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The main theme of this paper is approximation on the sphere by weighted
sums of spherical harmonics. We give necessary and sufficient conditions on
the weights for convergence in both, the continuous and the Lp cases. Approx-
imation by spherical convolution is a particular and important case that fits
into our setting. May, 2005 ICMC-USP

1. INTRODUCTION AND BASIC FACTS

A standard procedure to approximate a function f in an inner product space is to
consider the Fourier series of the function with respect to an orthogonal system. The basic
general results on this topic can be found in many references in the literature, for example,
[2, Chapter VIII].

It is well known that even in the case in which K is a closed interval there always exists
a function f in C(K) for which the corresponding Fourier series does not converge to f
with respect to the uniform norm. Thus, in this and other cases, the common solution is to
consider weighted expansions and to study convergence based on the choice of the weights.
Here is a list of problems that emerges: how to choose the weights in order to guarantee
convergence for every function in the space, to study orders of convergence, how to choose
the weights so that the operators given by the truncated Fourier series inherit properties
of other known operators, etc.

In this paper, we consider some of the problems above in the case when K = Sm, the
unit sphere in Rm+1. The focus is on convergence but we intend to study the analysis
of convergence orders in a forthcoming paper. For functions defined on Sm, orthogonality
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62 V. A. MENEGATTO AND A. C. PIANTELLA

depends upon dσm, the usual surface measure on Sm. The surface area of Sm will be
written as σm. The uniform norm is then given by

‖f‖∞ := sup
x∈Sm

|f(x)|, f ∈ C(Sm), (1.1)

and as usual, we consider the spaces Lp(Sm) := Lp(Sm, dσm), 1 ≤ p < ∞, with norm given
by

‖f‖p :=
(

1
σm

∫

Sm

|f(x)|p dσm(x)
)1/p

, f ∈ Lp(Sm). (1.2)

Unless stated otherwise, the letter X will denote any of the spaces introduced above and
‖·‖X the corresponding norm. Orthogonality is then related to the inner product of L2(Sm)

〈f, g〉2 =
1

σm

∫

Sm

f g dσm, f, g ∈ L2(Sm). (1.3)

We will write P (Sm) to denote the space formed by polynomials in m + 1 variables
restricted to Sm. The set Hk(Sm) of all spherical harmonics of degree k in m + 1 variables
joint with the zero polynomial is a subspace of P (Sm). Let {Yk1, Yk2, . . . , YkN(m,k)} be
an orthonormal basis of Hk(Sm). To every function in any of the spaces above, we can
associate the Fourier series

f ∼
∞∑

k=0

N(m,k)∑

l=1

f̂(k, l)Ykl, (1.4)

in which the Fourier coefficient f̂(k, l) is given by

f̂(k, l) =
∫

Sm

f Ykl dσm. (1.5)

The setting introduced above is, up to normalization, the same used in many standard
references on analysis on the sphere. We refer the reader to [1,4,5,7,8,9,10], where the
Addition Formula

N(m,k)∑

l=1

Ykl(x)Ykl(y) =
N(m, k)

σm
Pm

k (〈x, y〉), x, y ∈ Sm, (1.6)

the Funk-Hecke Formula
∫

Sm

K(〈x, y〉)Yk(y) dσm(y) = am
k (K)Yk(x), x ∈ Sm, (1.7)

and other results can be found. In (1.6) and (1.7), Pm
k is the Legendre polynomial of

degree k associated to the dimension m + 1, K : [−1, 1] 7→ C is an integrable function,
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APPROXIMATION BY WEIGHTED SPHERICAL HARMONICS EXPANSIONS 63

Yk ∈ Hk(Sm), and

am
k (K) := σm−1

∫ 1

−1

K(t)Pm
k (t)(1− t2)(m−2)/2dt. (1.8)

We will deal with approximations of a given function f in X by a sequence {Tn(f)}n∈N, in
which the operators Tn : X 7→ X, n ∈ N := {0, 1, . . .}, are defined by weighted orthogonal
Fourier sums of the form

