−1,0 : ĵ2
|αq−1|,αq,k/l2

}∞
k=1

.

With relative boundary conditions:

Sp+∆(q)
rel =

{
mcex,q,n : j−2s

µq,n,k/l−2s
}∞

n,k=1
∪

{
mcex,q−1,n : j−2s

µq−1,n,k/l−2s
}∞

n,k=1

∪
{

mcex,q−1,n : ĵ−2s
µq−1,n,−αq−1,k/l−2s

}∞
n,k=1

∪
{

mcex,q−2,n : ĵ−2s
µq−1,n,−αq−2,k/l−2s

}∞
n,k=1

∪ {
mhar,q : j|αq|,k/l−2s

}∞
k=1

∪ {
mhar,q−1 : j|αq−1|,k/l−2s

}∞
k=1

,

where the jµ,k are the zeros of the Bessel function Jµ(x), the ĵµ,c,k are the zeros of the
function Ĵµ(x) = cJµ(x) + xJ ′µ(x), c ∈ R, αq and µq,n are defined in Lemma 4.4.2.

Proof. By the Lemma 4.4.1, Lemma 4.4.2 and its corollary, we know that the + so-
lutions of Lemma 4.4.2 determine a complete system of square integrable solutions of the
eigenvalues equation ∆(q)u = λu, with λ 6= 0, satisfying the boundary condition at x = 0.
Since ∆(q)

abs/rel has pure point spectrum, in order to obtain a discrete resolution (more pre-

cisely the positive part of it) of ∆(q)
abs/rel, we have to determine among these solutions those

that belong to the domain of ∆(q)
abs/rel, namely those that satisfy the boundary condition
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at x = l. We give details for absolute BC, the analysis for relative BC is analogous. So
consider absolute BC, as given in equation (9). For a form of type 1 to satisfy this condition
means

∂xψ
(q)
1,n,λ|x=l = 0,

i.e.

αqJµq,n(λl) + λlJ ′µq,n
(λl) = 0,

and this gives λ = ĵµq,n,αq,k/l. For forms of type 2, we get

∂xψ
(q)
2 |x=l = 0,

that gives

α(q − 1)Jµq−1,n(λl) + λlJ ′µq−1,n
(λl) = 0,

so λ = ĵµn(i−1),k,α(i−1)/l. For forms of type 3, we obtain the system
{

xαq−1−1Jµq−1,n(λx)
∣∣
x=l

= 0,

∂x

(
x2αq−1+1∂x(x−αq−1Jµq,n(λx))

)− λ̃xαq−1−1Jµq−1,n(λx)
∣∣∣
x=l

= 0.

Using classical properties of Bessel functions and their derivative, we obtain λ = jµq−1,n,k/l.
For forms of type 4, we get

xαq−2+1Jµq−2,n,k(λl)
∣∣
r=l

= 0,

that gives λ = jµq−1,n,k/l. Similar analysis gives for forms of types E and O: λ = ĵ|αq|,k,αq
/l

and λ = ĵ|αq−1|,k,αq−1/l, respectively.

We conclude with the harmonic forms of ∆. The proofs are similar to the previous ones,
so will be omitted.

Lemma 4.4.4. [9][27] With the notation of Lemma 4.4.2, and

a±,q,n = αq ± µq,n,

then all the solutions of the harmonic equation ∆u = 0, are convergent sums of forms of
the following four types:

ψ
(q)
±,1,n =xa±,q,nϕ

(q)
ccl,n,

ψ
(q)
±,2,n =xa±,q−1,n d̃ϕ

(q−1)
ccl,n + a±,q−1,nxa±,q−1,n−1dx ∧ ϕ

(q−1)
ccl,n ,

ψ
(q)
±,3,n =xa±,q−1,n+2d̃ϕ

(q−1)
ccl,n + a∓,q−1,nxa±,q−1,n+1dx ∧ ϕ

(q−1)
ccl,n ,

ψ
(q)
±,4,n =xa±,q−2,n+1dx ∧ d̃ϕ

(q−2)
ccl,n .
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Lemma 4.4.5. Assume dim W = 2p− 1 is odd. Then

Hq
abs(ClW ) =

{
Hq(W ), 0 ≤ q ≤ p− 1,

{0}, p ≤ q ≤ 2p− 1.

Hq
rel(ClW ) =

{
{0}, 0 ≤ q ≤ p,{
x2αq−1dx ∧ ϕ(q−1), ϕ(q−1) ∈ Hq−1(W )

}
, p + 1 ≤ q ≤ 2p.

Proof. First, by Remark 4.4.1, we need only to consider the + solutions in Lemma
4.4.4. The proof then follows by argument similar to the one used in the proof of Lemma
4.4.3. Let see one case in details. Consider ψ

(q)
+,1,n = xa+,q,nϕ

(q)
ccl,n, where a+,q,n = αq +µq,n.

In order that ψ
(q)
+,1,n satisfies the absolute boundary condition (9), we need that

(dψ
(q)
+,1,n)norm

∣∣∣
∂ClW

= a+,q,nla+,q,n−1dx ∧ dϕ
(q)
ccl,n = 0

and this is true if and only if a+,q,n = 0. The condition a+,q,n = 0 is equivalent to the
conditions λq,n = 0, and αq = −|αq|. Therefore, ϕ

(q)
ccl,n is harmonic, 0 ≤ q ≤ p − 1, and

ψ
(q)
+,1,n = ϕ

(q)
ccl,n.

5. TORSION ZETA FUNCTION AND POINCARÉ DUALITY FOR A
CONE

Using the description of the spectrum of the Laplace operator on forms ∆(q)
abs/rel given in

Lemma 4.4.3, we define the zeta function on q-forms as in Section 2.5, by

ζ(s,∆(q)
abs/rel) =

∑

λ∈Sp+∆
(q)
abs/rel

λ−s,

for Re(s) > m+1
2 . Even if we can not apply directly Proposition 3.3.2, the explicit knowl-

edge of the behaviour of the large eigenvalues allows to completely determine the analytic
continuation of the zeta function, by using the tools os Section 3.3. In particular , it is
possible to prove that there can be at most a simple, pole at s = 0. We will not do this
here (but the interested reader can compare with [39]), because for our purpose it is more
convenient to investigate the analytic properties of other zeta functions, resulting by a
suitable different decomposition of the analytic torsion, as described here below. For we
define the torsion zeta function by

tabs/rel(s) =
1
2

m+1∑
q=1

(−1)qqζ(s, ∆(q)
abs/rel).

Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



ANALYTIC TORSION OF CONES 211

It is clear that the analytic torsion of ClW is (in the following we will use the simplified
notation T (ClW ) for T ((ClW, g); ρ))

log Tabs/rel(ClW ) = t′abs/rel(0).

Our first result is a Poincaré duality (compare with Proposition 2.2.1, [22] and the result
of [11]).

Theorem 5.5.1. Poincaré duality for the analytic torsion of a cone. Let (W, g) be
an orientable compact connected Riemannian manifold of dimension m, without boundary,
then

log Tabs(ClW ) = (−1)m log Trel(ClW ).

Proof. By Hodge duality in equation (7), the Hodge operator ? sends forms of type
1, 2, 3, 4, E, and O into forms of type 4, 3, 2, 1, O, and E, respectively. Moreover, ? sends
q-forms satisfying absolute boundary conditions, as in equation (9), into m + 1 − q-forms
satisfying relative boundary conditions, as in equation (10). Therefore, using the explicit
description of the eigenvalues given in Lemma 4.4.3, it follows that Sp∆(q)

abs = Sp∆(m+1−q)
rel .

Using the formulas in equations (25), (26), and (27), and the eigenforms in Lemma 4.4.2,
a straightforward calculation shows that the forms of type 1, 3, and E are coexact, and
those of type 2, 4, and O are exact, and that the operator d sends forms of type 1, 3, and
E in forms of type 2, 4, and O, respectively, with inverse d†. Then, set

F
(q)
ccl,abs =

{
mccl,q,n : ĵ2

µq,n,αq,k/l2
}∞

n,k=1
∪

{
mccl,q−1,n : j2

µq−1,n,k/l2
}∞

n,k=1

∪
{

mccl,q,0 : ĵ2
|αq|,αq,k/l2

}∞
k=1

,

F
(q)
cl,abs =

{
mcl,q−1,n : ĵ2

µq−1,n,αq−1,k/l2
}∞

n,k=1
∪

{
mcl,q−2,n : j2

µq−2,n,k/l2
}∞

n,k=1

∪
{

mcl,q−1,0 : ĵ2
|αq−1|,αq−1,k/l2

}∞
k=1

.

F
(q)
ccl,abs is the set of the eigenvalues of the coclosed q-forms with absolute boundary

conditions, and F
(q)
cl,abs is the set of the eigenvalues of the closed q-forms with absolute.
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Since obviously Sp∆(q)
abs = F

(q)
ccl,abs ∪ F

(q)
cl,abs, and F

(q)
ccl,abs = F

(q+1)
cl,abs , we have that

tabs(s) =
1
2

m+1∑
q=0

(−1)qqζ(s,∆(q)
abs) =

1
2

m+1∑
q=0

(−1)qqζ(s, ∆(m+1−q)
rel )

= (−1)mtrel(s) +
1
2
(m + 1)

m+1∑
q=0

(−1)m+1−qζ(s,∆(q)
rel )

= (−1)mtrel(s) +
1
2
(m + 1)

m+1∑
q=0

(−1)q
(
ζ(s, F (q+1)

ccl,abs) + ζ(s, F (q)
cl,abs)

)

= (−1)mtrel(s).

Since by definition log Tabs(W ) = t′abs(0), the thesis follows.

6. THE TORSION ZETA FUNCTION OF THE CONE OVER AN ODD
DIMENSIONAL MANIFOLD

In this section we develop the main steps in order to obtain the proof of our theorems.
This accounts essentially in the application of the tools described in Section 3.3 to some
suitable sequences appearing in the definition of the torsion. So our first step is precisely
to obtain this suitable description. This we do in this section. In the next two subsections,
we will make the calculations necessary for the proof of our main theorems.

We proceed assuming dimW = 2p− 1 odd, and assuming absolute boundary condition;
for notational convenience, we will omit the abs subscript.

Lemma 6.6.1.

t(s) =
l2s

2

p−2∑
q=0

(−1)q




∞∑

n,k=1

mcex,q,n

(
2j−2s

µq,n,k − ĵ−2s
µq,n,αq,k − ĵ−2s

µq,n,−αq,k

)



+ (−1)p−1 l2s

2




∞∑

n,k=1

mcex,p−1,n

(
j−2s
µp−1,n,k − (j′µp−1,n,k)−2s

)



− l2s

2

p−1∑
q=0

(−1)qrkHq(∂ClW ;Q)
∞∑

k=1

(
j−2s
−αq−1,k − j−2s

−αq,k

)
.
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Proof. Using the eigenvalues in Lemma 4.4.3

l2sζ(s,∆(q)) =
∞∑

n,k=1

mcex,q,nĵ−2s
µq,n,αq,k +

∞∑

n,k=1

mcex,q−1,nĵ−2s
µq−1,n,αq−1,k +

∞∑

n,k=1

mcex,q−1,nj−2s
µq−1,n,k

+
∞∑

n,k=1

mcex,q−2,nj−2s
µq−2,n,k +

∞∑

k=1

mhar,q,0ĵ
−2s
|αq|,αq,k +

∞∑

k=1

mhar,q−1,0ĵ
−2s
|αq−1|,αq−1,k.

Since for each fixed q, with 0 ≤ q ≤ 2p− 2,

(−1)qq

∞∑

n,k=1

mcex,q,nĵ−2s
µq,n,αq,k + (−1)q+1(q + 1)

∞∑

n,k=1

mcex,q,nĵ−2s
µq,n,αq,k

+ (−1)q+1(q + 1)
∞∑

n,k=1

mcex,q,nj−2s
µq,n,k + (−1)q+2(q + 2)

∞∑

n,k=1

mcex,q,nj−2s
µq,n,k

+ q(−1)q
∞∑

k=1

mhar,q,0ĵ
−2s
|αq|,αq,k + (q + 1)(−1)q+1

∞∑

k=1

mhar,q,0ĵ
−2s
|αq|,αq,k

=(−1)q




∞∑

n,k=1

mcex,q,nj−2s
µq,n,k −

∞∑

n,k=1

mcex,q,nĵ−2s
µq,n,αq,k


 + (−1)q+1

∞∑

k=1

mhar,q,0ĵ
−2s
|αq|,αq,k.

it follows that

t(s) =
l2s

2

2p−2∑
q=0

(−1)q
∞∑

n,k=1

mcex,q,n

(
j−2s
µq,n,k − ĵ−2s

µq,n,αq,k

)
+

l2s

2

2p−1∑
q=0

(−1)q+1
∞∑

k=1

mhar,q,0ĵ
−2s
|αq|,k.

Next, by Hodge duality on coexact q-forms on the section (see equation (7)) λq,n =
λ2p−2−q,n, and recalling the definition of the constants αq and µq,n in Lemma 4.4.2, we
have that αq = 1

2 (1 + 2q − 2p + 1) = q − p + 1 = −α2p−2−q, and µq,n = µ2p−2−q,n. Thus,
fixing q with 0 ≤ q ≤ p− 2,

(−1)q
∞∑

n,k=1

mcex,q,n

(
j−2s
µq,n,k − ĵ−2s

µq,n,αq,k

)
+ (−1)(2p−2−q)

∞∑

n,k=1

mcex,q,n

(
j−2s
µq,n,k − ĵ−2s

µq,n,−αq,k

)

=(−1)q
∞∑

n,k=1

mcex,q,n

(
2j−2s

µq,n,k − ĵ−2s
µq,n,αq,k − ĵ−2s

µq,n,−αq,k

)
,
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while when q = p− 1, λp−1,n = λ2p−1−(p−1),n, and αq = 0. Therefore,

t(s) =
l2s

2

p−2∑
q=0

(−1)q
∞∑

n,k=1

mcex,q,n

(
2j−2s

µq,n,k − ĵ−2s
µq,n,αq,k − ĵ−2s

µq,n,−αq,k

)

+ (−1)p−1 l2s

2

∞∑

n,k=1

mcex,p−1,n

(
j−2s
µp−1,n,k − (j′µp−1,n,k)−2s

)

+
l2s

2

2p−1∑
q=0

(−1)q+1
∞∑

k=1

mhar,q,0ĵ
−2s
|αq|,αq,k,

where j′ν,k = ĵν,0,k are the zeros of J ′nu. Eventually, consider the sum

2p−1∑
q=0

(−1)q+1
∞∑

k=1

mhar,q,0ĵ
−2s
|αq|,αq,k.

We will use some classical properties of Bessel function, see for example [41]. Recall
m = dim W = 2p− 1, and therefore αq = q − p + 1 is an integer. Moreover, αq is negative
for 0 ≤ q < p−1. Fixed such a q, we study the function Ĵ−αq,αq (z) = αqJ−αq (z)+zJ ′−αq

(z).
Since

zJ ′µ(z) = −zJµ+1(z) + µJµ(z)

it follows that Ĵ−αq,αq (z) = −zJ−αq+1(z) = −zJ−αq−1(z), and hence ĵ|αq|,αq,k = j−αq−1,k.
Next, fix q with p− 1 < q ≤ 2p− 1, such that αq is a positive integer. Then, since

zJ ′µ(z) = zJµ−1(z)− µJµ(z),

the function Ĵαq,αq (z) = αqJαq (z)+zJ ′αq
(z) coincides with zJαq−1(z), and hence ĵ|αq|,αq,k =

jαq−1,k. Note that when q = p−1, αp−1 = 0 and hence jαp−1,αp−1,k = j′0,k = j1,k. Summing
up,

2p−1∑
q=0

(−1)q+1
∞∑

k=1

mhar,q,0ĵ
−2s
|αq|,αq,k =

p−2∑
q=0

(−1)q+1
∞∑

k=1

mhar,q,0

j−2s
−αq−1,k

+ (−1)p
∞∑

k=1

mhar,p−1,0

j−2s
1,k

+
2p−1∑
q=p

(−1)q+1
∞∑

k=1

mhar,q,0

j−2s
αq−1,k

,
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and since by Hodge duality mq,0 = m2p−1−q,0,

=
p−2∑
q=0

(−1)q+1
∞∑

k=1

mhar,q,0j
−2s
−αq−1,k + (−1)p

∞∑

k=1

mhar,p−1,0j
−2s
1,k

+
p−1∑
q=0

(−1)2p−q
∞∑

k=1

mhar,2p−1−q,0j
−2s
α2p−2−q,k

+
p−2∑
q=0

(−1)q+1
∞∑

k=1

mhar,q,0j
−2s
−αq−1,k + (−1)p

∞∑

k=1

mhar,p−1,0j
−2s
1,k +

p−1∑
q=0

(−1)q
∞∑

k=1

mhar,q,0j
2s
−αq,k

=
p−1∑
q=0

(−1)q+1mhar,q,0

∞∑

k=1

(
j−2s
−αq−1,k − j−2s

−αq,k

)
.

Since mhar,q,0 = rkHq(∂ClW ;Q), this completes the proof.

It is convenient to introduce the following functions. We set

Zq(s) =
∞∑

n,k=1

mcex,q,nj−2s
µq,n,k,

Żq(s) =
∞∑

n,k=1

mcex,q,n(j′µq,n,k)−2s,

Zq,±(s) =
∞∑

n,k=1

mcex,q,nĵ−2s
µq,n,±αq,k,

zq(s) =
∞∑

k=1

(
j−2s
−αq−1,k − j−2s

−αq,k

)
,

(33)

for 0 ≤ q ≤ p− 1, and

tp−1(s) = Zp−1(s)− Żp−1(s),
tq(s) = 2Zq(s)− Zq,+(s)− Zq,−(s), 0 ≤ q ≤ p− 2.

(34)
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Then,

t(s) =
l2s

2

p−2∑
q=0

(−1)q (2Zq(s)− Zq,+(s)− Zq,−(s)) + (−1)p−1 l2s

2

(
Zp−1(s)− Żp−1(s)

)

− l2s

2

p−1∑
q=0

(−1)qrkHq(∂ClW ;Q)zq(s)

=
l2s

2

p−1∑
q=0

(−1)qtq(s)− l2s

2

p−1∑
q=0

(−1)qrkHq(∂ClW ;Q)zq(s),

and

log T (ClW ) = t′(0) =
log l2

2

(
p−1∑
q=0

(−1)q+1rqzq(0) +
p−1∑
q=0

(−1)qtq(0)

)

+
1
2

(
p−1∑
q=0

(−1)q+1rqz
′
q(0) +

p−1∑
q=0

(−1)qt′q(0)

)
,

(35)

where rq = rkHq(∂ClW ;Q). In order to obtain the value of log T (ClW ) we use Theorem
3.3.2 and its corollary applied to the functions zq(s), Zq(s), Żq(s), Zq,±(s). More precisely,
the functions zq were studied in Section 3.2, and we will study the functions tq in Sections
6.1 and 6.2, and eventually we sum up on the forms degree q in Section 7.

6.1. The function tp−1(s)
In this section we study the function tp−1(s). For we apply Theorems 3.3.1 and 3.3.2 to

the double sequences Sp−1 = {mp−1,n : j2
µp−1,n,k}∞n=1 and Ṡp−1 = {mp−1,n : (j′µp−1,n,k)2}∞n=1,

since Zp−1(s) = ζ(s, Sp−1), Żp−1(s) = ζ(s, Ṡp−1). First, we verify Definition 3.3.1. For we
introduce the simple sequence Up−1 = {mp−1,n : µp−1,n}∞n=1.

Lemma 6.6.2. The sequence Up−1 is a totally regular sequence of spectral type with

infinite order, e(Up−1) = g(Up−1) = 2p−1, and ζ(s, Up−1) = ζcex

(
s
2 , ∆̃(p−1)

)
, with possible

simple poles at s = 2p− 1− h, h = 0, 2, 4, . . . .