Tn(f) =
1

σm

n∑

k=0

N(m,k)∑

l=1

akl(n)f̂(k, l)Ykl, f ∈ X, (1.9)

the weights akl(n), n, k = 0, 1, . . ., l = 1, 2, . . . , N(m, k) being all real. In Section 2, we
deduce some basic properties of the operators Tn, including the computation of their norm
in the cases X = C(Sm) and X = L1(Sm). In Section 3, we find necessary and sufficient
conditions in order that {Tn}n∈N be an approximate identity in X. Among other things,
this implies that Tn(f) converges to f in the norm of X, for every f ∈ X. In Section
4, restricting ourselves to the case X = C(Sm), we introduce the notion of localized
approximate identity and study corresponding approximation properties.

2. THE OPERATOR TN

In this section we present some basic properties of the operator Tn, some of independent
interest, other to be used in the subsequent sections. That includes to decide when Tn is
of convolution type and the computation of its norm in some cases.

The orthonormality of the spherical harmonics yields

Tn(Ykl) =

{
akl(n)Ykl, k ≤ n

0, k > n.
(2.1)

The linearity of Tn reveals that

Tn(q) =
M∑

k=0

N(m,k)∑

l=1

akl(n)rklYkl, (2.2)

whenever

q =
M∑

k=0

N(m,k)∑
ν=1

rkνYkν , rk,ν ∈ R. (2.3)
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64 V. A. MENEGATTO AND A. C. PIANTELLA

Writing Tnf(x) := (Tn(f))(x) and appealing to (1.5), we deduce that

Tnf(x) =
1

σm

n∑

k=0

N(m,k)∑

l=1

akl(n)
(∫

Sm

f(y)Ykl(y) dσm(y)
)

Ykl(x)

=
1

σm

∫

Sm

f(y)
n∑

k=0

N(m,k)∑

l=1

akl(n)Ykl(x)Ykl(y) dσm(y).

Thus, we have proved the following representation formula.

Theorem 2.1 If f ∈ X then

Tnf(x) =
1

σm

∫

Sm

Kn(x, y)f(y) dσm(y), x ∈ Sm, (2.4)

in which

Kn(x, y) =
n∑

k=0

N(m,k)∑

l=1

akl(n)Ykl(x)Ykl(y), x, y ∈ Sm. (2.5)

Formula (2.5) defines a kernel having an expression very close to that on the left hand
side of the Addition Formula. Since that formula defines a bi-zonal polynomial kernel and
this type of kernel defines spherical convolution operators on X, the goal in the next two
results will thus be to verify when Tn is an operator of convolution type.

Lemma 2.2 The kernel Kn is bi-zonal if and only if ak1(n) = ak2(n) = · · · = akN(m,k)(n),
k = 0, 1, . . . , n.

Proof. If ak1(n) = ak2(n) = · · · = akN(m,k)(n), k = 0, 1, . . . , n, the Addition Formula
implies that

Kn(x, y) =
n∑

k=0

ak1(n)
N(m, k)

σm
Pm

k (〈x, y〉) := Ln(〈x, y〉), x, y ∈ Sm,

for some function Ln, that is, Kn is bi-zonal. Conversely, fix k ∈ {0, 1, . . . , n} and l in the
set {1, 2, . . . , N(m, k)}. If Kn(x, y) = Ln(〈x, y〉) for some function Ln, Formula (1.7) yields

∫

Sm

Kn(x, y)Ykl(y) dσm(y) =
∫

Sm

Ln(〈x, y〉)Ykl(y) dσm(y) = am
k (Ln)Ykl(x), x ∈ Sm,

(2.6)
while the previous theorem and relation (2.1) imply that

∫

Sm

Kn(x, y)Ykl(y) dσm(y) = akl(n)Ykl(x), x ∈ Sm. (2.7)
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APPROXIMATION BY WEIGHTED SPHERICAL HARMONICS EXPANSIONS 65

Thus,

am
k (Ln)Ykl(x) = akl(n)Ykl(x), x ∈ Sm. (2.8)

Since Ykl 6≡ 0, we conclude that am
k (Ln) = akl(n), l = 1, 2, . . . , N(m, k).