Lemma 6.6.3. The logarithimic Gamma functions associated to the sequences Sp−1,n/µ2
p−1,n

and Ṡp−1,n/µ2
p−1,n have the following representations, with λ ∈ Dθ,c, 0 ≤ θ ≤ π, c =
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min(j2
µp−1,1

,(j′µp−1,1
)2)

2µ2
p−1,1

,

log Γ(−λ, Sp−1,n/µ2
p−1,n) =− log

∞∏

k=1

(
1 +

(−λ)µ2
p−1,n

j2
µp−1,n,k

)

=− log Iµp−1,n
(µp−1,n

√
−λ) + (µp−1,n) log

√
−λ

+ µp−1,n log(µp−1,n)− µp−1,n log 2− log Γ(µp−1,n + 1),

log Γ(−λ, Ŝp−1,n/µ2
p−1,n) =− log

∞∏

k=1

(
1 +

(−λ)(µp−1,n)2

(j′µp−1,n,k)2

)

=− log I ′µp−1,n
(µp−1,n

√
−λ) + (µp−1,n − 1) log

√
−λ

+ µp−1,n log(µp−1,n)− µp−1,n log 2− log Γ(µp−1,n + 1).

Using the expansions of the Bessel functions, it follow from Lemma 6.6.3 that there is a
complete asymptotic expansion for the functions log Γ(−λ, Sp−1,n/µ2

p−1,n) and log Γ(−λ, Ṡp−1,n/µ2
p−1,n),

and then the sequences Sp−1,n/µ2
p−1,n and Ṡp−1,n/µ2

p−1,n are sequence of spectral type. A
simple calculation shows that they are totally regular sequences of infinite order.

Proposition 6.6.1. The double sequences Sp−1 and Ṡp−1 have relative exponents
(
p, 2p−1

2 , 1
2

)
,

relative genus (p, p− 1, 0), and are spectrally decomposable over Up−1 with power κ = 2,
length ` = 2p and domain Dθ,c. The coefficients σh appearing in equation (19) are
σh = h− 1, with h = 0, 1, . . . , ` = 2p.

Proof. The values of the exponents and genus of S follow by classical estimates of the
zeros of the Bessel functions [41], and zeta function theory. In particular, to determinate
s0 = p, we use the Young inequality and the Plana theorem as in [33]. Note that α >
1
2 , since s2 = 1

2 . The exponents and genus of Ṡ are the same, since the zeros of the
derivative of the Bessel function are correlated by those of the Bessel function, namely
jµ,k < j′µ,k < jµ,k+1. As observed, the existence of a complete asymptotic expansion of the
Gamma function log Γ(−λ, Sp−1,n) and log Γ(−λ, Ṡp−1,n) follows by Lemma 6.6.3. This
implies that Sp−1,n and Ṡp−1,n are sequences of spectral type. A direct inspection of the
expansions shows that Sp−1,n and Ṡp−1,n are totally regular sequences of infinite order.
The existence of the uniform expansion follows using the uniform expansions for the Bessel
functions and their derivative given for example in [28] (7.18) and Ex. 7.2, and classical
expansion of the Euler Gamma function [15] 8.344. We refer to [18] Section 5 or to [19]
Section 4 for details. This proves that Sp−1,n and Ṡp−1,n are spectrally decomposable
over Up−1, with power κ = 2. The length ` of the decomposition is precisely 2p. For
e(Up−1) = 2p− 1, and therefore the larger integer such that σh = h− 1 ≤ 2p− 1 is 2p.
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Remark 6.6.1. By Theorem 3.3.1, only the terms with σh = 1, σh = 3, . . ., σh = 2p−1
namely h = 2, 4, . . . , 2p, appear in the formula of Theorem 3.3.2, since the unique non
negative poles of ζ(s, Up−1) are at s = 1, s = 3, . . . s = 2p− 1, by Lemma 6.6.2.

Since we aim to apply the version of Theorem 3.3.2 given in Corollary 3.3.1, for linear
combination of two spectrally decomposable sequences, we need more information on the
uniform asymptotic expansion of the difference Sp−1−Ṡp−1. This will also give the functions
φσh

(λ), necessary in the following.

Lemma 6.6.4. The difference of the logarithimic Gamma functions associated to the se-
quences Sp−1,n/µ2

p−1 and Ṡp−1,n/µ2
p−1,n have the following uniform asymptotic expansions

for large n, λ ∈ Dθ,c,

log Γ(−λ, Sp−1,n/(µp
p−1,n)2)− log Γ(−λ, Ṡp−1,n/(µp

p−1,n)2) =

= − log I(µp−1,n

√
−λ) + log I ′(µp−1,n

√
−λ) + log

√
−λ

=
1
2

log(1− λ) +
2p−1∑

j=1

φj,p−1(λ)
1

(µp
p−1,n)j

+ O

(
1

µ2p
p−1,n

)
.

Proof. By Lemma 6.6.3

log Γ(−λ, Sp−1,n/(µp−1,n)2)− log Γ(−λ, Ṡp−1,n/(µp−1,n)2) =

= − log I(µp−1,n

√
−λ) + log I ′(µp−1,n

√
−λ) + log

√
−λ.

(36)

Recall the uniform expansions for the Bessel functions given for example in [28] (7.18)
pg. 376, and Ex. 7.2,

Iν(νz) =
eν
√

1+z2e
ν log z

1+
√

1+z2

√
2πν(1 + z2)

1
4


1 +

2p−1∑

j=1

Uj(z)
νj

+ O

(
1

ν2p

)
 ,

where

U0(w) =1,

Uj(w) =
1
2
w2(1− w2)

d

dw
Uj−1(w) +

1
8

∫ w

0

(1− 5t2)Uj−1(t)dt,

with w = 1√
1+z2 , and

I ′ν(νz) =
(1 + z2)

1
4 eν

√
1+z2e

ν log z

1+
√

1+z2

√
2πνz


1 +

2p−1∑

j=1

Vj(z)
νj

+ O

(
1

ν2p

)
 ,
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V0(w) =1,

Vj(w) =Uj(w)− w

2
(1− w2)Uj−1(w)− w2(1− w2)

d

dw
Uj−1(w).

Then,

log Iν(νz) = ν
√

1 + z2 + ν log z − ν log(1 +
√

1 + z2)

− 1
2

log 2πν − 1
4

log(1 + z2) + log


1 +

2p−1∑

j=1

Uj(z)
νj

+ O

(
1

ν2p

)


log I ′ν(νz) = ν
√

1 + z2 + ν log z − ν log(1 +
√

1 + z2)− log z

− 1
2

log 2πν +
1
4

log(1 + z2) + log


1 +

2p−1∑

j=1

Vj(z)
νj

+ O

(
1

ν2p

)
 ,

and substitution in equation (36) gives

log Γ(−λ, Sp−1,n/(µp−1,n)2)− log Γ(−λ, Ṡp−1,n/(µp−1,n)2)

=
1
2

log(1− λ)− log


1 +

2p−1∑

j=1

Uj(
√−λ)

µj
p−1,n

+ O

(
1

µ2p
p−1,n

)


+ log


1 +

2p−1∑

j=1

Vj(
√−λ)

µj
p−1,n

+ O

(
1

µ2p
p−1,n

)
 .

Expanding the logarithm as

log


1 +

∞∑

j=1

aj

zj


 =

∞∑

j=1

lj
zj

,

where a0 = 1, a1 = l1 and

lj = aj −
j−1∑

k=1

j − k

j
aklj−k,
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we have that

log Γ(− λ, Sp−1,n/(µp−1,n)2)− log Γ(−λ, Ṡp−1,n/(µp−1,n)2) =
1
2

log(1− λ)

+
2p−1∑

j=1

1
µj

p−1,n

(
Vj(
√
−λ)− Uj(

√
−λ) +

j−1∑

k=1

j − k

j

(
Vk(

√
−λ)l̇j−k(λ)− Uk(

√
−λ)lj−k(λ)

))

+ O

(
1

µ2p
p−1,n

)
,

where we denote by l̇j(λ) the term in the expansion relative to the sequence Ṡ (thus the
one containing the Vj(z)) and by lj(λ) the term relative to S (thus the one containing the
Uj(z)). Setting

φp−1,j(λ) = l̇j(λ)− lj(λ)

= Vj(
√
−λ)− Uj(

√
−λ) +

j−1∑

k=1

j − k

j

(
Vk(

√
−λ)l̇j−k(λ)− Uk(

√
−λ)lj−k(λ)

)
,

(37)
we have the formula stated in the thesis.

Remark 6.6.2. Note that there are no logarithmic terms log µp−1,n in the asymptotic
expansion of the difference of the logarithmic Gamma function given in Lemma 6.6.4. This
permits to apply Corollary 3.3.1.

Next, give some results on the functions φj,p−1(λ), and on the functions Φj,p−1(s) defined
in equation (20).

Lemma 6.6.5. For all j, the functions φj,p−1(λ) are odd polynomial in w = 1√
1−λ

φj,p−1(λ) =
3j+1∑

k=j

aj,p−1,kw2k+1.

Proof. This follows by the definition in equation (37) in the proof of Lemma 6.6.4.

Lemma 6.6.6. For all j, φj,p−1(0) = 0.

Proof. We use induction on j. For j = 1

φ1,p−1(λ) = l̇1(λ)− l1(λ) = V1(
√
−λ)− U1(

√
−λ)

= −1
2

1
(1− λ)

1
2

+
1
2

1
(1− λ)

3
2
,
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and hence φ1,p−1(0) = 0. Assume φk,p−1(0) = 0 for k = 1, . . . , j − 1. For simplicity, write
φ as a function of w = (1− λ)−

1
2 . Then, by definition

φj,p−1(w) = l̇j(w)− lj(w)

= Vj(w)− Uj(w) +
j−1∑
s=1

j − s

j

(
Us(w)lj−s(w)− Vs(w)l̇j−s(w)

)

= Vj(w)− Uj(w) +
j−1∑
s=1

j − s

j

(
Us(w)(lj−s(w)− l̇j−s(w))

)

+
j−1∑
s=1

(1− w2)
(

w

2
Us−1(w) + w2 d

dw
Us−1(w)

)
l̇j−s(w).

Since Uj(1) = Vj(1) for all j, and φj−1,p−1(w) = l̇j−1(w)− lj−1(w), using the induction’s
hypothesis, the thesis follows.

Corollary 6.6.1. For all j, the Laurent expansion of the functions Φ2j+1,p−1(s) at
s = 0 has coefficients: for 1 ≤ j ≤ p− 1

Res0
s=0

Φ2j+1,p−1(s) = 2
3j+1∑

k=j+1

aj,p−1,k

k∑
t=2

1
2t− 1

, Res1
s=0

Φ2j+1,p−1(s) = 0,

and for j = 0

Res0
s=0

Φ1,p−1(s) = 2a0,p−1,1 = 1, Res1
s=0

Φ1,p−1(s) = 0.

Proof. The proof follows from the definition in equation (20), classical results on the Eu-
ler Gamma function (see equation (61) in the appendix), and calculation based on the for-
mula (62) in the appendix. See [17] for further details. The formula for j = 0 follows by ex-
plicit knowledge of the coefficients a0,1.

Next, we determine the terms A0,0(0) and A′0,1(0), defined in equation (22). Using an
upper dot to denote the ones relative to the sequence Ṡp−1, we have the following result.

Lemma 6.6.7.

A0,0,p−1(s) = A0,0,p−1(s)− Ȧ0,0,p−1(s) = 0,

A0,1,p−1(s) = A0,1,p−1(s)− Ȧ0,1,p−1(s) =
1
2
ζ(2s, Up−1).
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Proof. The defining equation (22) reads

A0,0,p−1(s) =
∞∑

n=1

mcex,p−1,n


a0,0,n,p−1 −

p∑

j=1

b2j−1,0,0,p−1µ
−2j+1
p−1,n


 µ−2s

p−1,n,

A0,1,p−1(s) =
∞∑

n=1

mcex,p−1,n


a0,1,n,p−1 −

p∑

j=1

b2j−1,0,1,p−1µ
−2j+1
p−1,n


 µ−2s

p−1,n.

in the present case. We need the expansion of the functions log Γ(−λ, Sp−1,n/µ2
p−1,n),

l2j−1(λ), log Γ(−λ, Ṡp−1,n/µ2
p−1,n), and l̇2j−1(λ), for j = 1, 2, . . . , p, and large λ. Using

classical expansions for the Bessel functions and their derivative and the formulas in equa-
tion (21), we obtain (see [17] for further details)

a0,0,n,p−1 =
1
2

log 2π +
(

µp−1,n +
1
2

)
log µp−1,n − µp−1,n log 2− log Γ(µp−1,n + 1),

a0,1,n,p−1 =
1
2

(
µp−1,n +

1
2

)
,

b2j−1,0,0,p−1 = 0, b2j−1,0,1,p−1 = 0, j = 1, 2, . . . p,

note that b2j−1,0,0,p−1 = 0 since l2j−1(λ) don’t have constant term.

ȧ0,0,n,p−1 =
1
2

log 2π +
(

µp−1,n +
1
2

)
log µp−1,n − µp−1,n log 2− log Γ(µp−1,n + 1),

ȧ0,1,n,p−1 =
1
2

(
µp−1,n − 1

2

)
,

ḃ2j−1,0,0,p−1 = 0, ḃ2j−1,0,1,p−1 = 0, j = 1, 2, . . . p,

and ḃ2j−1,0,0,p−1 = 0 since l̇2j−1(λ) don’t have constant term. The thesis follows.

We now have all the necessary information to apply Theorem 3.3.2 and its corollary. We
obtain the following result, where we distinguish the regular part and the singular part, as
in Remark 3.3.1.

Proposition 6.6.2.

tp−1(0) = tp−1,reg(0) + tp−1,sing(0),
t′p−1(0) = t′p−1,reg(0) + t′p−1,sing(0),
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where

tp−1,reg(0) = −1
2
ζ(0, Up−1) = −1

2
ζcex

(
0, ∆̃(p−1)

)
,

tp−1,sing(0) = 0,

t′p−1,reg(0) = −ζ ′(0, Up−1) = −1
2
ζ ′cex

(
0, ∆̃(p−1)

)
,

t′p−1,sing(0) =
1
2

p−1∑

j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=2j+1

ζ(s, Up−1)

=
1
2

p−1∑

j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=2j+1

ζcex

(s

2
, ∆̃(p−1)

)
.

Proof. By definition in equations (33) and (34),

tp−1(0) =Zp−1(0)− Żp−1(0),

t′p−1(0) =Z ′p−1(0)− Ż ′p−1(0),

where Zp−1(s) = ζ(s, Sp−1), and Żp−1(s) = ζ(s, Ṡp−1). By Proposition 6.6.1 and Lemma
6.6.4, we can apply Theorem 3.3.2 and its Corollary to the difference of these double zeta
functions. The regular part of Zp−1(0)− Żp−1(0) is then given in Lemma 6.6.7, while the
singular part vanishes, since, by Corollary 6.6.1, the residues of the functions Φk,p−1(s) at
s = 0 vanish. The regular part of Z ′p−1(0)− Ż ′p−1(0) again follows by Lemma 6.6.7. For the
singular part, since by Proposition 6.6.1, κ = 2, ` = 2p, and σh = h−1, with 0 ≤ h ≤ 2p, by
Remark 6.6.1 we need only the odd values of h−1 = 2j+1, 0 ≤ j ≤ p−1, and this gives the
formula stated for t′p−1,sing(0).

6.2. The functions tq(s), 0 ≤ q ≤ p − 2
In this section we study the functions tq(s). For we apply Theorems 3.3.1 and 3.3.2 to

the double sequences Sq = {mq,n : j2
µq,n,k}∞n=1 and Sq,± = {mq,n : j2

µq,n±αq,k}∞n=1, since we
have that Zq(s) = ζ(s, Sq), Zq,±(s) = ζ(s, Sq,±), where q = 0, 1, . . . , p− 2, αq = p− q − 1.
Note that the sequence Sq coincides with the sequence Sp−1 analysed in Section 6.1, with
q = p − 1. So we just need to study the other two sequences. First, we verify Definition
3.3.1. For we introduce the simple sequence Uq = {mq,n : µq,n}∞n=1.

Lemma 6.6.8. For all 0 ≤ q ≤ p − 1, the sequence Uq is a totally regular sequence of
spectral type with infinite order, e(Uq) = g(Uq) = 2p− 1, and

ζ(s, Uq) = ζcex

(s

2
, ∆̃(q) + α2

q

)
.
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The possible poles of ζ(s, Uq) are at s = 2p− 1− h, h = 0, 2, 4, . . . , and the residues are
completely determined by the residues of the function ζcex(s, ∆̃(q)), namely:

Res1
s=2k+1

ζ(s, Uq) =
p−1−k∑

j=0

(− 2k+1
2

j

)
Res1

s=2(k+j)+1
ζcex

(s

2
, ∆̃(q)

)
α2j

q .

Proof. By definition Uq = {mcex,q,n : µq,n}∞n=1, where by Lemmas 4.4.2 and 4.4.3

µq,n =
√

λq,n + α2
q ,

and the λq,n are the eigenvalues of the operator ∆̃(q) on the compact manifold W . Counting
such eigenvalues according to multiplicity of the associated coexact eigenform, since the
dimension of the eigenspace of λq,n are finite, by Proposition 3.3.2, λq,n ∼ n

2
m for large n.

This gives order and genus. Next, by definition

ζ(s, Uq) =
∞∑

n=1

mcex,q,n(λq,n + α2
q)
− s

2 =
∞∑

j=0

(− s
2

j

) ∞∑
n=1

mcex,q,nλ
− s

2−j
q,n α2j

q

=
∞∑

j=0

(− s
2

j

)
ζcex

(s

2
+ j, ∆̃(q)

)
α2j

q = ζcex

(s

2
, ∆̃(q)

)
− s

2
ζcex

(s

2
+ 1, ∆̃(q)

)
α2

q + . . . .

The last statement follows by Proposition 3.3.3.

The analysis of the double sequences Sq,± is little bit harder than that of the sequences
of the previous Section 6.1, since now the elements of the sequences are not multiple of
zeros of Bessel functions (and their derivative). However, they are the zeros of some linear
combinations of Bessel functions and their derivative, and this makes possible the following
analysis.

For c ∈ C, let define the functions

Ĵν,c(z) = cJν(z) + zJ ′ν(z).

Recalling the series definition of the Bessel function

Jν(z) =
zν

2ν

∞∑

k=0

(−1)kz2k

22kk!Γ(ν + k + 1)
,

we obtain that near z = 0

Ĵν,c(z) =
(
1 +

c

ν

) zν

2νΓ(ν)
.

This means that the function z−ν Ĵν,c(z) is an even function of z. Let ĵν,c,k be the positive
zeros of Ĵν,c(z) arranged in increasing order. By the Hadamard factorization theorem, we
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have the product expansion

z−ν Ĵν(z),c = z−ν Ĵν,c(z)
+∞∏

k=−∞

(
1− z

ĵν,c,k

)
,

and therefore

Ĵν,c(z) =
(
1 +

c

ν

) zν

2νΓ(ν)

∞∏

k=1

(
1− z2

ĵ2
ν,c,k

)
.

Next, recalling that (when −π < arg(z) < π
2 )

Jν(iz) = e
π
2 iνIν(z),

J ′ν(iz) = e
π
2 iνe−

π
2 iI ′ν(z),

we obtain

Ĵν,c(iz) = e
π
2 iν (cIν(z) + zI ′ν(z)) .

Thus, we define (for −π < arg(z) < π
2 )

Îν,c(z) = e−
π
2 iν Ĵν,c(iz), (38)

and hence

Îν,±αq (z) = ±αqIν(z) + zI ′ν(z) =
(
1± αq

ν

) zν

2νΓ(ν)

∞∏

k=1

(
1 +

z2

ĵ2
ν,±αq,k

)
. (39)

Recalling the definition in equation (17) we have proved the following fact.

Lemma 6.6.9. The logarithmic Gamma functions associated to the sequences Sq,±,n have
the following representations, when λ ∈ Dθ,c′ , with c′ = 1

2min(j2
µq,0

, j2
µq,0,±αq

),

log Γ(−λ, Sq,±,n) =− log
∞∏

k=1

(
1 +

(−λ)
ĵ2
µq,n,±αq,k

)

=− log Îµq,n,±αq (
√
−λ) + µq,n log

√
−λ− µq,n log 2

− log Γ(µq,n) + log
(

1± αq

µq,n

)
.