Let K : [−1, 1] 7→ C be a function such that

∫ 1

−1

|K(t)|(1− t2)(m−2)/2dt < ∞. (2.9)

The spherical convolution defined by K is the operator f ∈ X 7→ TK(f) ∈ X given by

TK(f)(x) =
1

σm

∫

Sm

K(〈x, y〉)f(y) dσm(y), x ∈ Sm. (2.10)

Basic properties of this operator along with some information about bi-zonal kernels are
to be found in [4,5,6,10] and references therein. We adopt here the most common notation
for the convolution operator, that is, TK(f) = K ∗ f .

Theorem 2.3 The operator Tn is of convolution type if and only if Kn is bi-zonal.

Proof. If Kn(x, y) = Ln(〈x, y〉), x, y ∈ Sm, for some Ln, then Tn(f) = Ln ∗ f , f ∈ X, by
Theorem 2.1. Conversely, if Tn(f) = Ln ∗ f , f ∈ X, for some Ln then

∫

Sm

Kn(x, y)f(y) dσm(y) =
∫

Sm

Ln(〈x, y〉)f(y) dσm(y), x ∈ Sm, f ∈ X, (2.11)

that is,
∫

Sm

[Kn(x, y)− Ln(〈x, y〉)] f(y) dσm(y) = 0, x ∈ Sm, f ∈ X. (2.12)

In particular,

∫

Sm

[Kn(x, y)− Ln(〈x, y〉)] Ykl(y) dσm(y) = 0, x ∈ Sm, k ∈ N, l = 1, 2, . . . , N(m, k).

Since {Ykl : k ∈ N, l = 1, . . . , N(m, k)} is a complete orthonormal subset of L2(Sm), it
follows that

Kn(x, y)− Ln(〈x, y〉) = 0 a.e. (2.13)

This leads to Kn(x, y) = Ln(〈x, y〉), x, y ∈ Sm, because Kn is polynomial.

Next, we introduce some notation. Given a kernel K : Sm × Sm 7→ C, we will write Kx

e Ky to denote the functions y ∈ Sm 7→ K(x, y) and x ∈ Sm 7→ K(x, y), respectively. It is
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66 V. A. MENEGATTO AND A. C. PIANTELLA

easily seen that these two functions are in L1(Sm) when K is polynomial. In just one step
of the proof of Theorem 2.4 below we use the space L∞(Sm) as defined in ([3], pág. 176).

Theorem 2.4 An upper bound for ‖Tn‖X is sup{‖Kx
n‖1 : x ∈ Sm}.

Proof. First we consider the case X = C(Sm). If f ∈ X, Theorem 2.1 implies that

|Tnf(x)| ≤ 1
σm

∫

Sm

|Kn(x, y)f(y)| dσm(y) ≤ ‖Kx
n‖1‖f‖∞, x ∈ Sm.

Hence,

‖Tn(f)‖∞ ≤ ‖f‖∞ sup{‖Kx
n‖1 : x ∈ Sm}, f ∈ X, (2.14)

and, consequently,

‖Tn‖C(Sm) ≤ sup{‖Kx
n‖1 : x ∈ Sm}. (2.15)

Next, we consider the case X = Lp(Sm). If f ∈ X then

‖Tn(f)‖p
p =

1
σm

∫

Sm

|Tnf(x)|p dσm(x)

=
1

σm

∫

Sm

∣∣∣∣
1

σm

∫

Sm

Kn(x, y)f(y) dσm(y)
∣∣∣∣
p

dσm(x)

≤ 1
σm

∫

Sm

[
1

σm

∫

Sm

|Kn(x, y)f(y)| dσm(y)
]p

dσm(x).

Since (Kx
n)1/pf ∈ Lp(Sm), x ∈ Sm and (Kx

n)1/p′ ∈ Lp′(Sm), x ∈ Sm (p
′

is the conjugate
exponent of p), Hölder’s inequality implies that

[
1

σm

∫

Sm

|Kn(x, y)f(y)| dσm(y)
]p

≤ ‖(Kx
n)1/p′‖p

p′ ‖(Kx
n)1/pf‖p

p

=
1

σm
‖Kx

n‖p/p′

1

∫

Sm

|Kn(x, y)||f(y)|p dσm(y).

Picking x0 ∈ Sm such that

sup{‖Kx
n‖1 : x ∈ Sm} = ‖Kx0

n ‖1 (2.16)

and using Fubini’s Theorem, we obtain

‖Tn(f)‖p
p ≤

1
σ2

m

∫

Sm

‖Kx
n‖p/p′

1

∫

Sm

|Kn(x, y)||f(y)|p dσm(y) dσm(x)

≤ 1
σ2

m

‖Kx0
n ‖p/p′

1

∫

Sm

∫

Sm

|Kn(x, y)||f(y)|p dσm(y) dσm(x)

=
1

σm
‖Kx0

n ‖p/p′

1

∫

Sm

(
1

σm

∫

Sm

|Kn(y, x)| dσm(x)
)
|f(y)|p dσm(y).
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APPROXIMATION BY WEIGHTED SPHERICAL HARMONICS EXPANSIONS 67

Thus,

‖Tn(f)‖p
p ≤

1
σm

‖Kx0
n ‖p/p′

1

∫

Sm

‖Ky
n‖1|f(y)|p dσm(y) ≤ ‖Kx0

n ‖p
1 ‖f‖p

p, (2.17)

whence

‖Tn‖X ≤ sup{‖Kx
n‖1 : x ∈ Sm}. (2.18)

The proof is complete.

The upper bound given above coincides with ‖Tn‖X in at least two cases.

Theorem 2.5 For X = C(Sm) and X = L1(Sm), it holds

‖Tn‖X = sup{‖Kx
n‖1 : x ∈ Sm}. (2.19)

Proof. Due to Theorem 2.4, we need to prove that

‖Tn‖X ≥ sup{‖Kx
n‖1 : x ∈ Sm}. (2.20)

Using the formula ([3, p. 189])

‖f‖1 = sup
{∣∣∣∣

1
σm

∫

Sm

f g dσm

∣∣∣∣ : ‖g‖∞ = 1
}

, f ∈ L1(Sm), (2.21)

we obtain

‖Kx
n‖1 = sup

{∣∣∣∣
1

σm

∫

Sm

Kn(x, y) f(y) dσm(y)
∣∣∣∣ : ‖f‖∞ = 1

}

= sup
{∣∣∣∣

1
σm

∫

Sm

Kn(x, y)f(y) dσm(y)
∣∣∣∣ : ‖f‖∞ = 1

}

= sup {|Tnf(x)| : ‖f‖∞ = 1}
≤ sup {‖Tn(f)‖∞ : ‖f‖∞ = 1}
= ‖Tn‖C(Sm), x ∈ Sm,

and, consequently,

sup{‖Kx
n‖1 : x ∈ Sm} ≤ ‖Tn‖C(Sm). (2.22)
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68 V. A. MENEGATTO AND A. C. PIANTELLA

To finish the proof, first observe that

∫

Sm

Tnf(y) g(y) dσm(y) =
1

σm

∫

Sm

n∑

k=0

N(m,k)∑

l=1

akl(n)f̂(k, l)Ykl(y) g(y) dσm(y)

=
∫

Sm


 1

σm

n∑

k=0

N(m,k)∑

l=1

akl(n) ĝ(k, l) Ykl(y)


 f(y) dσm(y)

=
∫

Sm

Tng(y) f(y) dσm(y), f ∈ L1(Sm), g ∈ C(Sm).

Finally, using the formula ([3, p. 223])

‖f‖∞ = sup
{∣∣∣∣

1
σm

∫

Sm

f g dσm

∣∣∣∣ : ‖g‖1 = 1
}

, (2.23)

we obtain

‖Tn‖L1(Sm) = sup {‖Tnf‖1 : ‖f‖1 = 1}

= sup
‖f‖1=1

(
sup

{∣∣∣∣
1

σm

∫

Sm

Tnf(y) g(y) dσm(y)
∣∣∣∣ : ‖g‖∞ = 1

})

= sup
‖f‖1=1

(
sup

{∣∣∣∣
1

σm

∫

Sm

Tng(y) f(y)dσm(y)
∣∣∣∣ : ‖g‖∞ = 1

})

= sup
‖g‖∞=1

(
sup

{∣∣∣∣
1

σm

∫

Sm

Tng(y) f(y)dσm(y)
∣∣∣∣ : ‖f‖1 = 1

})

= sup{‖Tn(g)‖∞ : ‖g‖∞ = 1}
= ‖Tn‖C(Sm).