Proposition 6.6.3. The double sequences Sq,± have relative exponents
(
p, 2p−1

2 , 1
2

)
,

relative genus (p, p − 1, 0), and are is spectrally decomposable over Uq with power κ = 2,
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length ` = 2p and domain Dθ,c′ . The coefficients σh appearing in equation (19) are σh =
h− 1, with h = 1, 2, . . . , ` = 2p.

Proof. The proof is the same of the one of Proposition 6.6.1.

Remark 6.6.3. By Theorem 3.3.1, only the term with σh = 1, σh = 3, . . ., σh = 2p− 1
namely h = 2, 4, . . . , 2p, appear in the formula of Theorem 3.3.2, since the unique poles of
ζ(s, Uq) are at s = 1, s = 3, . . . s = 2p− 1.

Since we aim to apply the version of Theorem 3.3.2 given in Corollary 3.3.1, for linear
combination of two spectrally decomposable sequences, we inspect directly the uniform
asymptotic expansion of 2Sq − Sq,− − Sq,+. This give the functions φσh

.

Lemma 6.6.10. We have the the following asymptotic expansions for large n, uniform
in λ, for λ ∈ Dθ,c′ ,

2 logΓ(−λ, Sq,n/µ2
q,n)− log Γ(−λ, Sq,+,n/µ2

q,n)− log Γ(−λ, Sq,−,n/µ2
q,n)

=− 2 log Iµq,n(µq,n

√
−λ) + log Îµq,n,αq (µq,n

√
−λ) + log Îµq,n,−αq

(µq,n

√
−λ)

− 2 log µq,n − log

(
1− α2

q

µ2
q,n

)

= log(1− λ) +
2p−1∑

j=1

φj,q(λ)
1

µj
q,n

+ O

(
1

(µq,n)2p

)
.

Proof. Using the representations given in Lemmas 6.6.4 and 6.6.9, we obtain

2 log Γ(−λ, Sq,n/µ2
q,n)− log Γ(−λ, Sq,+,n/µ2

q,n)− log Γ(−λ, Sq,−,n/µ2
q,n)

=− 2 log Iµq,n(µq,n

√
−λ) + log Îµq,n,αq (µq,n

√
−λ) + log Îµq,n,−αq

(µq,n

√
−λ)

− 2 log µq,n − log

(
1− α2

q

µ2
q,n

)
.

Using the expansion given in Lemma 6.6.4 for Iν(νz) and I ′ν(νz), we obtain the following
expansion for Îν,±αq (νz),

Îν,±αq (νz) = ±αqIν(νz) + νzI ′ν(νz)

=
√

ν(1 + z2)
1
4
eν
√

1+z2e
ν log z

1+
√

1+z2

√
2π


1 +

2p−1∑

j=1

W±αq,j(z)
1
νj

+ O

(
1

ν2p

)
 ,
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where W±αq,j(z) = Vj(z)± αq√
1+z2 Uj(z). Thus,

log Îν,±αq
(νz) =ν

√
1 + z2 + ν log z − ν log(1 +

√
1 + z2) + log ν +

1
4

log(1 + z2)

− 1
2

log 2πν + log


1 +

2p−1∑

j=1

W±αq,j(z)
1
νj

+ O

(
1

ν2p

)
 .

This gives,

2 log Γ(−λ, Sq,n/µ2
q,n)− log Γ(−λ, Sq,+,n/µ2

q,n)− log Γ(−λ, Sq,−,n/µ2
q,n)

= log(1− λ)− 2 log


1 +

2p−1∑

j=1

Uj(
√−λ)

µj
q,n

+ O

(
1

µ2p
q,n

)


+ log


1 +

2p−1∑

j=1

W+αq,j(
√−λ)

µj
q,n

+ O

(
1

µ2p
q,n

)
 + log


1 +

2p−1∑

j=1

W−αq,j(
√−λ)

µj
q,n

+ O

(
1

µ2p
q,n

)
 .

Using the same expansion for the logarithm as in the proof of Lemma 6.6.4

2 log Γ(−λ, Sq,n/µ2
q,n)− log Γ(−λ, Sq,+,n/µ2

q,n)− log Γ(−λ, Sq,−,n/µ2
q,n)

= log(1− λ) +
p∑

j=1

(−2l2j−1(λ) + l+2j−1(λ) + l−2j−1(λ)
) 1

µ2j−1
q,n

+
p−1∑

j=1

(
−2l2j(λ) + l+2j(λ) + l−2j(λ) +

α2j
q

j

)
1

µ2j
q,n

+ O

(
1

µ2p
q,n

)
,

where we denote by lj(λ) the term in the expansion relative to the sequence S (thus the
one containing the Uj(z)) and by l±j (λ) the terms relative to S± (thus the ones containing
the W±αq,j(z)). Setting

φ2j−1,q(λ) = −2l2j−1(λ) + l+2j−1(λ) + l−2j−1(λ)

φ2j,q(λ) = −2l2j(λ) + l+2j(λ) + l−2j(λ) +
α2j

q

j
,

(40)

the result follows.

Remark 6.6.4. Note that there are no logarithmic terms log µq,n in the asymptotic
expansion of the difference of the logarithmic Gamma function given in Lemma 6.6.10.
This permits to apply Corollary 3.3.1.

Next, we give some results on the functions φj,q(λ), and on the functions Φj,q(s) defined
in equation (20).
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Lemma 6.6.11. For all j and all 0 ≤ q ≤ p−2, the functions φj,q(λ) are odd polynomial
in w = 1√

1−λ

φ2j−1,q(λ) =
2j−1∑

k=0

a2j−1,q,kw2k+2j−1,

φ2j,q(λ) =
2j∑

k=0

a2j,q,kw2k+2j +
α2j

q

j
.

The coefficients aj,q,k are completely determined by the coefficients of the expansion given
in Lemma 6.6.10.

Proof. This follows by direct inspection of the last equality in the statement of Lemma

6.6.10.

Lemma 6.6.12. For all j and all 0 ≤ q ≤ p− 2, φj,q(0) = 0.

Proof. The proof is by induction on j. We will consider all the functions as functions
of w = 1√

1−λ
. We use the following hypothesis for the induction, for 1 ≤ k ≤ j − 1:

φ2k−1,q(1) = 0, (41)
φ2k,q(1) = 0, (42)

l−2k−1(1)− l+2k−1(1) =
−2α2k−1

q

2k − 1
, (43)

l−2k(1)− l+2k(1) = 0, (44)

where the functions φj,q(λ) are defined in equation (40), and the function l(λ) in the course
of the proof of Lemma 6.6.10.

First, we verify the hypothesis for j = 1. Equations (43) and (44) follow by the definition
when k = 1. For equations (41) and (42), we have by definition when k = 1 that

φ1,q(λ) = −2l1(λ) + l+1 (λ) + l−1 (λ)

= −2U1(
√
−λ) + V1(

√
−λ) + αqU0(

√
−λ) + V1(

√
−λ)− αqU0(

√
−λ)

= − 1
(1− λ)

1
2

+
1

(1− λ)
3
2
,

and

φ2,q(λ) = −2l2(λ) + l+2 (λ) + l−2 (λ) + α2
q

= −2U2(
√
−λ) + 2V2(

√
−λ) + U1(

√
−λ)2 − V1(

√
−λ)2

= −3
2

1
(1− λ)

+ 2
1

(1− λ)2
− 3

2
1

(1− λ)3
+ 1,
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and hence equations (41) and (42) are also verified when k = 1.
Second we prove that the equations (41), (42), (43), and (44) hold for k = j. Recalling

that Uk(1) = Vk(1) for all k, we have from the definition that

l−2j−1(1)− l+2j−1(1) =U2j−1(1)− αqU2j−2(1)− U2j−1(1)− αqU2j−2(1)

−
2j−2∑

k=1

2j − 1− k

2j − 1

(
Uk(1)(l−2j−1−k(1)− l+2j−1−k(1))

)

+
2j−2∑

k=1

2j − 1− k

2j − 1

(
αqUk−1(1)(l−2j−1−k(1) + l+2j−1−k(1))

)
,

and hence, using the hypothesis we obtain

l−2j−1(1)− l+2j−1(1)

=− 2αqU2j−2(1) +
j−1∑

k=1

2(j − k)
2j − 1

αqU2k−2(1)

(
2l2(j−k) −

α
2(j−k)
q

j − k

)

−
j−1∑

k=1

U2k(1)
−2α

2(j−k)−1
q

2j − 1
+

j−1∑

k=1

2(j − k)− 1
2j − 1

2αqU2k−1(1)l2(j−k)−1(1)

=− 2α2j−1
q

2j − 1
− 2αqU2j−2(1) +

2αq

2j − 1
U2j−2(1)

+
2αq

2j − 1

(
2(j − 1)l2j−2 +

2j−3∑

k=1

(2j − 2− k)αqUk(1)l2j−2−k(1)

)

=− 2α2j−1
q

2j − 1
− 2αqU2j−2(1) +

2αq

2j − 1
U2j−2(1) +

2αq(2j − 2)U2j−2

2j − 1

=− 2α2j−1
q

2j − 1
,

thus proving (43) for k = j. For (41), note that

φ2j−1,q(1) =− 2l2j−1(1) + l+2j−1(1) + l−2j−1(1)

=
2j−2∑

k=1

2j − 1− k

2j − 1

(
Uk(1)(2l2j−1−k(1)− l+2j−1−k(1)− l−2j−1−k(1))

)

−
2j−2∑

k=1

2j − 1− k

2j − 1
αqUk−1(1)

(
l−2j−1−k(1)− l+2j−1−k(1)

)
,
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and using the induction hypothesis, and (43) with k = j just proved, this means that

φ2j−1,q(1) =
j∑

k=1

2j − 1− (2k − 1)
2j − 1

U2k−1(1)
α(i)2(j−k)

j − k

− 2
j∑

k=1

2j − 1− 2k

2j − 1
α(i)U2k−1(1)

(
α(i)2(j−k)−1

2(j − k)− 1

)
= 0.

and (41) with k = j follows. For (44), using the hypothesis, we have

l−2j(1)− l+2j(1)

=U2j(1)− αqU2j−1(1)− U2j(1)− αqU2j−1(1)

−
2j−1∑

k=1

2j − k

2j

(
Uk(1)(l−2j−k(1)− l+2j−k(1))

)

+
2j−1∑

k=1

2j − k

2j

(
αqUk−1(1)(l−2j−k(1) + l+2j−k(1))

)

=− 2αqU2j−1(1) +
j−1∑

k=1

2j − 2k

2j
αqU2k−1(1)

(
2l2j−2k(1)− α2j−2k

q

j − k

)

+
j∑

k=1

2(j − k) + 1
2j

(
U2k−1(1)

2α
2(j−k)+1
q

2(j − k) + 1
+ αqU2k−2(1)2l2(j−k)+1(1)

)

=− 2αqU2j−1(1) +
2αqU2j−1(1)

2j
+

2αq

2j
(2j − 1)l2j−1(1) + 2αq

2j−1∑

k=2

2j − k

2j
Uk−1(1)l2j−k(1)

=− 2αqU2j−1(1) +
αq

j

(
U2j−1(1) + (2j − 1)l2j−1(1) +

2j−2∑

k=1

(2j − 1− k)Uk(1)l2j−1−k(1)

)

=− 2αqU2j−1(1) +
(αq(2j − 1) + αq)U2j−1(1)

j
= 0.
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Eventually, for (42)

φ2j,q(1) =− 2l2j(1) + l+2j(1) + l−2j(1) +
α2j

q

j

=
α2j

q

j
+

2j−1∑

k=1

2j − k

2j

(
Uk(1)(2l2j−k(1)− l+2j−k(1)− l−2j−k(1))

)

−
2j−1∑

k=1

2j − k

2j
αqUk−1(1)

(
l−2j−k(1)− l+2j−k(1))

)

=
j−1∑

k=1

2j − 2k

2j
U2k(1)

α
2(j−k)
q

j − k
− 2

j∑

k=2

αqU2k−2(1)
α

2(j−k)+1
q

2j
= 0,

We also give a recurrence relation satisfied by the functions φj,q(λ), that will be funda-
mental in the proof of Theorem 1.1.3.

Lemma 6.6.13. For all j and all 0 ≤ q ≤ p−2, the functions φj,q(w) satisfy the following
recurrence relations (where w = 1√

1−λ
)

φ2j−1,q(λ) = w2j−2α2j−2
q φq,1(w) +

j−2∑
t=1

K2j−1,t(w)α2t
q + 2φ2j−1,p−1(w)

φ2j,q(λ) = − (w2j − 1)α2j
q

j
+

j−1∑
t=1

K2j,t(w)α2t
q + 2φ2j,p−1(w),

where the Kj,t(w) are polynomials in w.

Proof. The proof is by induction on j. For j = 1,

φ1,q(w) = 2φ1,p−1(w) = −w + w3

φ2,q(w) = −(w2 − 1)α2
q + 2φ2,p−1(w) = −(w2 − 1)α2

q + (−w2

2
− 2w4 − 3w6

2
).
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Assuming the formulas hold for 1 ≤ k ≤ j − 2. Then, by definition of the functions
φj,q(λ) and l(λ) in the proof of Lemma 6.6.10, we have that

l+2s−1(w) + l−2s−1(w) = 2l̇2s−1(w) + w2s−2α2s−2
q (φq,1(w)) +

s−2∑
t=1

K2s−1,t(w)α2t
q ,

l+2s(w) + l−2s(w) = 2l̇2s(w)− w2sα2s
q

s
+

s−1∑
t=1

K2s,t(w)α2t
q ,

l+2s−1(w)− l−2s−1(w) =
2

2s− 1
α2s−1

q w2s−1 + αq

s−2∑
t=0

D2s−1,t(w)α2t
q ,

l+2s(w)− l−2s(w) = −α2s−1
q w2s−1φq,1(w) + αq

s−2∑
t=0

D2s,t(w)α2t
q ,

for all s = 1, 2, . . . , j − 1, and where the Ds,t are polynomials in w. We proceed as in the
proof of Lemma 6.6.12 (see [17] for further details). For the odd index we have:

l+2j−1(w)− l−2j−1(w) =2αqU2j−2(w)−
2j−2∑

k=1

2j − 1− k

2j − 1
Vk(w)(l+2j−1−k(w)− l−2j−1−k(w))

+
2j−2∑

k=1

2j − 1− k

2j − 1
wαqUk−1(w)(l+2j−1−k(w) + l−2j−1−k(w)),

=2αqU2j−2(w)−
j−1∑

k=1

2j − 1− 2k

2j − 1
V2k(w)(l+2j−1−2k(w)− l−2j−1−2k(w))

−
j−1∑

k=1

2j − 1− 2k

2j − 1
wαqU2k−1(w)(l+2j−1−2k(w) + l−2j−1−2k(w))

−
j−1∑

k=1

2j − 2k

2j − 1
V2k−1(w)(l+2j−2k(w)− l−2j−2k(w))

−
j−1∑

k=1

2j − 2k

2j − 1
wαqU2k−2(w)(l+2j−2k(w) + l−2j−2k(w))

=
2

2j − 1
α2j−1

q w2j−1 + αq

j−2∑
t=0

D2j−1,t(w)α2t
q ,
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and this gives

φ2j−1,q(w) =− 2U2j−1(w) + 2V2j−1(w) +
2j−2∑

k=1

2j − 1− k

2j − 1
(2Uk(w)l2j−1−k(w))

−
j−1∑

k=1

2j − 1− 2k

2j − 1

(
V2k(w)(l+2j−1−2k(w) + l−2j−1−2k(w))

)

−
j−1∑

k=1

2j − 1− 2k

2j − 1

(
wαqU2k−1(w)(l+2j−1−2k(w)− l−2j−1−2k(w))

)

−
j−1∑

k=1

2j − 2k

2j − 1

(
V2k−1(w)(l+2j−2k(w) + l−2j−2k(w))

)

−
j−1∑

k=1

2j − 2k

2j − 1

(
wαqU2k−2(w)(l+2j−2k(w)− l−2j−2k(w))

)

=w2j−2α2j−2
q (φ1,q(w)) +

j−2∑
t=1

K2j−1,t(w)α2t
q + 2φ2j−1,p−1(w).

For the even index, using the result proved for the odd index, we get

l+2j(w)− l−2j(w) =2αqU2j−1(w)−
j−1∑

k=1

2j − 2k

2j
V2k(w)(l+2j−2k(w)− l−2j−2k(w))

−
j−1∑

k=1

2j − 2k

2j
wαqU2k−1(w)(l+2j−2k(w) + l−2j−2k(w))

−
j−1∑

k=1

2j − 2k + 1
2j

V2k−1(w)(l+2j−2k+1(w)− l−2j−2k+1(w))

−
j−1∑

k=1

2j − 2k + 1
2j

wαqU2k−2(w)(l+2j−2k+1(w) + l−2j−2k+1(w))

=− α2j−1
q w2j−1φ1,q(w) + αq

j−2∑
t=0

D2j,t(w)α2t
q ,

and proceeding as before, this gives the last formula in the thesis.
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Corollary 6.6.2. For all j and all 0 ≤ q ≤ p−2, the Laurent expansion of the functions
Φ2j+1,q(s) at s = 0 has coefficients: for 1 ≤ j ≤ p− 1

Res0
s=0

Φ2j+1,q(s) =
2

2j + 1
α2j

q +
j−1∑
t=1

k2j+1,tα
2t
q + 2 Res0

z=0
Φ2j+1,p−1(s), Res1

s=0
Φ2j+1,q(s) = 0,

where the kj,t are real numbers, and for j = 0

Res0
s=0

Φ1,q(s) = 2Res0
s=0

Φ1,p−1(s) = 2, Res1
s=0

Φ1,q(s) = 0.

Proof. By Lemma 6.6.11,

φ2j+1,q(λ) =
2j+1∑

k=0

a2j+1,q,kw2k+2j+1,

where w = 1√
1−λ

, and φ2j+1,q(0) = 0, therefore
∑2j−1

k=0 a2j+1,q,k = 0. Using the formula in
equation (62) and the residues for the Gamma function in equation (61) in the appendix,
we obtain

Res1
s=0

Φ2j+1,q(s) =
2j+1∑

k=0

a2j+1,q,k = 0.

Using the same formulas in the appendix, but the result of Lemma 6.6.13, we prove the
formula for the finite part. The formula for j = 0 follows by explicit knowledge of the coeffi-

cients a0,1.

Next, we determine the terms A0,0(0) and A′0,1(0), defined in equation (22).

Lemma 6.6.14. For all 0 ≤ q ≤ p− 2,

A0,0,q(s) = 2A0,0,q(s)−A0,0,q,+(s)−A0,0,q,−(s) = −
∞∑

n=1

log

(
1− α2

q

µ2
q,n

)
mq,n

µ2s
q,n

,

A0,1,q(s) = 2A0,1,q(s)−A0,1,q,+(s)−A0,1,q,−(s) = ζ(2s, Uq).
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Proof. For Sq equation (22) reads

A0,0,q(s) =
∞∑

n=1

mcex,q,n


a0,0,n,q −

p∑

j=1

b2j−1,0,0,qµ
−2j+1
q,n


 µ−2s

q,n ,

A0,1,q(s) =
∞∑

n=1

mcex,q,n


a0,1,n,q −

p∑

j=1

b2j−1,0,1,qµ
−2j+1
q,n


 µ−2s

q,n .

for Sq,±:

A0,0,q,±(s) =
∞∑

n=1

mcex,q,n


a0,0,n,q,± −

p∑

j=1

b2j−1,0,0,q,±µ−2j+1
q,n


µ−2s

q,n ,

A0,1,q,±(s) =
∞∑

n=1

mcex,q,n


a0,1,n,q,± −

p∑

j=1

b2j−1,0,1,q,±µ−2j+1
q,n


µ−2s

q,n .