This completes the proof of the theorem.

3. APPROXIMATE IDENTITIES

In this section, keeping the notation in (1.9), we will search for conditions in order that
the following approximation property holds:

lim
n→∞

‖Tn(f)− f‖X = 0, f ∈ X. (3.1)

As usual, a sequence {Tn}n∈N satisfying (3.1) is called an approximate identity in X. We
refer the reader to [6] and some references therein, for nice examples of approximate identi-
ties in X, including examples involving spherical convolution, spherical shifting, etc. Since
spherical convolution operators belong to the class of operators we are dealing with here,

Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



APPROXIMATION BY WEIGHTED SPHERICAL HARMONICS EXPANSIONS 69

many results in this section may be considered as generalizations of those corresponding
to approximation by spherical convolution.

Theorem 3.1 If {Tn}n∈N is an approximate identity in X then the following properties
hold:
(i) There exists a positive constant C such that ‖Tn(f)‖X ≤ C‖f‖X , n ∈ N, f ∈ X;
(ii) limn→∞ akl(n) = 1, k ∈ N, l = 1, 2, . . . , N(m, k).

Proof. Assume {Tn}n∈N is an approximate identity in X. Since every sequence {Tn(f)}n∈N,
f ∈ X, is bounded, the Uniform Boundedness Principle implies that

‖Tn(f)‖X ≤ C‖f‖X , f ∈ X, n ∈ N, (3.2)

for some nonnegative constant C. If C = 0 then Tn(f) = 0, f ∈ X, n ∈ N, whence

‖f‖X = lim
n→∞

‖Tn(f)− f‖X = 0, f ∈ X, (3.3)

a clear contradiction. Thus, C > 0 and (i) is proved. To prove (ii) fix k ∈ N and l ∈
{1, 2, . . . , N(m, k)}. Since

TnYkl(y) = akl(n)Ykl(y), y ∈ Sm, n ≥ k, (3.4)

it follows that

lim
n→∞

TnYkl(y) =
(

lim
n→∞

akl(n)
)

Ykl(y), y ∈ Sm. (3.5)

We split the proof in two cases. If X = C(Sm), our assumption on {Tn}n∈N implies that

lim
n→∞

TnYkl(y) = Ykl(y), y ∈ Sm. (3.6)

Since Ykl 6≡ 0, we can choose y0 ∈ Sm such that Ykl(y0) 6= 0. Thus, (3.5) and (3.6) lead to

Ykl(y0) =
(

lim
n→∞

akl(n)
)

Ykl(y0). (3.7)

If X = Lp(Sm), 1 ≤ p < ∞, a similar procedure leads to

Ykl(y) = lim
n→∞

TnYkl(y) =
(

lim
n→∞

akl(n)
)

Ykl(y), y ∈ Sm \ Λ, (3.8)

where σm(Λ) = 0. Taking y1 ∈ Sm \ Λ such that Ykl(y1) 6= 0, as we certainly can, we
conclude that

Ykl(y1) =
(

lim
n→∞

akl(n)
)

Ykl(y1). (3.9)
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In both cases the conclusion is limn→∞ akl(n) = 1.

Next, we search for some converse results.

Theorem 3.2 Let f ∈ C(Sm) be a function fulfilling the following condition: if q ∈ P (Sm)
then there exists a constant C = C(f−q) ≥ 0 such that ‖Tn(f−q)‖∞ ≤ C(f−q)‖f−q‖∞,
n ∈ N. If limn→∞ akl(n) = 1, k ∈ N, l = 1, 2, . . . , N(m, k) then limn→∞ ‖Tn(f)−f‖∞ = 0.

Proof. Let ε > 0. We use the Weierstrass Approximation Theorem to select q ∈ P (Sm)
such that ‖f − q‖∞ < ε and write q in the form

q =
M∑

k=0

N(m,k)∑

l=1

rklYkl, rkl ∈ C, k = 0, 1, . . . , M, l = 1, 2, . . . , N(m, k). (3.10)

Since

Tn(q) =
M∑

k=0

N(m,k)∑

l=1

akl(n)rklYkl, n ≥ M, (3.11)

defining

B1 := max{|rkl| : k = 0, 1, . . . ,M, l = 1, 2, . . . , N(m, k)} (3.12)

and

B2 := max{‖Ykl‖∞ : k = 0, 1, . . . , M, l = 1, 2, . . . , N(m, k)}, (3.13)

it is clear that

|Tnq(y)− q(y)| =
∣∣∣∣∣∣

M∑

k=0

N(m,k)∑

l=1

(akl(n)− 1)rklYkl(y)

∣∣∣∣∣∣

≤
M∑

k=0

N(m,k)∑

l=1

|akl(n)− 1||rkl| ‖Ykl‖∞

≤ B1B2

M∑

k=0

N(m,k)∑

l=1

|akl(n)− 1|, y ∈ Sm, n ≥ M.

Consequently,

‖Tn(q)− q‖∞ ≤ B1B2

M∑

k=0

N(m,k)∑

l=1

|akl(n)− 1|, n ≥ M (3.14)

If limn→∞ akl(n) = 1, k ∈ N, l = 1, 2 . . . , N(m, k), then limn→∞ ‖Tn(q) − q‖∞ = 0 and
there is an N(ε) ∈ N such that

‖Tn(q)− q‖∞ < ε, n ≥ N(ε). (3.15)
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APPROXIMATION BY WEIGHTED SPHERICAL HARMONICS EXPANSIONS 71

Therefore,

‖Tn(f)− f‖∞ ≤ ‖Tn(f)− Tn(q)‖∞ + ‖Tn(q)− q‖∞ + ‖q − f‖∞
≤ ‖Tn(f − q)‖∞ + 2ε

≤ C(f − q)‖f − q‖∞ + 2ε

≤ (C(f − q) + 2)ε, n ≥ N(ε),

completing the proof of the theorem.

Theorem 3.3. Let f ∈ Lp(Sm) be a function fulfilling the following condition: if q ∈
P (Sm) then there exists a constant C := C(f − q) ≥ 0 such that ‖Tn(f − q)‖p ≤ C(f −
q)‖f‖p, n ∈ N. If limn→∞ akl(n) = 1, k ∈ N, l = 1, 2, . . . , N(m, k) then limn→∞ ‖Tn(f)−
f‖p = 0.

Proof. Let ε > 0. Since C(Sm) is dense in Lp(Sm), there exists a function g ∈ C(Sm)
such that ‖f − g‖p < ε/2. The Weierstrass Approximation Theorem provides a polynomial
q such that ‖q − g‖∞ < ε/2. Hence,

‖f − q‖p ≤ ‖f − g‖p + ‖g − q‖p ≤ ε

2
+ ‖g − q‖∞ < ε. (3.16)

As in the proof of the previous theorem, if limn→∞ akl(n) = 1, k ∈ N, l = 1, 2, . . . , N(m, k)
then limn→∞ ‖Tn(q)− q‖∞ = 0. Thus, the inequality ‖Tn(q)− q‖p ≤ ‖Tn(q)− q‖∞ implies
that limn→∞ ‖Tn(q)− q‖p = 0. Now, there exists N(ε) ∈ N such that

‖Tn(q)− q‖p < ε, n ≥ N(ε). (3.17)

Therefore,

‖Tn(f)− f‖p ≤ ‖Tn(f)− Tn(q)‖p + ‖Tn(q)− q‖p + ‖q − f‖p

≤ ‖Tn(f − q)‖p + 2ε

≤ C(f − q)‖f − q‖p + 2ε

≤ (C(f − q) + 2)ε, n ≥ N(ε).

This completes the proof.