We need the expansions for large λ of l2j−1(λ), l±2j−1(λ), for j = 1, 2, . . . , p, log Γ(−λ, Sq,n/µ2
q,n)

and log Γ(−λ, Sq,±,n/µ2
q,n). Using classical expansion for Bessel functions and their deriva-

tive (see [19] or [17] for details), we obtain

log Γ(−λ, Sq,n/µ2
q,n) =

1
2

log 2π +
(

µq,n +
1
2

)
log µq,n − µq,n log 2

− log Γ(µq,n + 1) +
1
2

(
µq,n +

1
2

)
log(−λ) + O(e−µq,n

√−λ).

For Sq,±, by the same expansions in the definition of the function Î, equation (39), we
obtain

Îν,±αq (z) ∼
√

zez

√
2π

(
1 +

∞∑

k=1

bkz−k

)
+ O(e−z),

and hence

log Γ(−λ,Sq,±,n/µ2
q,n) = µq,n

√
−λ +

1
2

log 2π +
(

µq,n − 1
2

)
log µq,n − µq,n log 2

− log Γ(µq,n) +
1
2

(
µq,n − 1

2

)
log(−λ) + log

(
1± αq

µq,n

)
+ O(e−µq,n

√−λ).
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This gives

a0,0,n,q =
1
2

log 2π +
(

µq,n +
1
2

)
log µq,n − µq,n log 2− log Γ(µq,n + 1),

a0,1,n,q =
1
2

(
µq,n +

1
2

)
,

a0,0,n,q,± =
1
2

log 2π +
(

µq,n − 1
2

)
log µq,n − log 2µq,nΓ(µq,n) + log

(
1± αq

µq,n

)
,

a0,1,n,q,± =
1
2

(
µq,n − 1

2

)
,

while the b2j−1,0,0,q, b2j−1,0,0,q,± all vanish since the functions l2j−1(λ), l±2j−1(λ) do not
have constant terms. Therefore,

2a0,0,n,q − a0,0,n,q,+ − a0,0,n,q,− = − log

(
1− α2

q

µ2
q,n

)
,

2a0,1,n,q − a0,1,n,q,+ − a0,1,n,q,− = 1,

and the thesis follows.

Applying Theorem 3.3.2 and its corollary, we obtain the values of tq(0) and t′q(0).

Proposition 6.6.4. For 0 ≤ q ≤ p− 2,

tq(0) = tq,reg(0) + tq,sing(0)
t′q(0) = t′q,reg(0) + t′q,sing(0),

where

tq,reg(0) = −ζ(0, Uq) = −ζcex

(
0, ∆̃(q) + α2

q

)
,

tq,sing(0) = 0,

t′q,reg(0) = −Aq,0,0(0)−A′q,0,1(0),

t′q,sing(0) =
1
2

p−1∑

j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=2j+1

ζ(s, Uq)

=
1
2

p−1∑

j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=2j+1

ζcex

(s

2
, ∆̃(q) + α2

q

)
.

Proof. By definition in equations (33) and (34),

tq(0) =2Zq(0)− Zq,+(0)− Zq,−(0),
t′q(0) =2Z ′q(0)− Z ′q,+(0)− Z ′q,−(0).
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where Zq(s) = ζ(s, Sq), and Zq,±(s) = ζ(s, Sq,±). By Proposition 6.6.3 and Lemma 6.6.10,
we can apply Theorem 3.3.2 and its Corollary to the linear combination above of these
double zeta functions. The regular part of 2Zq(0) − Zq,+(0) − Zq,−(0) is then given in
Lemma 6.6.14, while the singular part vanishes, since, by Corollary 6.6.2, the residues of
the functions Φk,q(s) at s = 0 vanish. The regular part of 2Z ′q(0) − Z ′q,+(0) − Z ′q,−(0)
again follows by Lemma 6.6.7. For the singular part, since by Proposition 6.6.3, κ = 2,
` = 2p, and σh = h − 1, with 0 ≤ h ≤ 2p, by Remark 6.6.3 we need only the odd values
of h− 1 = 2j + 1, 0 ≤ j ≤ p− 1, and this gives the formula stated for t′p−1,sing(0).

7. THE ANALYTIC TORSION, AND THE PROOF OF THEOREM ??

In this section we collect all the results obtained in the previous one in order to pro-
duce our formulas for the analytic torsion, thus proving Theorem 1.1.1, that follows from
Propositions 7.7.1 and 7.7.2 below. By equation (35), the torsion is

log T (ClW ) = t′(0) =
log l2

2

(
p−1∑
q=0

(−1)q+1rqzq(0) +
p−1∑
q=0

(−1)qtq(0)

)

+
1
2

(
p−1∑
q=0

(−1)q+1rqz
′
q(0) +

p−1∑
q=0

(−1)qt′q(0)

)
.

However, it is convenient to split the torsion in regular and singular part, accordingly
to remark 3.3.1 and the results in Propositions 6.6.2 and 6.6.4. First, observe that the
functions zq(s) where studied in Section 3.2, where it is showed that there is no singular
contribution to zq(0) and z′q(0). So zq(0) = zq,reg(0), and z′q(0) = z′q,reg(0). Therefore, we
set

log T (ClW ) = log Treg(ClW ) + log Tsing(ClW ),

with

log Treg(ClW ) = t′reg(0) =
log l2

2

(
p−1∑
q=0

(−1)q+1rqzq(0) +
p−1∑
q=0

(−1)qtq,reg(0)

)
(45)

+
1
2

(
p−1∑
q=0

(−1)q+1rqz
′
q(0) +

p−1∑
q=0

(−1)qt′q,reg(0)

)
,

log Tsing(ClW ) = t′sing(0) =
log l2

2

p−1∑
q=0

(−1)qtq,sing(0) +
1
2

p−1∑
q=0

(−1)qt′q,sing(0). (46)
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Lemma 7.7.1. For all 0 ≤ q ≤ p− 1,

zq(0) = −1
2
,

z′q(0) = log 2 + log(p− q).

Proof. This follows by equation (18).

Lemma 7.7.2.

tq,reg(0) = −ζcex(0, ∆̃(q)), 0 ≤ q ≤ p− 2,

t′q,reg(0) = −ζ ′cex(0, ∆̃(q)), 0 ≤ q ≤ p− 2,

tp−1,reg(0) = −1
2
ζcex(0, ∆̃(p−1)),

t′p−1,reg(0) = −1
2
ζ ′cex(0, ∆̃(p−1)).

Proof. The first and the third formulas follows by Propositions 6.6.2 and 6.6.4, and the
fact that for the zeta function associated to any sequence S, and any number b, ζ(0, S+b) =
ζ(0, S). For the derivatives, when 0 ≤ q ≤ p− 2, by Proposition 6.6.4,

t′q,reg(0) = −A0,0,q(0)−A′0,1,q(0).

By Lemma 6.6.14

A0,0,q(s) = −
∞∑

n=1

log

(
1− α2

q

µ2
q,n

)
mcex,q,n

µ2s
q,n

,

A0,1,q(s) = ζ(2s, Uq) =
∞∑

n=1

mcex,q,n

µ2s
q,n

.
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Recalling that µq,n =
√

λq,n + αq, and expanding the binomial, we obtain

−A0,0,q(s)−A′0,1,q(s) =
∞∑

n=1

log

(
1− α2

q

µ2
q,n

)
mcex,q,n

µ2s
q,n

−
∞∑

n=1

mcex,q,n

µ2s
q,n

log µ2
q,n

=
∞∑

n=1

log λq,n
mcex,q,n

µ2s
q,n

=
∞∑

n=1

log λq,n

∞∑

j=0

(−s

j

)
mcex,q,n

λs+j
q,n

α2j
q

= −
∞∑

j=0

(−s

j

)
ζ ′ccl(s + j, ∆̃(q))α2j

q ,

that gives the second formula. Eventually, the result for t′p−1,reg(0) follows by Proposition
6.6.2 and the fact that αp−1 = 0 since the dimension is m = 2p− 1.

Proposition 7.7.1.

log Treg(ClW ) =
1
2

p−1∑
q=0

(−1)qrq log
l

2
− 1

2

p−1∑
q=0

(−1)qrq log(p− q) +
1
2

log T (W, g)

−
(

p−2∑
q=0

(−1)qζccl(0, ∆̃(q)) +
1
2
(−1)p−1ζccl(0, ∆̃(p−1))

)
log l

=
1
2

p−1∑
q=0

(−1)qrq log
l

2
− 1

2

p−1∑
q=0

(−1)qrq log(p− q) +
1
2

log T (W, l2g),

where rq = rkHq(∂ClW ;Q)

Proof. Substitution in the formula in equation (45) of the values given in Lemmas 7.7.1
and 7.7.2 gives

log Treg(ClW ) =
1
2

p−1∑
q=0

(−1)qrq log
l

2
− 1

2

p−1∑
q=0

(−1)qrq log(p− q)

−
(

p−2∑
q=0

(−1)qζccl(0, ∆̃(q)) +
1
2
(−1)p−1ζccl(0, ∆̃(p−1))

)
log l

+
1
4

(
2

p−2∑
q=0

(−1)q+1ζ ′ccl(0, ∆̃(q)) + (−1)pζ ′ccl(0, ∆̃(p−1))

)
.
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By the second formula in equation (11)

1
4

(
2

p−2∑
q=0

(−1)q+1ζ ′ccl(0, ∆̃(q)) + (−1)pζ ′ccl(0, ∆̃(p−1))

)
=

1
2

log T (W, g),

and this gives the first formula stated. For the second formula, note that the boundary of
the cone ∂ClW is the manifold W with metric l2g. The restriction of the Laplace operator
on the boundary is then ∆∂ClW = ∆̃

l2 . Since for the zeta function associated to any sequence
S, and any number a,

ζ ′(0, aS) = −ζ(0, S) log a + ζ ′(0, S),

a simple calculation shows that

−
(

p−2∑
q=0

(−1)qζccl(0, ∆̃(q)) +
1
2
(−1)p−1ζccl(0, ∆̃(p−1))

)
log l2

+
1
2

(
2

p−2∑
q=0

(−1)q+1ζ ′ccl(0, ∆̃(q)) + (−1)pζ ′ccl(0, ∆̃(p−1))

)

=t(0,W ) log l2 + t′(0, W ) = log T (∂ClW ).

Proposition 7.7.2.

log Tsing(ClW ) =
1
2

p−1∑
q=0

(−1)q

p−1∑

j=0

Res0
s=0

Φ2j+1(s) Res1
s=j+ 1

2

ζcex

(
s, ∆̃(q) + α2

q

)

=
1
2

p−1∑
q=0

(−1)q

p−1∑

j=0

Res0
s=0

Φ2j+1(s)
q∑

l=0

(−1)l Res1
s=j+ 1

2

ζ
(
s, ∆̃(l) + α2

q

)

=
1
2

p−1∑
q=0

(−1)q

p−1∑

j=0

j∑

k=0

Res0
s=0

Φ2k+1,q(s)
(− 1

2 − k

j − k

)
Res1

s=j+ 1
2

ζcex

(
s, ∆̃(q)

)
α2(j−k)

q

=
1
2

p−1∑
q=0

p−1∑

j=0

j∑

k=0

Res0
s=0

Φ2k+1,q(s)
(− 1

2 − k

j − k

) q∑

l=0

(−1)l Res1
s=j+ 1

2

ζ
(
s, ∆̃(l)

)
α2(j−k)

q .

Proof. The first formula follows by substitution in equation (46) of the values given in
Propositions 6.6.2 and 6.6.4, and observing that, for the zeta function associated to any
sequence S

a Res1
s=s0

ζ(as, S) = Res1
s=as0

ζ(s, S).
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The second by duality, see Section 2.5,

ζccl

(
s, ∆̃(q)

)
= ζ

(
s, ∆̃(q)

)
− ζcl

(
s, ∆̃(q)

)
= ζ

(
s, ∆̃(q)

)
− ζccl

(
s, ∆̃(q−1)

)
=

q∑

k=0

(−1)q+kζ
(
s, ∆̃(k)

)
.

The third formula follows by Lemmas 6.6.2 and 6.6.8, and some combinatorics, and the
last by the previous ones.

8. THE PROOF OF THEOREM ??

On order to prove Theorem 1.1.2 we calculate the regular and the singular parts of the
torsion in the case W = Sm

sin α, according to Propositions 7.7.1 and 7.7.2. Recall we are
considering the absolute BC case. The result for the regular part follows easily, the one for
the singular part requires more works, that will be developed in the following subsections.
Here we recall the underlying geometric setting. Let Sm

b be the sphere of radius b > 0 in
Rm+1, Sm

b = {x ∈ Rm+1 | |x| = b} (we simply write Sm for Sm
1 ). Let ClS

m
sin α denotes

the cone of angle α over Sm
sin α in Rm+2. We embed ClS

m
sin α in Rm+2 as the subset of the

segments joining the origin to the sphere Sm
l sin α×{(0, . . . , 0, l cos α)}. We parametrize the

cone by

ClS
m
sin α =





x1 = r sin α sin θm sin θm−1 · · · sin θ3 sin θ2 cos θ1

x2 = r sin α sin θm sin θm−1 · · · sin θ3 sin θ2 sin θ1

x3 = r sin α sin θm sin θm−1 · · · sin θ3 cos θ2

...
xm+1 = r sin α cos θm

xm+2 = r cos α

with r ∈ [0, l], θ1 ∈ [0, 2π], θ2, . . . , θm ∈ [0, π], and where α is a fixed positive real number
and 0 < a = 1

ν = sin α ≤ 1. The induced metric is (r > 0)

gE = dr ⊗ dr + r2gSm
a2

= dr ⊗ dr + r2a2




m−1∑

i=1




m∏

j=i+1

sin2 θj


 dθi ⊗ dθi + dθm ⊗ dθm


 ,

and
√
|detgE | = (r sin α)m(sin θm)m−1(sin θm−1)m−2 · · · (sin θ3)2(sin θ2).

8.1. The regular part of the torsion

Proposition 8.8.1.

log Treg(ClS
2p−1
sin α ) =

1
2

log Vol(ClS
2p−1
sin α ).
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Proof. By Proposition 7.7.1, when W = S2p−1
sin α with the standard Euclidean metric gE ,

log Treg(ClS
2p−1
sin α ) =

1
2

log
l

2
− 1

2
log p +

1
2

log T (S2p−1
sin α , l2gE).

By [23], T (S2p−1
sin α , l2gE) = Vol(S2p−1

l sin α, gE), and this proves the proposition since, if W
has metric g and dimension m, then

Vol(ClW ) =
∫

ClW

√
det(x2g)dx ∧ dvolg =

∫ l

0

xm

∫

W

dvolg =
lm+1

m + 1
Vol(W, g),

and

Vol(Sm
b , gE) =

2π
m+1

2 bm

Γ
(

m+1
2

) .

8.2. The conjecture for the singular part
Assuming that the formula for the anomaly boundary term ABM,abs(∂W ) of Brüning

and Ma [3] is valid in the case of ClS
2p−1
sin α , we computed in [18] (note the slight different

notation), by applying the definition given equation (15) of in Section 2.6, that

ABM,abs(∂ClS
2p−1
sin α ) =

p−1∑

j=0

2p−j

j!(2(p− j)− 1)!!

j∑

h=0

(
j

h

)
(−1)hν−2(p−j+h)+1

(2(p− j + h)− 1)
(2p− 1)!
4p(p− 1)!

,

where 1
ν = sin α. Our purpose now is to prove that (this was proved in [18] for m < 4)

log Tsing(ClS
2p−1
sin α ) = ABM,abs(∂ClS

2p−1
sin α ) (47)

where log Tsing(ClS
2p−1
sin α ) is given in Proposition 7.7.2. For it is convenient to rewrite the

second term as follows:

ABM,abs(∂ClS
2p−1
sin α ) =

p−1∑

j=0

2p−j

j!(2(p− j)− 1)!!

j∑

h=0

(
j

h

)
(−1)hν−2(p−j+h)+1

(2(p− j + h)− 1)
(2p− 1)!
4p(p− 1)!

=
p−1∑

j=0

2j+1

(p− 1− j)!(2j + 1)!!

p−1−j∑

h=0

(
p− 1− j

h

)
(−1)hν−2(j+1+h)+1

2(j + 1 + h)− 1
(2p− 1)!
4p(p− 1)!

=
(2p− 1)!
4p(p− 1)!

p−1∑

k=0

1
(2k + 1)ν2k+1

k∑

j=0

(−1)k−j2j+1

(p− 1− j)!(2j + 1)!!

(
p− 1− j

k − j

)

=
(2p− 1)!
4p(p− 1)!

p−1∑

k=0

1
(p− 1− k)!(2k + 1)

k∑

j=0

(−1)k−j2j+1

(k − j)!(2j + 1)!!
1

ν2k+1
,

Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



ANALYTIC TORSION OF CONES 243

8.3. The eigenvalues of the Laplacian over ClS
m
sin α

Let ∆ be the self adjoint extension of the formal Laplace operator on ClS
m
sin α as defined

in section 4.3. Then, the positive part of the spectrum of ∆ (with absolute BC) is given
in Lemma 4.4.3, once we know the eigenvalues of the restriction of the Laplacian on the
section and their coexact multiplicity, according to Lemma 4.4.2. These information are
available by work of Ikeda and Taniguchi [20]. The eigenvalues of the Laplacian on q-forms
on S2p−1

sin α are




λ0,n = ν2n(n + 2p− 2),
λq,n = ν2(n + q)(n + 2p− q − 2), 1 ≤ q < p− 2,
λp−2,n = ν2((n− 1 + p)2 − 1),
λp−1,n = ν2(n− 1 + p)2,

with coexact multiplicty

mcex,0,n =
2

(2p− 2)!

p∏

j=2

(n− 1 + j)(2p + n− 1− j),

mcex,q,n =
2

q!(2p− q − 2)!

p∏

j=1,
j 6=q+1

(n− 1 + j)(2p + n− 1− j), 1 ≤ q < p− 2,

mcex,p−2,n =
2

(p− 2)!p!

p∏

j=1
j 6=p−1

(n− 1 + j)(2p + n− 1− j),

mcex,p−1,n =
2

[(p− 1)!]2

p−1∏

j=1

(n− 1 + j)(2p + n− 1− j),

thus the indices µq,n are





µ0,n =
√

ν2(n(n + 2p− 2)) + (p− 1)2,

µq,n =
√

ν2(n + q)(n + 2p− q − 2) + α2
q , 1 ≤ q < p− 2,

µp−2,n =
√

ν2((n− 1 + p)2 − 1) + 1,
µp−1,n = ν(n− 1 + p).

8.4. Some combinatorics
We introduce some notation. Let

Uq,S2p−1 = {mcex,q,n : λq,n,S2p−1},

denotes the sequence of the eigenvalues of the coexact q-forms of the Laplace operator over
the sphere of dimension 2p − 1 and radius 1. Let a1, . . . , am be a finite sequence of real
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numbers. Then,
m∏

j=1

(x + aj) =
m∑

j=0

em−j(a1, . . . , am)xj

where the e1, . . . , em are elementary symmetric polynomials in a1, . . . , am. Let define the
numbers:

dq
j := (j − q − 1)(2p− q − j − 1),

for q = 0, . . . , p− 1, j 6= q + 1, and

dq := (dq
1, d

q
2, . . . , d̂

q
q+1, . . . , d

q
p),

where, as usual, the hat means the underling term is delated.

Lemma 8.8.1. The sequence Up−1 is a totally regular sequence of spectral type with
infinite order, exponent and genus: e(Up−1) = g(Up−1) = 2p− 1, and

ζ(s, Up−1) =
2ν−s

(p− 1)!2

p−1∑

j=0

ep−1−j(dp−1)ζR(s− 2j).

Proof. The first part of the statement follows from Lemma 6.6.2. In order to prove the
formula, note that ζ(s, Up−1) = ν−sζ

(
s
2 , Up−1,S2p−1

)
, where

ζ
(s

2
, Up−1,S2p−1

)
=

∞∑
n=1

mcex,p−1,n

λ
s
2
p−1,n,S2p−1

=
∞∑

n=1

mcex,p−1,n

(n + p− 1)s
.

Shifting n to n − p + 1, and observing that the numbers 1, . . . , p − 1 are roots of the
polynomial

∑p−1
j=0 ep−1−j(dp−1)n2j , we obtain

ζ(s, Up−1) = ν−s
∞∑

n=p

mcex,p−1,n−p+1

ns
=

2ν−s

(p− 1)!2

∞∑
n=p

∏p−1
j=1 n2 − (p− j)2

ns

=
2ν−s

(p− 1)!2

p−1∑

j=0

ep−1−j(dp−1)ζR(s− 2j).