Combining the previous two theorems we have the following.

Theorem 3.4 The sequence {Tn}n∈N is an approximate identity in X if and only if the
following conditions hold:
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(i) Given f ∈ X, there exists a constant Cf ≥ 0 such that ‖Tn(f)‖X ≤ Cf‖f‖X , n ∈ N;
(ii) limn→∞ akl(n) = 1, k ∈ N, l = 1, 2, . . . , N(m, k).

Next, we investigate the possibility of changing Condition (i) by another involving the
kernel Kn. This is suggested by Theorem 2.1.

Theorem 3.5 If limn→∞ akl(n) = 1, k ∈ N, l = 1, 2, . . . , N(m, k) and

sup
n∈N

(sup {‖Kx
n‖1 : x ∈ Sm}) < ∞ (3.18)

then {Tn}n∈N is an approximate identity in X.

Proof. If sup{‖Kx
n‖1 : x ∈ Sm} ≤ C, n ∈ N, for some positive constant C, not depending

on n, then Theorem 2.4 implies that ‖Tn‖X ≤ C, n ∈ N. Hence,

‖Tn(f)‖X

‖f‖X
≤ sup

f∈X

‖Tn(f)‖X

‖f‖X
= ‖Tn‖X ≤ C, n ∈ N, f ∈ X \ {0}, (3.19)

so that

‖Tn(f)‖X ≤ C‖f‖X , n ∈ N, f ∈ X. (3.20)

The previous theorem closes the proof.

The converse of this result holds in at least two cases.

Theorem 3.6 Let either X = C(Sm) or X = L1(Sm). Then {Tn}n∈N is an approximate
identity in X if and only if the following properties hold:
(i) supn∈N(sup{‖Kx

n‖1 : x ∈ Sm}) < ∞;
(ii) limn→∞ akl(n) = 1, k ∈ N, l = 1, . . . , N(m, k).

Proof. One implication is consequence of the previous theorem. As for the other, assume
{Tn}n∈N is an approximate identity in X. Theorem 3.1 yields the existence of a positive
constant C such that

‖Tn(f)‖X ≤ C‖f‖X , f ∈ X, n ∈ N. (3.21)

Hence,

‖Tn‖X = sup
f∈X\{0}

‖Tn(f)‖X

‖f‖X
≤ C, n ∈ N. (3.22)

Under the conditions in the statement of the theorem, Theorem 2.5 is applicable. Hence,

sup{‖Kx
n‖1 : x ∈ Sm} = ‖Tn‖X ≤ C, n ∈ N, (3.23)

and, therefore,

sup
n∈N

(sup{‖Kx
n‖1 : x ∈ Sm}) ≤ C. (3.24)
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This takes care of Condition (i). Condition (ii) follows directly from Theorem 3.1.

If Kn is positive, that is, Kn(x, y) ≥ 0, x, y ∈ Sm, then we can sharpen Theorem 3.6 as
follows.

Theorem 3.7 Let either X = C(Sm) or X = L1(Sm). Assume that every Kn is positive.
Then {Tn}n∈N is an approximate identity in X if and only if limn→∞ akl(n) = 1, k ∈ N,
l = 1, 2, . . . , N(m, k).

Proof. It is sufficient to prove that (ii) implies (i) in Theorem 3.6. The positivity of Kn

and the orthonormality of the spherical harmonics yields

‖Kx
n‖1 =

1
σm

∫

Sm

Kn(x, y) dσm(y)

=
1

σm

∫

Sm

n∑

k=0

N(m,k)∑

l=1

akl(n)Ykl(x)Ykl(y) dσm(y)

=
n∑

k=0

N(m,k)∑

l=1

akl(n)Ykl(x)
1

σmY01(x)

∫

Sm

Y01(y)Ykl(y) dσm(y)

= a01(n), x ∈ Sm, n ∈ N.

Hence,

sup
x∈Sm

‖Kx
n‖1 = a01(n), n ∈ N.

Since limn→∞ a01(n) = 1, it follows

lim
n→∞

sup
x∈Sm

‖Kx
n‖1 = lim

n→∞
a01(n) = 1.