Note that, using the formula of the lemma, ζ(s, Up−1) has an expansion near s = 2k +1,
with k = 0, 1, . . . , p− 1, of the following type:

ζ(s, Up−1) =
2

ν2k+1(p− 1)!2
ep−1−k(dp−1)

1
s− 2k − 1

+ Lp−1,2k+1(s),

where the Lp−1,2k+1(s) are regular function for k = 0, 1, . . . , p− 1.
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Corollary 8.8.1. The function ζ(s, Up−1) has simple poles at s = 2k + 1, for k =
0, 1, . . . , p− 1, with residues

Res1
s=2k+1

ζ(s, Up−1) =
2

ν2k+1(p− 1)!2
ep−1−k(dp−1).

Lemma 8.8.2. The sequence Uq is a totally regular sequence of spectral type with infinite
order, exponent and genus: e(Uq) = g(Uq) = 2p− 1, and (where i =

√−1)

ζ(s, Uq) =
2ν−s

q!(2p− q − 2)!

∞∑
t=0

(− s
2

t

) p−1∑

j=0

ep−1−j(dq)z
(

s + 2t− 2j

2
, iαq

)
α2t

q

ν2t
.

The function ζ(s, Uq) has simple poles at s = 2(p− k)− 1, with k = 0, 1, 2, . . ..

Proof. The first statement follows by Lemma 6.6.8. For the second one, consider the
sequence Hq,h =

{
mcex,q,n :

√
λq,n,S2p−1 + h

}∞
n=1

. Then ζ(s, Uq) = ν−sζ(s,H
q,

α2
q

ν2

), and

ζ(s,Hq,h) =
∞∑

n=1

mcex,q,n

(λq,n,S2p−1 + h)
s
2

=
∞∑

n=1

∞∑
t=0

(− s
2

t

)
mcex,q,n

λ
s
2+t

q,n,S2p−1

ht =
∞∑

t=0

(− s
2

t

)
ζ(s + 2t,Hq,0)ht.

Next observe that the zeta function associated to the sequence Hq,0 is

ζ(2s,Hq,0) = ζ(s, Uq,S2p−1) =
∞∑

n=1

mcex,q,n

λs
q,n,S2p−1

=
∞∑

n=p

mq,n−p+1

λs
q,n−p+1,S2p−1

=
2

q!(2p− q − 2)!

∞∑
n=p

∏p
j=1,

j 6=q+1

(n2 − (p− j)2)

(n2 − α2
q)

.

Recall that α2
q = dq

p, and note that

p−1∑

j=0

ep−j−1(dq)(n2 − α2
q)

j =
p−1∑

j=0

ep−j−1(dq)(n2 − dq
p)

j =
p∏

j=1,
j 6=q+1

(n2 − dq
p + dq

j) =
p∏

j=1,
j 6=q+1

(n2 − (p− j)2),

and that the numbers n = 1, 2, . . . ,−αq are roots of this polynomial. Therefore, we can
write

ζ(2s,Hq,0) =
2

q!(2p− q − 2)!

p−1∑

j=0

ep−1−j(dq)

(
z(s− j, iαq)−

p−q−2∑
n=1

(n2 − α2
q)
−s+j

)

=
2

q!(2p− q − 2)!

p−1∑

j=0

ep−1−j(dq)z(s− j, iαq),
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and

z(s− j, iαq) =
∞∑

n=1

1
(n2 − α2

q)s−j
.

Expanding the binomial, as in [36], Section 2, z(s, a) =
∑∞

k=0

(−s
k

)
a2kζR(2s + 2k), and

hence z(s, a) has simple poles at s = 1
2 − k, k = 0, 1, 2, . . . . Since

ζ(2s,Hq,0) =
2

q!(2p− q − 2)!

p−1∑

j=0

ep−1−j(dq)z(s− j, iαq),

ζ(2s,Hq,0) has simple poles at s = 1
2 +p−1−k, k = 0, 1, 2, . . . , ζ(s,Hq,0) has simple poles at

s = 2(p− k)− 1, k = 0, 1, 2, . . ., and this completes the proof.

Corollary 8.8.2. The function ζ(s, Uq) has simple poles at s = 2k + 1, for k =
0, 1, . . . , p− 1, with residues

Res1
s=2k+1

ζ(s, Uq) =
2ν−2k−1

q!(2p− q − 2)!

p−1−k∑
t=0

1
ν2t

(− 2k+1
2

t

) p−1∑

j=k+t

ep−1−j(dq)
( − 1

2

j − k − t

)
α2(j−k)

q

Proof. Since the value of the residue of the Riemann zeta function at s = 1 is 1,

Res1
s= 1

2−k

z(s− j, a) = Res1
s= 1

2−j−k

z(s, a) =
(− 1

2 + j + k

j + k

)
a2j+2k

2
,

for k = 0, 1, 2, . . .. Considering ζ(2s,Hq,0), we have, for k = 0, 1, . . . , p− 1,

Res1
s= 1

2+k

ζ(2s,Hq,0) =
2

q!(2p− q − 2)!

p−1∑

j=k

ep−1−j(dq)(−1)j−k

(− 1
2 + j − k

j − k

)
α2j−2k

q

2
,

and the thesis follows.

The result contained in the next lemma follows by geometric reasons. However, we
present here a purely combinatoric proof.

Lemma 8.8.3. For all 0 ≤ q ≤ p− 1, ζ(0, Uq,S2p−1) = (−1)q+1.

Proof. Consider the function

ζt,c(s) =
∞∑

n=1

1
(n(n + 2t))s−c

=
∞∑

n=t+1

1
(n2 − t2)s−c

.
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Since

z(s− c, it) =
∞∑

n=1

1
(n2 − t2)s−c

=
∞∑

j=0

(−s + c

j

)
(−1)jt2jζR(2s + 2j − 2c),

we have when s = 0, that z(−c, it) = (−1)ct2cζR(0) = (−1)c+1 t2c

2 , and hence

ζt,c(s) = z(s− c, it)−
t∑

n=1

1
(n2 − t2)s−c

,

and for c = 0 and s = 0 ζt,0(0) = − 1
2 − t. Next, consider c > 0, then:

ζt,c(0) = (−1)c+1 t2c

2
−

t−1∑
n=1

(n2 − t2)c.

For q = 0, . . . , p− 1, we have

ζ(s, Uq,S2p−1) =
∞∑

n=1

mcex,q,n

λq,n,S2p−1
=

∞∑
n=1

mcex,q,n

((n + q)(n + 2p− q − 2))s

=
∞∑

n=q+1

mcex,q,n−q

(n(n− 2αq))s
.

Recalling the relation given in Section 8.4

mcex,q,n−q =
2

q!(2p− q − 2)!

p∏

j=1,
j 6=q+1

(n− q − 1 + j)(n + 2p− q − 1− j)

=
2

q!(2p− q − 2)!

p∏

j=1,
j 6=q+1

n(n− 2αq) + dq
j

=
2

q!(2p− q − 2)!

p−1∑

j=0

ep−1−j(dq)(n(n− 2αq))j .

Thus

ζ(s, Uq,S2p−1) =
2

q!(2p− q − 2)!

p−1∑

j=0

ep−j−1(dq)

(
ζ−αq,j(s)−

q∑
n=1

1
(n(n− 2αq))s−j

)

=
2

q!(2p− i− 2)!

p−1∑

j=0

ep−j−1(dq)ζ−αq,j(s).
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where

p−1∑

j=0

ep−j−1(dq)
1

(n(n + 2p− 2q − 2))s−j
= 0,

for 1 ≤ n ≤ q, by result of [42]. For s = 0, we obtain

ζ(0, Uq,S2p−1) =
2

q!(2p− q − 2)!

p−1∑

j=0

ep−j−1(dq)ζ−αq,j(0)

=
2

q!(2p− q − 2)!

(
ep−1(dq)

(
−1

2
− ((p− q − 2) + 1)

)

+
p−1∑

j=1

ep−j−1(dq)

(
(−1)j+1

α2j
q

2
−

p−q−2∑
n=1

(n2 − α2
q)

j

)


=
2

q!(2p− q − 2)!
(−ep−1(dq)

+
p−1∑

j=0

ep−j−1(dq)

(
(−1)j+1

α2j
q

2
−

p−q−2∑
n=1

(n2 − α2
q)

j

)


=
2

q!(2p− q − 2)!

(
(−1)q+1 q!(2p− q − 2)!

2

+
p−1∑

j=0

ep−j−1(dq)

(
(−1)j+1

α2j
q

2
−

p−q−2∑
n=1

(n2 − α2
q)

j

)
 .

To conclude the proof, note that the second term vanishes. For first, as showed in
the proof of Lemma 8.8.2, the numbers n = 1, 2, . . . ,−αq are roots of the polynomial∑p−1

j=0 ep−j−1(dq)(n2 − α2
q)j , and second:

p−1∑

j=0

ep−j−1(dq)(−1)jα2j
q =

p−1∑

j=0

ep−j−1(dq)(−dq
p)

j =
p∏

j=1,
j 6=q+1

(−dq
p + dq

j) = −
p∏

j=1,
j 6=i+1

(p− j)2 = 0.
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8.5. The proof of the conjecture
We need some notation. Set

D(q, k, t) =
2

q!(2p− q − 2)!

(− 2k+1
2

t

) p−1∑

l=k+t

ep−1−l(dq)(−1)l−k

(− 1
2 − k − t + l

l − k − t

)
α2(l−k)

q ,

F (q, k) = Res0
s=0

Φ2k+1,q(s), 1 ≤ k ≤ p− 1,

for 0 ≤ q ≤ p− 1, F (q, 0) = 2 for 0 ≤ q ≤ p− 2, and F (p− 1, 0) = 1. Then, by Corollary
8.8.2, the residues of ζ(s, Uq), for 0 ≤ q ≤ p− 2, are

Res1
s=2k+1

ζ(s, Uq) =
1

ν2k+1

p−1−k∑
t=0

1
ν2t

D(q, k, t),

for k = 0, . . . , p− 1, and when q = p− 1:

Res1
s=2k+1

ζ(s, Up−1) =
1

ν2k+1
D(p− 1, k, 0),

with k = 0, . . . , p− 1. Now, for 0 ≤ q ≤ p− 1, it is easy to see that

Res0
s=0

Φ2k+1,q(s) Res1
s=2k+1

ζ(s, Uq) =
F (q, k)
ν2k+1

p−1−k∑
t=0

1
ν2t

D(q, k, t)

and hence

t′q,sing(0) =
1
2

p−1∑

k=0

Res0
s=0

Φ2k+1,q(s) Res1
s=2k+1

ζ(s, Uq) =
1
2

p−1∑

k=0

F (q, k)
ν2k+1

p−1−k∑
t=0

1
ν2t

D(q, k, t).

On the other side, set:

ABM,abs(ClS
2p−1
sin α ) =

p−1∑

k=0

1
ν2k+1

Q̃p(k), Q̃p(k) =
k∑

j=0

Nj(p, k),

where

Nj(p, k) =
(2p− 1)!
4p(p− 1)!

1
(p− 1− k)!(2k + 1)

(−1)k−j2j+1

(k − j)!(2j + 1)!!
.

Lemma 8.8.4. 1
2

∑p−1
q=0(−1)qt′q,sing(0) is an odd polynomial in 1

ν .
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Proof. This follows by rearrangement of the finite sum:

1
2

p−1∑
q=0

(−1)qt′q,sing(0) =
1
4

p−1∑
q=0

(−1)q

p−1∑

k=0

F (q, k)
p−1−k∑

t=0

1
ν2(t+k)+1

D(q, k, t)

=
1
4

p−1∑

k=0

1
ν2k+1

p−1∑
q=0

(−1)q
k∑

j=0

F (q, j)D(q, j, k − j)

=
1
4

p−1∑

k=0

1
ν2k+1

k∑

j=0

p−1∑
q=0

(−1)qF (q, j)D(q, j, k − j).

Then, set:

1
2

p−1∑
q=0

(−1)qt′q,sing(0) =
p−1∑

k=0

1
ν2k+1

Qp(k), Qp(k) =
k∑

j=0

Mj(p, k),

where

Mj(p, k) =
p−1∑
q=0

(−1)qF (q, j)D(q, j, k − j)

=
p−1∑
q=0

(−1)q 2F (q, j)
4(2p− 2)!

(
2p− 2

q

)(− 1
2 − j

k − j

)
α−2j

q

p−1∑

l=k

ep−1−l(dq)α2l
q

( − 1
2

l − k

)
.

This shows that all we need to prove to prove the conjecture is the identity: Mj(p, k) =
Nj(p, k). This is in the next two lemmas. Before, we need some further notation and
combinatorics. First, recall that if

fh(x) = eh

(
x2 − (p− 1)2, x2 − (p− 2)2, . . . , x2 − 12, x2

)
,

then fh(αq) = eh(dq), and fh(x), for h ≥ 1, is a polynomial of the following type:

fh(x) =
∑

0≤j1≤j2≤...≤jh≤p−1

(x2 − j2
1)(x2 − j2

2) . . . (x2 − j2
h) =

(
p

h

)
x2h +

h−1∑
s=0

ch
sx2s. (48)

Second, we have the following four identities. The first three can be found in [15], 0.151.4,
0.154.5 and 0.154.6, but see [21] for a proof. The fourth is in [16], equation (5.3).
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n∑

k=0

(−1)k

(2n)!

(
2n

k

)
=

(−1)n

(2n)!

(
2n− 1

n

)
=

(−1)n

2(2n)!

(
2n

n

)
, (49)

n∑

k=0

(−1)n

(
n

k

)
(α + k)n =(−1)nn! (50)

N∑

k=0

(−1)n

(
N

k

)
(α + k)n−1 =0, (51)

n∑

l=0

(
n + 1
l + 1

)( − 1
2

l − k

)
=

(
n + 1

2

n− k

)
=

(2n + 1)!!
2n−k(n− k)!(2k + 1)!!

. (52)

with 1 ≤ n ≤ N and α ∈ R.

Lemma 8.8.5. For 0 ≤ k ≤ p− 1, we have that M0(p, k) = N0(p, k).

Proof. Since j = 0,

M0(p, k) =
p−1∑
q=0

(−1)q 2F (q, 0)
4(2p− 2)!

(
2p− 2

q

)(− 1
2

k

) p−1∑

l=k

ep−1−l(dq)α2l
q

( − 1
2

l − k

)
,

N0(p, k) =
(2p− 1)!

22p−1(p− 1)!
1

(p− 1− k)!(2k + 1)
(−1)k

k!
.

Consider first k 6= 0. Then,

M0(p, k) =
(− 1

2

k

) p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−1∑

l=k

fp−1−l(αq)α2l
q

( − 1
2

l − k

)

=
(− 1

2

k

) p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−1∑

l=k

(
p

p− 1− l

)
α2p−2−2l

q α2l
q

( − 1
2

l − k

)

+
(− 1

2

k

) p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−2∑

l=k

p−2−l∑
s=0

cp−1−l
s α2s

q α2l
q

( − 1
2

l − k

)

=
(− 1

2

k

) p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

)
α2p−2

q

p−1∑

l=k

(
p

p− 1− l

)( − 1
2

l − k

)

+
p−2∑

l=k

p−2−l∑
s=0

cp−1−l
s

(− 1
2

k

)( − 1
2

l − k

) p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

)
α2s+2l

q .
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Using the identity in equation (51), the second term in the last line vanishes since
2s + 2l < 2p− 2. Thus,

M0(p, k) =
(− 1

2

k

) p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

)
α2p−2

q

p−1∑

l=k

(
p

p− 1− l

)( − 1
2

l − k

)

=
1
2

(− 1
2

k

) p−1∑

l=k

(
p

p− 1− l

)( − 1
2

l − k

)

=
1
2

(− 1
2

k

)(
p

k + 1

)
(k + 1)!

p!
(2p− 1)!!
(2k + 1)!!

2k+1

2p

=
(−1)k

k!
1

(p− k − 1)!
(2p− 1)!
(2k + 1)

1
22p−1(p− 1)!

= N0(p, k).

Next, consider k = 0. Then,

M0(p, 0) =
p−2∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−1∑

l=0

fp−1−l(αq)α2l
q

(− 1
2

l

)
+

1
2

=
p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−1∑

l=0

fp−1−l(αq)α2l
q

(− 1
2

l

)
− 1 +

1
2

=
p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−1∑

l=0

(
p

p− 1− l

)
α2p−2

q

(− 1
2

l

)

+
p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

)
cp−1
0 − 1

2

=
p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−1∑

l=0

(
p

p− 1− l

)
α2p−2

q

(− 1
2

l

)

+
(−1)p−1

2(2p− 2)!

(
2p− 2
p− 1

)
(−1)p−1(p− 1)!(p− 1)!− 1

2

=
p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−1∑

l=0

(
p

p− 1− l

)
α2p−2

q

(− 1
2

l

)
+

1
2
− 1

2

=
p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

)
α2p−2

q

p−1∑

l=0

(
p

p− 1− l

)(− 1
2

l

)

=
1
2

p−1∑

l=0

(
p

p− 1− l

)(− 1
2

l

)
=

1
2p

(2p− 1)!!
(p− 1)!

=
2p− 1
22p−1

(
2p− 2
p− 1

)
= N0(p, 0)
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Lemma 8.8.6. For 1 ≤ j ≤ p− 1, we have that Mj(p, k) = Nj(p, k).

Proof. Note that j ≤ k, and hence 1 ≤ j ≤ k ≤ p− 1. Recall that

F (q, j) =
2

2j + 1
α2j

q +
j−1∑
t=1

k2j+1,tα
2t
q + 2 Res0

z=0
Φ2j+1,p−1(s),

by Corollary 6.6.2. Set k2j+1,0 = 2 Res0z=0 Φ2j+1,p−1(s). We split the proof in three cases.
First, for j = k < p− 1, we have

Mj(p, j) =
p−1∑
q=0

(−1)q F (q, j)
2(2p− 2)!

(
2p− 2

q

) p−1∑

l=j

ep−1−l(dq)α2l−2j
q

( − 1
2

l − j

)

=
p−1∑
q=0

(−1)q
α2j

q

(2j + 1)(2p− 2)!

(
2p− 2

q

) p−1∑

l=j

fp−1−l(αq)α2l−2j
q

( − 1
2

l − j

)

+
j−1∑
t=0

kt,j

p−1∑
q=0

(−1)q
α2t

q

(2p− 2)!

(
2p− 2

q

) p−1∑

l=j

fp−1−l(αq)α2l−2j
q

( − 1
2

l − j

)

Using the formula in equation (48) for the functions fp−1−l(αq), we get

Mj(p, j) =
p−1∑
q=0

(−1)q 1
(2j + 1)(2p− 2)!

(
2p− 2

q

) p−1∑

l=j

(
p

p− 1− l

)
α2p−2−2l

q α2l
q

( − 1
2

l − j

)

+
p−1∑
q=0

(−1)q 1
(2j + 1)(2p− 2)!

(
2p− 2

q

) p−2∑

l=j

p−2−l∑
s=0

csα
2s+2l
q

( − 1
2

l − j

)

+
j−1∑
t=0

k2j+1,t

p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−1∑

l=j

(
p

p− 1− l

)
α2p−2+2t−2j

q

( − 1
2

l − j

)

+
j−1∑
t=0

k2j+1,t

p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−2∑

l=j

p−2−l∑
s=0

csα
2s+2l+2t−2j
q

( − 1
2

l − j

)

=
1

(2j + 1)

p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

)
α2p−2

q

p−1∑

l=j

(
p

p− 1− l

)( − 1
2

l − j

)

=
1

2(2j + 1)

p−1∑

l=j

(
p

p− 1− l

)( − 1
2

l − j

)
=

1
2(2j + 1)

1
(p− 1− j)!

(2p− 1)!!
(2j + 1)!!

2j+1

2p

=
1

(2j + 1)(p− 1− j)!
(2p− 1)!
(2j + 1)!!

2j

22p−1 (p− 1)!
= Nj(p, j),
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where the first three terms in the first equation vanish because s+ l < p−1 and t−j ≤ −1.
The second case is j = k = p− 1. Then,

Mp−1(p, p− 1) =
p−1∑
q=0

(−1)q F (q, p− 1)
2(2p− 2)!

(
2p− 2

q

)

=
p−1∑
q=0

(−1)q
α2p−2

q

(2p− 1)(2p− 2)!

(
2p− 2

q

)

+
p−2∑
t=0

k2j+1,t

p−2∑
q=0

(−1)q
α2t

q

2(2p− 2)!

(
2p− 2

q

)

+
p−2∑
t=0

k2j+1,t

2
(−1)p−1

α2t
p−1

2(2p− 2)!

(
2p− 2
p− 1

)

=
1

2(2p− 1)
+ k2j+1,0

p−1∑
q=0

(−1)q 1
2(2p− 2)!

(
2p− 2

q

)

− k2j+1,0(−1)p−1 1
2(2p− 2)!

(
2p− 2
p− 1

)

+
k2j+1,0

2
(−1)p−1 1

2(2p− 2)!

(
2p− 2
p− 1

)

=
1

2(2p− 1)
+

k2j+1,0

2
(−1)p−1

(p− 1)!(p− 1)!
− k2j+1,0

2
(−1)p−1

(p− 1)!(p− 1)!

=
1

2(2p− 1)
= Np−1(p, p− 1).
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The last case is 1 ≤ j < k. Then,

Mj(p, k) =
p−1∑

i=0

(−1)q 2F (q, j)
4(2p− 2)!

(
2p− 2

q

)(− 1
2 − j

k − j

)
α−2j

q

p−1∑

l=k

ep−1−l(dq)α2l
q

( − 1
2

l − k

)
,

=
(− 1

2 − j

k − j

) p−1∑
q=0

(−1)q 1
(2j + 1)(2p− 2)!

(
2p− 2

q

) p−1∑

l=k

(
p

p− 1− l

)
α2p−2−2l

q α2l
q

( − 1
2

l − k

)

+
(− 1

2 − j

k − j

) p−1∑
q=0

(−1)q 1
(2j + 1)(2p− 2)!

(
2p− 2

q

) p−2∑

l=k

p−2−l∑
s=0

csα
2s+2l
q

( − 1
2

l − k

)

+
(− 1

2 − j

k − j

) j−1∑
t=0

k2j+1,t

p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−1∑

l=k

(
p

p− 1− l

)
α2p−2+2t−2j

q

( − 1
2

l − k

)

+
(− 1

2 − j

k − j

) j−1∑
t=0

k2j+1,t

p−1∑
q=0

(−1)q 1
(2p− 2)!

(
2p− 2

q

) p−2∑

l=k

p−2−l∑
s=0

csα
2s+2l+2t−2j
q

( − 1
2

l − k

)

=
(− 1

2 − j

k − j

) p−1∑
q=0

(−1)q 1
(2j + 1)(2p− 2)!

(
2p− 2

q

)
α2p−2

q

p−1∑

l=k

(
p

p− 1− l

)( − 1
2

l − k

)

=
(− 1

2 − j

k − j

)
1

2(2j + 1)

p−1∑

l=k

(
p

p− 1− l

)( − 1
2

l − k

)

=
(− 1

2 − j

k − j

)
1

2(2j + 1)
(2p− 1)!!

(p− 1− k)!(2k + 1)!!2p−k−1

=
(−1)k−j

(k − j)!
2j

2k

(2k − 1)!!
(2j − 1)!!

1
2(2j + 1)

(2p− 1)!!
(p− 1− k)!(2k + 1)!!2p−k−1

=
(−1)k−j

(k − j)!
2j

22p−1(p− 1)!
1

(2j + 1)!!
(2p− 1)!

(p− 1− k)!(2k + 1)
= Nj(p, k).

9. THE PROOF OF THEOREM ??: LOW DIMENSIONAL CASES

We prove the two cases m = 2p − 1 = 3, and m = 2p − 1 = 5 independently, in the
following two subsections. In the last subsection we give some remarks on the general case.
Even if the proofs of the two cases m = 3 and m = 5 follow the same line, we prefer to
give details separately, for two reasons: first, in order to improve readability, and second
to avoid a problem that will be made clear in Section 9.3 below. In each case the proof is
in two parts: in the first we compute the anomaly boundary term, as defined in Section
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4.2, in the second we compute the singular term in the analytic torsion, using Proposition
7.7.2.

9.1. Case m = 3
9.1.1. Part 1

Since m = 3, the unique terms that give non trivial contribution in the Berezin integral
appearing in equation (14) are those homogeneous of degree 3. By definition

e−
1
2

ˆ̃Ω−u2S2
1 = 1− 1

2
ˆ̃Ω− u2S2

1 + . . . ,

(recall that Θ = Ω̃, see Section 4.2) and therefore the terms of degree 3 in

e−
1
2

ˆ̃Ω−u2S2
1

∞∑

k=1

1
Γ

(
k
2 + 1

)uk−1Sk
1 ,

are

− 2
3
√

π
u2S3

1 −
1√
π

ˆ̃ΩS1.

Applying the definition in equation (14), this gives

B(∇1) =
1
2

∫ 1

0

∫ B

e−
1
2

ˆ̃Ω−u2S2
j

∞∑

k=1

1
Γ

(
k
2 + 1

)uk−1Sk
j du

=
1
2

∫ 1

0

∫ B (
− 2

3
√

π
u2S3

1 −
1√
π

ˆ̃ΩS1

)
du

= − 1
2
√

π

∫ B
ˆ̃ΩS1 − 1

9
√

π

∫ B

S3
1 .

(53)

By equation (30)

S3
1 = −1

8

(
m∑

k=1

b∗k ∧ ê∗k

)3

=
3
4
dvolg ∧ ê∗1 ∧ ê∗2 ∧ ê∗3. (54)
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This follows by direct calculation. For example

S2
1 =

1
4

(
3∑

k=1

b∗k ∧ ê∗k

)2

=
1
4
(b∗1 ∧ ê∗1 + b∗2 ∧ ê∗2 + b∗3 ∧ ê∗3)

2

=
1
4
(b∗1 ∧ ê∗1 ∧ b∗2 ∧ ê∗2 + · · ·+ b∗2 ∧ ê∗2 ∧ b∗1 ∧ ê∗1 + . . . )

=
1
4
(−b∗1 ∧ b∗2 ∧ ê∗1 ∧ ê∗2 + · · · − b∗2 ∧ b∗1 ∧ ê∗2 ∧ ê∗1 + . . . )

=
1
4
(−2b∗1 ∧ b∗2 ∧ ê∗1 ∧ ê∗2 + . . . )

= −1
2

3∑

j<k=1

b∗j ∧ b∗k ∧ ê∗j ∧ ê∗k,

(55)

while

(b∗1 ∧ b∗2 ∧ ê∗1 ∧ ê∗2) ∧ (b∗3 ∧ ê∗3) = b∗1 ∧ b∗2 ∧ b∗3 ∧ ê∗1 ∧ ê∗2 ∧ ê∗3.

Thus,
∫ B

S3
1 =

3
4π

3
2
dvolg.

By equations (30) and (13),

ˆ̃ΩS1 = −1
4




3∑

k,l=1

Ω̃kl ∧ ê∗k ∧ ê∗l


 ∧

(
3∑

k=1

b∗k ∧ ê∗k

)
.

Direct calculations give

ˆ̃ΩS1 =− 1
2
(Ω23 ∧ b∗1 − Ω13 ∧ b∗2 + Ω12 ∧ b∗3) ∧ ê∗1 ∧ ê∗2 ∧ ê∗3

=− 1
2
(R2332 + R1331 + R1221)ê∗1 ∧ ê∗2 ∧ ê∗3

=− 1
4
τ̃ ê∗1 ∧ ê∗2 ∧ ê∗3,

and hence
∫ B

ˆ̃ΩS1 =
1

4π
3
2

3∑

k,l=1

R̃kllkdvolg.
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Substitution in equation (53) gives

B(∇1) =
1

4
√

π

∫ B
ˆ̃ΩS1 − 1

9
√

π

∫ B

S3
1

=
1

8π2
τ̃ dvolg − 1

12π2
dvolg.

By the formula in equation (15), the anomaly boundary term is

ABM,abs(∂ClW ) =
1

16π2

∫

∂ClW

τ̃ dvolg − 1
24π2

∫

∂ClW

dvolg.

9.1.2. Part 2

By Proposition 7.7.2, with p = 2,

log Tsing(ClW ) =
1
2

1∑
q=0

(−1)q
1∑

j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=j+ 1

2

ζcex

(
s, ∆̃(q) + α2

q

)
.

Since p = 2, α0 = −1 and α1 = 0. Since there are no exact 0-forms

ζcex

(
s, ∆̃(0) + α2

0

)
= ζ

(
s, ∆̃(0) + α2

0

)
.

By Lemma 6.6.8,

Res1
s= 3

2

ζ
(
s, ∆̃(0) + α2

0

)
= Res1

s= 3
2

ζ
(
s, ∆̃(0)

)
,

Res1
s= 1

2

ζ
(
s, ∆̃(0) + α2

0

)
= Res1

s= 1
2

ζ
(
s, ∆̃(0)

)
− 1

2
Res1
s= 3

2

ζ
(
s, ∆̃(0)

)
.

By duality (see Section 2.5)

ζcex(s, ∆̃(1)) = ζ(s, ∆̃(1))− ζex(s, ∆̃(1)) = ζ(s, ∆̃(1))− ζcex(s, ∆̃(0)),

and also

Res1
s= 1

2

ζ(s, ∆̃(1)) = −3Res1
s= 1

2

ζ(s, ∆̃(0)),

Res1
s= 3

2

ζ(s, ∆̃(1)) = 3 Res1
s= 3

2

ζ(s, ∆̃(0)).
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Putting all together, we obtain

log Tsing(ClW ) =
1
2

(
Res0
s=0

Φ1,0(s) + Res0
s=0

Φ1,1(s) + 3 Res0
s=0

Φ1,1(s)
)

Res1
s= 1

2

ζ(s, ∆̃(0))

+
1
2

(
Res0
s=0

Φ3,1(s) + Res0
s=0

Φ3,0(s)− 1
2

Res0
s=0

Φ1,0(s)− 3Res0
s=0

Φ3,1(s)
)

Res1
s= 3

2

ζ(s, ∆̃(0)).

By Corollaries 6.6.1 (when q = 1), and 6.6.2 (when q = 0)

Res0
s=0

Φ1,1(s) = 1, Res0
s=0

Φ3,1(s) =
2

315
,

Res0
s=0

Φ1,0(s) = 2, Res0
s=0

Φ3,0(s) =
214
315

.

This gives

log Tsing(ClW ) = 3 Res1
s= 1

2

ζ(s, ∆̃(0))− 1
6

Res1
s= 3

2

ζ(s, ∆̃(0)),

and by Propositions 3.3.1 and 3.3.3

log Tsing(ClW ) =
1

16π2

∫

∂ClW

τ̃ dvolg − 1
24π2

∫

∂ClW

dvolg.

9.2. Case m = 5
9.2.1. Part 1

Since m = 5, the unique terms that gives non trivial contribution in the Berezin integral
appearing in equation (14) are those homogeneous of degree 5. After some calculation, the
terms of degree 3 in

e−
1
2

ˆ̃Ω−u2S2
1

∞∑

k=1

1
Γ

(
k
2 + 1

)uk−1Sk
1 ,

are

− 1
5
√

π
u4S5

1 +
1

3
√

π
u2 ˆ̃ΩS3

1 +
1

4
√

π
ˆ̃Ω2S1.

Integration in u, as in equation (14) gives

B(∇1) =
1

2
√

π

∫ B (
1
25
S5

1 +
1
9
u2 ˆ̃ΩS3

1 +
1
4

ˆ̃Ω2S1

)
. (56)

We calculate the three terms appearing in the integrand.
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Proceeding as for equations (55), starting from equation (30), we obtain

S2
1 = −1

2

5∑

j<k=1

b∗j ∧ b∗k ∧ ê∗j ∧ ê∗k,

and

S5
1 = (S2

1 )2S1 = − 1
25


−1

2

5∑

j<k=1

b∗j ∧ b∗k ∧ ê∗j ∧ ê∗k




2
5∑

k=1

b∗k ∧ ê∗k

= −5
4
dvolg ∧ ê∗1 ∧ ê∗2 ∧ ê∗3 ∧ ê∗4 ∧ ê∗5,

and recalling the definition in (13) of ˆ̃Ω,

ˆ̃ΩS3
1 =

3
8




3∑

k,l=1

Ω̃kl ∧ ê∗k ∧ ê∗l


 ∧ dvolg ∧ ê∗1 ∧ ê∗2 ∧ ê∗3 ∧ ê∗4 ∧ ê∗5

=
3
8
τ̃ ∧ dvolg ∧ ê∗1 ∧ ê∗2 ∧ ê∗3 ∧ ê∗4 ∧ ê∗5.

The last term is

ˆ̃Ω2S1 = − 1
25




3∑

k,l=1

Ω̃kl ∧ ê∗k ∧ ê∗l




2 (
5∑

k=1

b∗k ∧ ê∗k

)
.

This term requires some noisy explicit calculations, that we omit here. The result is

ˆ̃Ω2S1 = − 1
25

(
4|R̃|2 − 16|R̃ic|2 + 4τ̃2

)
dvolg ∧ ê∗1 ∧ ê∗2 ∧ ê∗3 ∧ ê∗4 ∧ ê∗5

=
(
−1

8
|R̃|2 +

1
2
|R̃ic|2 − 1

8
τ̃2

)
dvolg ∧ ê∗1 ∧ ê∗2 ∧ ê∗3 ∧ ê∗4 ∧ ê∗5.

Substitution in equation (56) gives

B(∇1) =
3dvolg
40π3

− τ̃ dvolg
48π3

+
|R̃|2dvolg

64π3
− |R̃ic|2dvolg

16π3
+

τ̃2dvolg
64π3

.

By the formula in equation (15), the anomaly boundary term is

ABM,abs(∂ClW ) =
3

80π3

∫

∂ClW

dvolg − 1
96π3

∫

∂ClW

τ̃ dvolg +
1

128π3

∫

∂ClW

|R̃|2dvolg

− 1
32π3

∫

∂ClW

|R̃ic|2dvolg +
1

128π3

∫

∂ClW

τ̃2dvolg.
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9.2.2. Part 2

By Proposition 7.7.2, with p = 3,

log Tsing(ClW ) =
1
2

2∑
q=0

(−1)q
2∑

j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=j+ 1

2

ζcex

(
s, ∆̃(q) + α2

q

)
.

Since p = 3, α0 = −2, α1 = −1, and α2 = 0. By duality (see Section 2.5)

ζcex(s, ∆̃(0)) = ζ(s, ∆̃(0)),

ζcex(s, ∆̃(1) = ζ(s, ∆̃(1))− ζex(s, ∆̃(1)) = ζ(s, ∆̃(1))− ζcex(s, ∆̃(0)),

ζcex(s, ∆̃(2)) = ζ(s, ∆̃(2))− ζex(s, ∆̃(2)) = ζ(s, ∆̃(2))− ζcex(s, ∆̃(1))

= ζ(s, ∆̃(2))− ζ(s, ∆̃(1)) + ζ(s, ∆̃(0)).

By Lemma 6.6.8, with q = 0 and 1,

Res1
s= 5

2

ζ
(
s, ∆̃(q) + α2

q

)
= Res1

s= 5
2

ζ
(
s, ∆̃(q)

)
,

Res1
s= 3

2

ζ
(
s, ∆̃(q) + α2

q

)
= Res1

s= 3
2

ζ
(
s, ∆̃(q)

)
− 3

2
Res1
s= 5

2

ζ
(
s, ∆̃(q)

)
,

Res1
s= 1

2

ζ
(
s, ∆̃(q) + α2

q

)
= Res1

s= 1
2

ζ
(
s, ∆̃(q)

)
− 1

2
Res1
s= 3

2

ζ
(
s, ∆̃(q)

)
+

3
8

Res1
s= 5

2

ζ
(
s, ∆̃(q)

)
.

By Proposition 3.3.1

Res1
s= 1

2

ζ(s, ∆̃(0)) =
e0,4

Γ(1/2)
=

1
25325π3

(
5

∫

∂ClW

τ̃2dvolg − 2
∫

∂ClW

|R̃ic|2dvolg + 2
∫

∂ClW

|R̃|2dvolg

)
,

Res1
s= 3

2

ζ(s, ∆̃(0)) =
e0,2

Γ(3/2)
=

1
96π3

∫

∂ClW

τ̃ dvolg,

Res1
s= 5

2

ζ(s, ∆̃(0)) =
e0,0

Γ(5/2)
=

1
24π3

∫

∂ClW

dvolg;

Res1
s= 1

2

ζ(s, ∆̃(1)) =
e1,4

Γ(1/2)

=
1

25325π3

(
−35

∫

∂ClW

τ̃2dvolg + 170
∫

∂ClW

|R̃ic|2dvolg − 20
∫

∂ClW

|R̃|2dvolg

)
,

Res1
s= 3

2

ζ(s, ∆̃(1)) =
e1,2

Γ(3/2)
= − 1

96π3

∫

∂ClW

τ̃ dvolg = −Res1
s= 3

2

ζ(s, ∆̃(0)),

Res1
s= 5

2

ζ(s, ∆̃(1)) =
e1,0

Γ(5/2)
=

5
24π3

∫

∂ClW

dvolg = 5 Res1
s= 5

2

ζ(s, ∆̃(0));
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Res1
s= 1

2

ζ(s, ∆̃(2)) =
e2,4

Γ(1/2)

=
1

25325π3

(
50

∫

∂ClW

τ̃2dvolg − 200
∫

∂ClW

|R̃ic|2dvolg + 110
∫

∂ClW

|R̃|2dvolg

)
,

Res1
s= 3

2

ζ(s, ∆̃(2)) =
e2,2

Γ(3/2)
= − 8

96π3

∫

∂ClW

τ̃ dvolg = −8Res1
s= 3

2

ζ(s, ∆̃(0)),

Res1
s= 5

2

ζ(s, ∆̃(2)) =
e2,0

Γ(5/2)
=

10
24π3

∫

∂ClW

dvolg = 10 Res1
s= 5

2

ζ(s, ∆̃(0)).

Summing up, after some calculations, we obtain

logTsing(ClW )

=
1
2

(
Res0
s=0

Φ1,0(s) + Res0
s=0

Φ1,1(s) + Res0
s=0

Φ1,2(s)
)

Res1
s= 1

2

ζ(s, ∆̃(0))

− 1
2

(
Res0
s=0

Φ1,1(s) + Res0
s=0

Φ1,2(s)
)

Res1
s= 1

2

ζ(s, ∆̃(1))

+
1
2

Res0
s=0

Φ1,2(s)Res1
s= 1

2

ζ(s, ∆̃(2))

+ Res0
s=0

(
1
2
Φ3,0(s) + Φ3,1(s)− Φ3,2(s)− Φ1,0(s)− 1

2
Φ1,1(s)

)
Res1
s= 3

2

ζ(s, ∆̃(0))

+ Res0
s=0

(
1
2
Φ5,0(s)− 2Φ5,1(s) + 3Φ5,2(s)− 3Φ3,0(s) +

3
4
Φ1,0(s) +

3
4
Φ1,1(s)

)
Res1
s= 5

2

ζ(s, ∆̃(0)).

By Corollaries 6.6.1 (when q = 2), and 6.6.2 (when q = 0, 1)

Res0
s=0

Φ1,2(s) = 1, Res0
s=0

Φ3,2(s) =
2

315
, Res0

s=0
Φ5,2(s) = − 346

22522

Res0
s=0

Φ1,1(s) = 2, Res0
s=0

Φ3,1(s) =
214
315

, Res0
s=0

Φ5,1(s) =
31706
75075

Res0
s=0

Φ1,0(s) = 2, Res0
s=0

Φ3,0(s) =
844
315

, Res0
s=0

Φ5,0(s) =
487876
75075

.

This gives

log Tsing(ClW ) =
5
2

Res1
s= 1

2

ζ(s, ∆̃(0))− 3
2

Res1
s= 1

2

ζ(s, ∆̃(1)) +
1
2

Res1
s= 1

2

ζ(s, ∆̃(2))

− Res1
s= 3

2

ζ(s, ∆̃(0)) +
9
10

Res1
s= 5

2

ζ(s, ∆̃(0)),
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and by Propositions 3.3.1 and 3.3.3

log Tsing(ClW ) =
3

80π3

∫

∂ClW

dvolg − 1
96π3

∫

∂ClW

τ̃ dvolg +
1

128π3

∫

∂ClW

|R̃|2dvolg

− 1
32π3

∫

∂ClW

|R̃ic|2dvolg +
1

128π3

∫

∂ClW

τ̃2dvolg.

9.3. A remark on the general case

Assume m = 2p − 1 is odd, p ≥ 1. Then, log Tsing(ClW ) depends only the functions
Φk,q(s) and ζ(s, ∆̃(q)), by Proposition 7.7.2. It follows from the definition in Section 3.3
that the functions Φk,q(s) are universal functions that depend only on the decomposition of
the spectrum of the Laplace operator on forms on the cone on the spectrum of the Laplace
operator on forms on the section. This decomposition is independent from the section, so
the functions Φk,q(s) do not depend on the particular section (they obviously depend on the
dimension). This follows also from Corollaries 6.6.1 and 6.6.2. Therefore, we can use the
functions Φk,q(s) calculated when the section is a sphere of odd dimension. It follows that
log Tsing(ClW ) is a polynomial in the residues of the functions ζ(s, ∆̃(q)), with coefficients
that are the same as in the case when W is a sphere. Now, the residues of ζ(s, ∆̃(q)) are
polynomials in the coefficients eq,j of the asymptotic expansion of the heat kernel of the
Laplacian on forms on (W, g). In turn, the eq,j are the integrals of some polynomial in the
metric tensor g, its inverse and its derivatives. By work of P. Gilkey [14], the coefficients
of these polynomial are universal, namely are the same for any manifold W [14] Theorem
1.8.3. More precisely, by the above considerations and invariance theory as developed in
[14] Theorem 4.1.9, it follows that

log Tsing(ClW ) =
∫

∂ClW

P (x),

where P belongs to the ring of all invariant polynomials in the derivative of the metric
defined for manifolds of dimension m, Bm(g) (see [14] Section 2.1.4, and Lemma 2.4.2).
Bases for this ring are given in terms of covariant derivatives of the curvature tensor using
H. Weyl invariants of the orthogonal groups [14] Section 2.4.3. It is possible to prove
that these polynomial are universal up to a constant factor depending on the dimension
P = cmQ, where Q does not depends on the dimension [14] Lemma 4.1.4 and Theorem
4.1.9.

On the other side, by inspection of [3], the term ABM,abs(∂ClW ) is also the integral
of some universal polynomial in some tensorial quantities constructed from the metric g.
Therefore

ABM,abs(∂ClW ) =
∫

∂ClW

R(x),

R ∈ Bm(g). Fixing a base for Bm(g), the proof of Theorem 1.1.3 in the general case follows
if we are able to prove that P (x)−R(x) = 0, for (W, g).
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We have some remarks on this point. First, by Theorem 1.1.2, it follows that P (x) −
R(x) = 0, for (W, g) = (S2p−1

sin α , gE). Unfortunately, this does not implies the general case.
For using the base for Bm(g) in Theorem 4.1.9 of [14], we see that there are variable in
P (x) − R(x) that involves derivative of the curvature when m > 3. Second, by the same
argument, the proof of Theorem 1.1.3 in the case m = 5 is a fundamental indication for the
general case: indeed if m < 5 the proof of Theorem 1.1.3 follows by that of Theorem 1.1.2,
by the previous considerations. Third, the proof of the general case along this line depends
on the availability of some further information on the coefficients of the heat asymptotic.
A recursion relation should probably be sufficient. However, this seems at present an hard
problem (see remarks and references in Section 4.1.7 of [14].

10. THE PROOF OF THEOREM ??: THE GENERAL CASE

Since the argument is very closed to the one described in details in the previous sections,
we will just sketch it here. We consider the conical frustum (or more precisely its external
surface) that is the compact connected oriented Riemannian manifold

C[l1,l1]W = [l1, l2]×W,

with 0 < l1 < l2, and with metric

g1 = dx⊗ dx + x2g.

We study the analytic torsion of C[l1,l2] with relative boundary conditions at x = l1 and
absolute boundary condition at x = l2, and we respect to the trivial representation for the
fundamental group. We denote by ∂1/2C[l1,l2]W , or simply ∂1/2, the two boundaries, and
by log Trel ∂1,abs ∂2(C[l1,l2]W ) the torsion.

10.1. Spectrum

First, we describe the spectrum of the Laplace operator on forms. The proofs of the
next lemmas are analogous to the proofs of Lemmas 4.4.2 and 4.4.3 and will be omitted.

Lemma 10.10.1. With the notation of Lemma 4.4.2, assuming that µq,n is not an inte-
ger, all the solutions of the equation ∆u = λ2u, with λ 6= 0, are convergent sums of forms
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of the following twelve types:

ψ
(q)
+,1,n,λ =xαqJµq,n

(λx)ϕ(q)
cex,n,

ψ
(q)
−,1,n,λ =xαqYµq,n(λx)ϕ(q)

cex,n,

ψ
(q)
+,2,n,λ =xαq−1Jµq−1,n(λx)d̃ϕ(q−1)

cex,n + ∂x(xαq−1Jµq−1,n(λx))dx ∧ ϕ(q−1)
cex,n

ψ
(q)
−,2,n,λ =xαq−1Yµq−1,n

(λx)d̃ϕ(q−1)
cex,n + ∂x(xαq−1Yµq−1,n

(λx))dx ∧ ϕ(q−1)
cex,n

ψ
(q)
+,3,n,λ =x2αq−1+1∂x(x−αq−1Jµq−1,n

(λx))d̃ϕ(q−1)
cex,n

+ xαq−1−1Jµq−1,n
(λx)dx ∧ d̃†d̃ϕ(q−1)

cex,n

ψ
(q)
−,3,n,λ =x2αq−1+1∂x(x−αq−1Yµq−1,n(λx))d̃ϕ(q−1)

cex,n

+ xαq−1−1Yµq−1,n(λx)dx ∧ d̃†d̃ϕ(q−1)
cex,n

ψ
(q)
+,4,n,λ =xαq−2+1Jµq−2,n(λx)dx ∧ d̃ϕ(q−2)

cex,n

ψ
(q)
−,4,n,λ =xαq−2+1Yµq−2,n(λx)dx ∧ d̃ϕ(q−2)

cex,n

ψ
(q)
+,E,λ =xαqJ|αq|(λx)ϕ(q)

har,n

ψ
(q)
−,E,λ =xαqY|αq|(λx)ϕ(q)

har,n

ψ
(q)
+,O,λ =∂x(xαq−1J|αq−1|(λx))dx ∧ ϕ

(q−1)
har,n

ψ
(q)
−,O,λ =∂x(xαq−1Y|αq−1|(λx))dx ∧ ϕ

(q−1)
har,n .

When µq,n is an integer the − solutions must be modified including some logarithmic
term (see for example [41] for a set of linear independent solutions of the Bessel equation).

Note that the forms of types 1, 3 and E are coexact, those of types 2, 4 and O exacts.
The operator d sends forms of types 1, 3 and E in forms of types 2, 4 and O, while d†

sends forms of types 2, 4 and O in forms of types 1, 3 and E, respectively. The Hodge
operator sends forms of type 1 in forms of type 4, 2 in 3, and E in 0. Define the functions,
for c 6= 0,

Fµ,c(x) = Jµ(l2x)(cYµ(l1x) + l1xY ′
µ(l1x))− Yµ(l2x)(cJµ(l1x) + l1xJ ′µ(l1x)),

F̂µ,c(x) = Jµ(l1x)(cYµ(l2x) + l2xY ′
µ(l2x))− Yµ(llx)(cJµ(l2x) + l2xJ ′µ(l2x)),

and when c = 0,

Fµ,0(x) = Jµ(l2x)Y ′
µ(l1x)− Yµ(l2x)J ′µ(l1x),

F̂µ,0(x) = Jµ(l1x)Y ′
µ(l2x)− Yµ(llx)J ′µ(l2x).

Lemma 10.10.2. The positive part of the spectrum of the Laplace operator on forms on
C[l1,l2]W , with relative boundary conditions on ∂1C[l1,l2]W and absolute boundary condi-
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tions on ∂2C[l1,l2]W is:

Sp+∆(q)
rel ∂1,abs b2

=
{

mcex,q,n : f̂2
µq,n,αq,k

}∞
n,k=1

∪
{

mcex,q−1,n : f̂2
µq−1,n,αq−1,k

}∞
n,k=1

∪
{

mcex,q−1,n : f2
µq−1,n,−αq−1,k

}∞
n,k=1

∪
{

mcex,q−2,n : f2
µq−2,n,−αq−2,k

}∞
n,k=1

∪
{

mhar,q,0 : f̂2
|αq|,αq,k

}∞
k=1

∪
{

mhar,q−1,0 : f̂2
|αq−1|,αq−1,k

}∞
k=1

.

With absolute boundary conditions on ∂1C[l1,l2]W and relative boundary conditions on
∂2C[l1,l2]W is:

Sp+∆(q)
abs ∂1,rel ∂2

=
{

mcex,q,n : f−2s
µq,n,αq,k

}∞
n,k=1

∪
{

mcex,q−1,n : f−2s
µq−1,n,αq−1,k

}∞
n,k=1

∪
{

mcex,q−1,n : f̂−2s
µq−1,n,−αq−1,k

}∞
n,k=1

∪
{

mcex,q−2,n : f̂−2s
µq−1,n,−αq−2,k

}∞
n,k=1

∪ {
mhar,q : f|αq|,αq,k

}∞
k=1

∪ {
mhar,q−1 : f|αq−1|,αq−1,k

}∞
k=1

,

where the fµ,c,k are the zeros of the function Fµ,c(x), the f̂µ,c,k are the zeros of the function
F̂µ,c(x), c ∈ R, αq and µq,n are defined in Lemma 4.4.2.

10.2. Torsion zeta function

We define the torsion zeta function as in Section 2.5 by (for Re(s) > m+1
2 )

tabs,rel(s) =
1
2

m+1∑
q=1

(−1)qqζ(s, ∆(q)
abs,rel).

By a proof similar to the one of Theorem 5.5.1, we obtain the expected duality:

log Tabs ∂1,rel ∂2(C[l1,l2]W ) = (−1)m log Trel ∂1,abs ∂2(C[l1,l2]W ).

We proceed assuming dimW = 2p − 1 odd, and assuming relative boundary condition
on ∂1C[l1,l2]W and absolute boundary condition on ∂2; for notational convenience, we will
omit the abs, rel subscript. We define the functions

F̂c(x) = Jc(l2x)Yc−1(l1x)− Yc(l2x)Jc−1(l1x),

Fc(x) = Jc(l1x)Yc−1(l2x)− Yc(llx)Jc−1(l2x).

Note that, with these definitions F̂0(x) = F1(x) and F0(x) = F̂1(x) (remember that
Y−n(x) = (−1)nYn(x) and J−n(x) = (−1)nJn(x)). The proof of the following lemma is
analogous to the proof of Lemma 6.6.1. The main step is to prove that f̂|αq|,αq,k = f−αq−1,k,
that f̂|αq|,αq,k = f̂αq,k, when p−1 < q ≤ 2p−1, and that f̂0,0,k = f1,k, where the fc,k, hatfc,k

are the zeros of the functions Fc, F̂c, respectively.
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Lemma 10.10.3.

t(s) =
1
2

p−2∑
q=0

(−1)q
∞∑

n,k=1

mcex,q,n

(
f−2s

µq,n,αq,k + f−2s
µq,n,−αq,k − f̂−2s

µq,n,αq,k − f̂−2s
µq,n,−αq,k

)

+ (−1)p−1 1
2

∞∑

n,k=1

mcex,p−1,n

(
f−2s

µp−1,n,0,k − f̂−2s
µp−1,n,0,k

)

− 1
2

p−1∑
q=0

(−1)qrkHq(W ;Q)
∞∑

k=1

(
f−2s
−αq−1,k − f̂−2s

−αq−1,k

)
.

We set

Zq,±(s) =
∞∑

n,k=1

mcex,q,nf−2s
µq,n,±αq,k, Ẑq,±(s) =

∞∑

n,k=1

mcex,q,nf̂−2s
µq,n,±αq,k,

Zp−1(s) =
∞∑

n,k=1

mcex,p−1,nf−2s
µp−1,n,0,k, Ẑp−1,±(s) =

∞∑

n,k=1

mcex,p−1,nf̂−2s
µp−1,n,0,k,

zq(s) =
∞∑

k=1

(
f−2s
−αq−1,k − f̂−2s

−αq−1,k

)
,

(57)

for 0 ≤ q ≤ p− 1, and

tp−1(s) = Zp−1(s)− Ẑp−1(s),

tq(s) = Zq,+(s) + Zq,−(s)− Ẑq,+(s)− Ẑq,−(s), 0 ≤ q ≤ p− 2.
(58)

Then,

t(s) =
1
2

p−2∑
q=0

(−1)q
(
Zq,+(s) + Zq,−(s)− Ẑq,+(s)− Ẑq,−(s)

)
+ (−1)p−1 1

2

(
Zp−1(s)− Ẑp−1(s)

)

− 1
2

p−1∑
q=0

(−1)qrkHq(W ;Q)zq(s)

=
1
2

p−1∑
q=0

(−1)qtq(s)− 1
2

p−1∑
q=0

(−1)qrkHq(∂ClW ;Q)zq(s),

and

log Trel ∂1,abs ∂2(C[l1,l2]W ) = t′(0) =
1
2

p−1∑
q=0

(−1)qt′q(0)− 1
2

p−1∑
q=0

(−1)qrkHq(∂ClW ;Q)z′q(0).

(59)
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10.3. Expansions of the logarithmic Gamma functions

We study the zeta functions Zq,±, Ẑq,±, by the method of Section 3. The double series
associated to these zeta functions, as defined in equation (57), are denoted by S±αq , Ŝ±αq .
We show that all these double sequences are spectrally decomposable on the sequence Uq,
defined at the beginning of Section 6.2. We verify all requirements precisely as in Sections
6.1 and 6.2. First, we need suitable representation for the associated logarithmic Gamma
functions. Proceeding as in Section 6.2, consider for example the function

Fµ,c(z) = Jµ(l2z)(cYµ(l1z) + l1zY ′
µ(l1z))− Yµ(l2z)(cJµ(l1z) + l1zJ ′µ(l1z)).

Recalling the series definition of the Bessel function [15]pg. 910, near z = 0,

Fµ,c(z) =
1
π

((
lµ2
lµ1

+
lµ1
lµ2

)
− c

µ

(
lµ2
lµ1
− lµ1

lµ2

))

Thus Fµ,c(z) is an even function of z, and we obtain the product representation

Fµ,c(z) =
1
π

((
lµ2
lµ1

+
lµ1
lµ2

)
− c

µ

(
lµ2
lµ1
− lµ1

lµ2

)) +∞∏

k=1

(
1− z2

f2
µ,c,k

)
.

Recalling that

Yµ(z) =
cos µπ

sin µπ
Jµ(z)− 1

sin µπ
J−µ(z), I−µ(z) =

2
π

sinµπKµ(z) + Iµ(z),

and that (when −π < arg(z) ≤ π
2 ) Jµ(iz) = e

π
2 iµIµ(z), and J ′µ(iz) = e

π
2 iµe−

π
2 iI ′µ(z), we

obtain

Yµ(iz) =
(

cosµπ

sin µπ
e

π
2 iµ +

e−
π
2 iµ

sin µπ

)
Iµ(z)− 2

π
e−

π
2 iµKµ(z),

Y ′
µ(iz) = e−

π
2 i

(
cos µπ

sinµπ
e

π
2 iµ +

e−
π
2 iµ

sin µπ

)
I ′µ(z)− 2

π
e−

π
2 ie−

π
2 iµK ′

µ(z).

So

Fµ,c(iz) =
2
π

(−Kµ(l2z)(cIµ(l1z) + l1zI ′µ(l1z)) + Iµ(l2z)(cKµ(l1z) + l1zK ′
µ(l1z))

)
,

and if we define (for −π < arg(z) ≤ π
2 ) Gµ,c(z) = i2Fµ,c(iz),

Gµ,c(z) =
1
π

((
lµ2
lµ1

+
lµ1
lµ2

)
− c

µ

(
lµ2
lµ1
− lµ1

lµ2

)) +∞∏

k=1

(
1 +

z2

f2
µ,c,k

)
.

Proceeding in the similar way

Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



ANALYTIC TORSION OF CONES 269

F̂µ,c(iz) =
2
π

(
Kµ(l1z)(cIµ(l2z) + l2zI ′µ(l2z))− Iµ(l1z)(cKµ(l2z) + l2zK ′

µ(l2z))
)
,

Ĝµ,c(z) = F̂µ,c(iz) =
1
π

((
lµ2
lµ1

+
lµ1
lµ2

)
+

c

µ

(
lµ2
lµ1
− lµ1

lµ2

)) +∞∏

k=1

(
1 +

z2

f̂2
µ,c,k

)
;

Fµ,0(iz) =
2
π

(−Kµ(l2z)I ′µ(l1z) + Iµ(l2z)K ′
µ(l1z)

)
,

Gµ,0(z) = i2Fµ,0(iz) =
1

l1zπ

(
lµ2
lµ1

+
lµ1
lµ2

) +∞∏

k=1

(
1 +

z2

f2
µ,c,k

)
;

F̂µ,0(iz) =
2
π

(
Kµ(l1z)I ′µ(l2z)− Iµ(l1z)K ′

µ(l2z))
)
,

Ĝµ,0(z) = F̂µ,0(iz) =
1

l2zπ

(
lµ2
lµ1

+
lµ1
lµ2

) +∞∏

k=1

(
1 +

z2

f̂2
µ,0,k

)
.

These give the following representations for the logarithmic Gamma functions with z =√−λ,

log Γ(−λ, S±αq ) = − log
∞∏

k=1

(
1 +

(−λ)
f2

µq,n,±αq,k

)

= − log Gµq,n,±αq (
√
−λ) + log

1
π

+ log
((

l
µq,n

2

l
µq,n

1

+
l
µq,n

1

l
µq,n

2

)
∓ αq

µq,n

(
l
µq,n

2

l
µq,n

1

− l
µq,n

1

l
µq,n

2

))
;

log Γ(−λ, Ŝ±αq ) = − log
∞∏

k=1

(
1 +

(−λ)

f̂2
µq,n,±αq,k

)

= − log Ĝµn,q,±αq (
√
−λ) + log

1
π

+ log
((

l
µq,n

2

l
µq,n

1

+
l
µq,n

1

l
µq,n

2

)
± αq

µq,n

(
l
µq,n

2

l
µq,n

1

− l
µq,n

1

l
µq,n

2

))

log Γ(−λ, S0) = − log
∞∏

k=1

(
1 +

(−λ)
f2

µp−1,n,0,k

)

= − log Gµn,p−1,0(
√
−λ)− 1

2
log−λ− log l1 + log

1
π

+ log
(

l
µq,n

2

l
µq,n

1

+
l
µq,n

1

l
µq,n

2

)

log Γ(−λ, Ŝ0) = − log
∞∏

k=1

(
1 +

(−λ)

f̂2
µp−1,n,0,k

)

= − log Ĝµn,p−1,0(
√
−λ)− 1

2
log−λ− log l2 + log

1
π

+ log
(

l
µp−1,n

2

l
µp−1,n

1

+
l
µp−1,n

1

l
µp−1,n

2

)

These representations and uniform asymptotic expansions of Bessel functions and their
derivative (see the proof of Lemma 6.6.4 for the functions Iν and [28] pg. 376 for the
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functions Kν) will give the expansion required in equation (19) of Definition 3.3.1. Let see
one case in some details. We have

log Γ(−λ, Sn,±αq
/µ2

q,n) =

− log Gµn,q,±αq (µq,n

√
−λ) + log

1
π

+ log
((

l
µq,n

2

l
µq,n

1

+
l
µq,n

1

l
µq,n

2

)
∓ αq

µq,n

(
l
µq,n

2

l
µq,n

1

− l
µq,n

1

l
µq,n

2

))
.

Using the cited expansions we obtain

log Gµ,c(µz) = log
1
π

+ µ

(√
1 + l22z

2 −
√

1 + l21z
2

)
+ µ log

l2(1 +
√

1 + l21z
2)

l1(1 +
√

1 + l22z
2)

+
1
4

log
(1 + l21z

2)
(1 + l22z

2)

+ log


1 +

2p−1∑

j=1

1
µj

(
Uj(l2z) + (−1)jWc,j(l1z) +

j−1∑

k=1

(−1)j−kUk(l2z)Wc,j−k(l1z)

)
+ O(µ−2p)


 ,

where

Wc,j(z) = Vj(z)− c√
1 + z2

Uj−1(z).

Thus

log Gµq,n,±αq (µq,n

√
−λ) = µq,n

(√
1− l22λ−

√
1− l21λ

)
+ µq,n log

l2(1 +
√

1− l21λ)
l1(1 +

√
1− l22λ)

+ log
1
π

+
1
4

log
(1− l21λ)
(1− l22λ)

+
2p−1∑

j=1

lj,±αq (λ)

µj
q,n

+ O(µ−2p
q,n ),

with

a0,±αq (λ) = 1,

aj,±αq (λ) = Uj(l2
√
−λ) + (−1)jW±αq,j(l1

√
−λ) +

j−1∑

k=1

Uk(l2
√
−λ)(−1)j−kW±αq,j−k(l1

√
−λ),

l1,±αq (λ) = a1,±αq (λ),

lj,±αq (λ) = aj,±αq (λ)−
j−1∑

k=1

j − k

j
ak,±αq (λ)lj−k,±αq (λ).

Substituting in the log Γ(−λ, Sn,±αq/µ2
q,n), we have

log Γ(−λ, Sn,±αq/µ2
q,n) = −µq,n

(√
1− l22λ−

√
1− l21λ

)
− µq,n log

l2(1 +
√

1− l21λ)
l1(1 +

√
1− l22λ)

− 1
4

log
(1− l21λ)
(1− l22λ)

−
2p−1∑

j=1

lj,±αq (λ)

µj
q,n

+ log
((

l
µq,n

2

l
µq,n

1

+
l
µq,n

1

l
µq,n

2

)
∓ αq

µq,n

(
l
µq,n

2

l
µq,n

1

− l
µq,n

1

l
µq,n

2

))
+ O(µ−2p

q,n ).
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Proceeding in a similar way we obtain

log Γ(−λ, Ŝn,±αq/µ2
q,n) = −µq,n

(√
1− l22λ−

√
1− l21λ

)
− µq,n log

l2(1 +
√

1− l21λ)
l1(1 +

√
1− l22λ)

− 1
4

log
(1− l21λ)
(1− l22λ)

−
2p−1∑

j=1

l̂j,±αq (λ)

µj
q,n

+ log
((

l
µq,n

2

l
µq,n

1

+
l
µq,n

1

l
µq,n

2

)
± αq

µq,n

(
l
µq,n

2

l
µq,n

1

− l
µq,n

1

l
µq,n

2

))
+ O(µ−2p

q,n ),

with

â0,±αq
(λ) = 1,

âj,±αq (λ) = Ŵ±αq,j(l2
√
−λ) + (−1)jUj(l1

√
−λ) +

j−1∑

k=1

(−1)kUk(l1
√
−λ)Ŵ±αq,j−k(l2

√
−λ),

l̂1,±αq (λ) = â1,±αq (λ),

l̂j,±αq (λ) = âj,±αq (λ)−
j−1∑

k=1

j − k

j
âk,±αq (λ)l̂j−k,±αq (λ).

log Γ(−λ, Ŝn,0/µ2
p−1,n) = −µp−1,n

(√
1− l22λ−

√
1− l21λ

)
− µp−1,n log

l2(1 +
√

1− l21λ)
l1(1 +

√
1− l22λ)

− 1
4

log
(1− l21λ)
(1− l22λ)

−
2p−1∑

j=1

l̂j,0(λ)
µj

p−1,n

+ log
(

l
µp−1,n

2

l
µp−1,n

1

+
l
µp−1,n

1

l
µp−1,n

2

)
+ O(µ−2p

p−1,n),

with

â0,0(λ) = 1,

âj,0(λ) = Vj(l2
√
−λ) + (−1)jUj(l1

√
−λ) +

j−1∑

k=1

(−1)kUk(l1
√
−λ)Vj−k(l2

√
−λ),

l̂1,0(λ) = â1,0(λ),

l̂j,0(λ) = âj,0(λ)−
j−1∑

k=1

j − k

j
âk,0(λ)l̂j−k,0(λ).

log Γ(−λ, Sn,0/µ2
q,n) = −µp−1,n

(√
1− l22λ−

√
1− l21λ

)
− µp−1,n log

l2(1 +
√

1− l21λ)
l1(1 +

√
1− l22λ)

− 1
4

log
(1− l21λ)
(1− l22λ)

−
2p−1∑

j=1

lj,0(λ)
µj

p−1,n

+ log
(

l
µp−1,n

2

l
µp−1,n

1

+
l
µp−1,n

1

l
µp−1,n

2

)
+ O(µ−2p

p−1,n),
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with

a0,0(λ) = 1,

aj,0(λ) = Uj(l2
√
−λ) + (−1)jVj(l1

√
−λ) +

j−1∑

k=1

Uk(l2
√
−λ)(−1)j−kVj−k(l1

√
−λ),

l1,0(λ) = a1,0(λ),

lj,0(λ) = aj,0(λ)−
j−1∑

k=1

j − k

j
ak,0(λ)lj−k(λ).

We conclude this section with the expansions for large λ, accordingly to equation (21).
Using classical expansions of Bessel functions Inu and Kν and their derivative for large
argument, we obtain the expansions of the functions G and Ĝ, and then those for the
Gamma functions:

log Γ(−λ, Sn,±αq/µ2
q,n) ∼

∼ −µq,n(l2 − l1)
√
−λ− 1

2
log

l1
l2

+ log
((

l
µq,n

2

l
µq,n

1

+
l
µq,n

1

l
µq,n

2

)
∓ αq

µq,n

(
l
µq,n

2

l
µq,n

1

− l
µq,n

1

l
µq,n

2

))
+ O

(
1√−λ

)
,

log Γ(−λ, Ŝn,±αq/µ2
q,n) ∼

∼ −µq,n(l2 − l1)
√
−λ− 1

2
log

l2
l1

+ log
((

l
µq,n

2

l
µq,n

1

+
l
µq,n

1

l
µq,n

2

)
± αq

µq,n

(
l
µq,n

2

l
µq,n

1

− l
µq,n

1

l
µq,n

2

))
+ O

(
1√−λ

)
,

log Γ(−λ, Sn,0/µ2
p−1,n) ∼ −µp−1,n(l2 − l1)

√
−λ +

1
2

log
l2
l1

+ log
(

l
µp−1,n

2

l
µp−1,n

1

+
l
µp−1,n

1

l
µp−1,n

2

)
+ O

(
1√−λ

)
,

log Γ(−λ, Ŝn,0/µ2
p−1,n) ∼ −µp−1,n(l2 − l1)

√
−λ +

1
2

log
l1
l2

+ log
(

l
µp−1,n

2

l
µp−1,n

1

+
l
µp−1,n

1

l
µp−1,n

2

)
+ O

(
1√−λ

)
.

10.4. The function tq(s)

By definition in equation (58), we need to consider the difference between log Γ(−λ, Sn,±αq/µq,n)
and log Γ(−λ, Ŝn,±αq/µq,n). The expansions given in the previous subsection give expan-
sion for large µ

log Γ(−λ, Sn,αq/µq,n) + log Γ(−λ, Sn,αq/µq,n)− log Γ(−λ, Ŝn,αq/µq,n)− log Γ(−λ, Ŝn,−αq/µq,n) =

= log
(1− λl22)
(1− λl21)

+
2p−1∑

j=1

1
µj

q.n

(l̂j,αq (λ) + l̂j,−αq (λ)− lj,αq (λ)− lj,−αq (λ)) + O(µ−2p
q,n ),

and for large λ

log Γ(−λ, Sn,αq/µq,n) + log Γ(−λ, Sn,αq/µq,n)− log Γ(−λ, Ŝn,αq/µq,n)− log Γ(−λ, Ŝn,−αq/µq,n) =

= 2 log
l2
l1

+ O

(
1√−λ

)
.
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Proceeding as in the proof of Lemma 6.6.14, we obtain

a0,0,q,n = 2 log
l2
l1

,

a0,1,q,n = 0,

b2j−1,0,0,q = 0, b2j−1,0,1,q = 0,

and hence

A0,0,q(s) = 2 log
l2
l1

∞∑
n=1

mq,n

µ2s
q,n

= 2 log
l2
l1

∞∑

j=0

(−s

j

)
α2

qjζccl(s + j, ∆̃(q)),

A0,1,q(s) = 0.

This gives

A0,0,q(0) = 2 log
l2
l1

ζccl,q(0, ∆̃(q)) = 2(−1)q log
l2
l1

q∑

k=0

(−1)krkHk(W,Q),

and

t′q,reg(0) = 2(−1)q+1 log
l2
l1

q∑

k=0

(−1)krkHk(W,Q)

Similarly, we consider the difference of log Γ(−λ, Sn,0/µp−1,n) and log Γ(−λ, Ŝn,0/µp−1,n)
for the function tp−1, and we obtain

a0,0,n,p−1 = log
l2
l1

,

a0,1,n,p−1 = 0,

b2j−1,0,0,p−1 = 0, b2j−1,0,1,p−1 = 0,

A0,0,p−1(s) = log
l2
l1

∞∑
n=1

mp−1,n

µ2s
p−1,n

= log
l2
l1

ζccl,p−1(s, ∆̃(q)),

A0,1(s) = 0,

A0,0,p−1(0) = log
l2
l1

ζccl,q(0, ∆̃(p−1)) = (−1)p−1 log
l2
l1

p−1∑

k=0

(−1)krkHk(W,Q),

and

t′p−1,reg(0) = (−1)p log
l2
l1

p−1∑

k=0

(−1)krkHk(W,Q)
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10.5. The regular term of the torsion

We use equation (59). First, note that as in Section 7 there is no singular contribution by
the functions zq(s). Using equation 18, and recalling that −αq−1 = −(q−1−p+1) = p−q,
we compute as in Lemma 7.7.1

z′q(0) = log
l2
l1
− 2(p− q) log

l2
l1

.

Therefore, substitution in equation (59) gives

log Trel ∂1,abs ∂2,reg(C[l1,l2]W ) = t′reg(0) = 0.

10.6. The singular term of the torsion

We show that the singular part of the torsion is twice the singular part of the torsion on
the cone, namely that

log Trel ∂1,abs ∂2,sing(C[l1,l2]W ) = 2 log Tabs,sing(ClW ). (60)

For we need the following lemma.

Lemma 10.10.4. We have the following equations:

lj,±αq (λ) = lj(l22λ) + (−1)j l∓j (l21λ),

l̂j,±αq (λ) = l±j (l22λ) + (−1)j lj(l21λ),

lj,0(λ) = lj(l22λ) + (−1)j l̇j(l21λ),

l̂j,0(λ) = l̇j(l22λ) + (−1)j lj(l21λ),

where the functions lj, l̇j are defined in the proof of Lemma 6.6.4, the functions l±j in the
proof of Lemma 6.6.10, and the other function in Subsection 10.3.

Proof. The proof is by induction. We give details for the first equation. For j = 1, we
have

l1,±αq (λ) = U1(l2
√
−λ)−W∓,1(l1

√
−λ)

= l1(l22λ) + (−1)1l1(l21
√
−λ).
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Assume the equation is valid for all n < j. By definition

lj,±αq
(λ)−

j−1∑

k=1

Uk(l2
√
−λ)(−1)j−kW∓αq,j−k(l1

√
−λ)

= Uj(l2
√
−λ) + (−1)jW∓αq,j(l1

√
−λ)−

j−1∑

k=1

j − k

j
ak,∓αq

(λ)lj−k,∓αq
(λ)

and using the inductive hypothesis for lj−k,∓αq
(λ), and collecting similar terms, this gives

lj,±αq
(λ)−

j−1∑

k=1

Uk(l2
√
−λ)(−1)j−kW∓αq,j−k(l1

√
−λ)

=lj(l22λ) + (−1)j l∓j (l21λ)−
j−1∑

k=1

j − k

j
(−1)kW∓αq,k(l1

√
−λ)lj−k(l22λ)

−
j−1∑

k=1

j − k

j
(Uk(l2

√
−λ))(−1)j−kl∓j−k(l21λ)

−
j−1∑

k=1

j − k

j

k−1∑

h=1

Uh(l2
√
−λ)(−1)k−hW∓αq,k−h(l1

√
−λ)lj−k(l22λ)

−
∑

k=1

1j−1 j − k

j

k−1∑

h=1

Uh(l2
√
−λ)(−1)k−hW∓αq,k−h(l1

√
−λ))(−1)j−kl∓j−k(l21λ).

Rearranging the summation’s indices, this reads

lj,±αq
(λ)−

j−1∑

k=1

Uk(l2
√
−λ)(−1)j−kW∓αq,j−k(l1

√
−λ)

= lj(l22λ) + (−1)j l∓j (l21λ)−
j−1∑

k=1

(−1)kW∓αq,k(l1
√
−λ)Uj−k(l2

√
−λ)

+
j−1∑

k=1

(−1)j−kW∓αq,j−k(l1
√
−λ)

k−1∑

h=1

k − h

j
Uh(l2

√
−λ)lk−h(l22λ)

+
j−1∑

k=1

(−1)kUj−k(l2
√
−λ)

k−1∑

h=1

h

j
W∓αq,k−h(l1

√
−λ)l∓h (l21λ)

−
j−1∑

k=1

j − k

j
lj−k(l22λ)

k−1∑

h=1

Uh(l2
√
−λ)(−1)k−hW∓αq,k−h(l1

√
−λ)

−
j−1∑

k=1

j − k

j
(−1)j−kl∓j−k(l21λ)

k−1∑

h=1

Uh(l2
√
−λ)(−1)k−hW∓αq,k−h(l1

√
−λ)
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Reordering the first two double sums as

j−1∑

k=1

(−1)j−kW∓αq,j−k(l1
√
−λ)

k−1∑

h=1

k − h

j
Uh(l2

√
−λ)lk−h(l22λ)

=
j−1∑

k=1

j − k

j
lj−k(l22λ)

k−1∑

h=1

Uh(l2
√
−λ)(−1)k−hW∓αq,k−h(l1

√
−λ),

j−1∑

k=1

(−1)kUj−k(l2
√
−λ)

k−1∑

h=1

k − h

j
W∓αq,h(l1

√
−λ)l∓k−h(l21λ)

=
j−1∑

k=1

j − k

j
(−1)j−kl∓j−k(l21λ)

k−1∑

h=1

Uh(l2
√
−λ)(−1)k−hW∓αq,k−h(l1

√
−λ),

the result follows.

We are now in the position of proving equation (60). Proceeding as in the proof of
Propositions 6.6.2 and 6.6.4, the singular part of the torsion is given by some residua of
the zeta function associated to the sequence U and some residua of the functions Φ. Since
the sequence U is the same for the conical frustum and for the cone, and the range of
the indices are the same, we only need to compare the functions Φ in the two cases. The
functions Ψ are defined in equation(20), we introduce the linear operation

Φσh
(s) = T (φσh

(λ))(s) =
∫ ∞

0

ts−1 1
2πi

∫

Λθ,c

e−λt

−λ
φσh

(λ)dλdt.

Let use the notation φcone and φfrust. We have

φcone
2j−1,q = −2l2j−1(λ) + l+2j−1(λ) + l−2j−1(λ),

φfrust
j,q = −lj,+(l22λ)− lj,−(l21λ) + l̂j,+(l22λ) + l̂j,−(l21λ).

Note that all the functions appearing in the definition of the functions φ(λ) are polyno-
mial in w = 1√

1−λ
. Applying the formula in equation (62), we have that

T (lj+(l22λ))(s) = l2s
2 T (lj+(l22λ))(s),

and similarly for the other. Using Lemma 10.3, and odd indices, we obtain for example

Φfrust
2j−1,q(s) = (l2s

1 + l2s
2 )Φcone

2j−1,q(s)

Since by Corollaries 6.6.1 and 6.6.2 all the residua Res1 of the function Φcone
2j−1(s) at s = 0

vanish, equation 60 follows.
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10.7. Conclusion

As recalled in Section 2.6, if ∂W = ∂1W t∂2W , is the union of two disjoint components,
and since the boundary term is local,

log Trel ∂1,abs ∂2((W, g); ρ) = log τ(((W,∂1W ), g); ρ) + ABM,rel(∂1W ) + ABM,abs(∂2W ).

Applying this formula to the conical frustum we have

log Trel ∂1,abs ∂2(C[l1,l2]W ) = log τ(C[l1,l2]W,∂1C[l1,l2]W ) + ABM,rel(∂1) + ABM,abs(∂2).

Let X be a manifold of dimension 2p with boundary ∂X = ∂2C[l1,l2]W , and assume there
is an isometry of a collar neighborhood of the boundary of X onto a collar neighborhood
of ∂2C[l1,l2]W . Let Z be the manifold obtained by glueing smoothly X to C[l1,l2]W along
the boundary ∂2C[l1,l2]W . Applying duality of analytic torsion [22] Proposition 2.10 to
Z, and since the anomaly boundary term is local, it follows that ABM,rel(∂1C[l1,l2]W ) =
−ABM,abs(∂1C[l1,l2]W ). Since it follows by the definition that ABM,abs(∂1C[l1,l2]W ) =
−ABM,abs(∂2C[l1,l2]W ), we obtain

log Trel ∂1,abs ∂2(C[l1,l2]W ) = log τ(C[l1,l2]W,∂1C[l1,l2]W ) + 2ABM,abs(∂2C[l1,l2]W ).

Considering the exact sequence of chain complex associated to the pair (C[l1,l2]W,∂1C[l1,l2]W ),
it is not difficult to see (see for example [24] Section 3) that the Reidemeister torsion of
the pair vanishes, and hence

log Trel ∂1,abs ∂2(C[l1,l2]W ) = 2ABM,abs(∂2C[l1,l2]W ).

Since the anomaly boundary term is local ABM,abs(∂2C[l1,l2]W ) = ABM,abs(∂ClW ), and
hence

log Trel ∂1,abs ∂2(C[l1,l2]W ) = 2ABM,abs(∂ClW ).

This formulas also follows using the formulas for the variation of the torsion with mixed
boundary conditions given in the new paper of Brüning and Ma [4]. We thanks the authors
for making available to us this part of the results of their still unpublished paper. Since by
the calculations of the previous subsections

log Trel ∂1,abs ∂2(C[l1,l2]W ) = log Trel ∂1,abs ∂2,sing(C[l1,l2]W ) = 2 log Tabs,sing(ClW ) = 2S(∂ClW ),

this completes the proof of Theorem 1.1.3.

Appendix
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The next two formulas follow from the definition of the Euler Gamma function. Here j

is any positive integer.

Res0
s=0

Γ
(
s + 2j+1

2

)

Γ
(

2j+1
2

)
s

= −γ − 2 log 2 + 2
j∑

k=1

1
2k − 1

,

Res1
s=0

Γ(s + 2j+1
2 )

Γ( 2j−1
2 )s

= 1,

(61)

The next formula is proved in [35] Section 4.2. Let Λθ,c = {λ ∈ C | | arg(λ − c)| = θ},
0 < θ < π, 0 < c < 1, a real, then

∫ ∞

0

ts−1 1
2πi

∫

Λθ,c

e−λt

−λ

1
(1− λ)a

dλdt =
Γ(s + a)
Γ(a)s

. (62)
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4. J. Brüning and Xiaonan Ma, On the gluing formula for the analytic torsion, to appear.
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