Therefore, there exists a positive constant C such that

sup
n∈N

(sup{‖Kx
n‖1 : x ∈ Sm}) ≤ C.

Thus, the result follows from the previous theorem.

These are elementary consequences of the above results.

Theorem 3.8 Let either X = C(Sm) or X = L1(Sm). If limn→∞ akl(n) = 1, k ∈ N,
l = 1, . . . , N(m, k), then the following assertions are equivalent:
(i) limn→∞ ‖Tn(f)− f‖X = 0, f ∈ X;
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(ii) There exists a C ≥ 0 such that ‖Tn(f)‖X ≤ C‖f‖X , f ∈ X, n ∈ N;
(iii) supn∈N(sup{‖Kx

n‖1 : x ∈ Sm}) < ∞.

Theorem 3.9 The sequence {Tn}n∈N is an approximate identity in C(Sm) if and only if
it is an approximate identity in L1(Sm).

If {Tn}n∈N is an approximate identity in C(Sm) then it is an approximate identity in
Lp(Sm), 1 ≤ p < ∞. Thus, it is quite obvious that the case X = C(Sm) is the most
important among all.

We close the section, giving a method to construct approximate identities. It is based on
a corresponding property of spherical convolution.

Theorem 3.10 Let {Sn}n∈N be another sequence having a representation as in (1.9).
If both {Tn}n∈N and {Sn}n∈N are approximate identities in X then {Tn ◦ Sn}n∈N is an
approximate identity in X.

Proof. Let {Tn}n∈N be as in (1.9) and represent {Sn}n∈N in the form

Sn(f) =
1

σm

n∑

i=0

N(m,i)∑

j=1

cij(n)f̂(i, j)Yij , f ∈ X, (3.25)

with cij(n) ∈ R, i = 0, 1, . . ., j = 1, 2, . . . , N(m, i). Using (2.4) we have that

(Tn(Snf))(x) =
1

σm

∫

Sm

Kn(x, y)(Snf)(y) dσm(y)

=
1

σ2
m

∫

Sm

n∑

k=0

N(m,k)∑

l=1

akl(n)Ykl(x)Ykl(y)
n∑

i=0

N(m,i)∑

j=1

cij(n)f̂(i, j)Yij(y) dσm(y)

=
1

σm

n∑

k=0

N(m,k)∑

l=1

n∑

i=0

N(m,k)∑

j=1

akl(n)cij(n)f̂(i, j)Ykl(x)
1

σm

∫

Sm

Yij(y)Ykl(y) dσm(y)

=
1

σm

n∑

k=0

N(m,k)∑

l=1

akl(n)cij(n)f̂(k, l)Ykl(x), x ∈ Sm, f ∈ X.

If {Tn}n∈N and {Sn}n∈N are approximate identities in X, Theorem 3.1 implies that

lim
n→∞

akl(n) = lim
n→∞

ckl(n) = 1, k ∈ N, l = 1, 2, . . . , N(m, k). (3.26)

Hence,

lim
n→∞

akl(n)ckl(n) = 1, k ∈ N, l = 1, 2, . . . , N(m, k). (3.27)

That same theorem produces constants C1, C2 > 0 such that

‖Tn(f)‖X ≤ C1‖f‖X and ‖Sn(f)‖X ≤ C2‖f‖X , n ∈ N, f ∈ X. (3.28)
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Thus,

‖Tn(Snf)‖X ≤ C1‖Sn(f)‖X ≤ C1C2‖f‖X , n ∈ N, f ∈ X. (3.29)

Now, Theorem 3.4 guarantees that {Tn ◦ Sn}n∈N is an approximate identity in X.

An important consequence of Theorem 3.10 is this: if {Tn}n∈N is an approximate identity
in X and k ∈ N then {T k

n}n∈N is an approximate identity in X.

4. LOCALIZED APPROXIMATE IDENTITIES

In this section we let X = C(Sm) and investigate approximation at one fixed point.
The term localized refers to this and nothing else. To motivate the main definition in this
section, let {Tn} be as in (1.9) and assume that {Tn}n∈N is an approximate identity in X.
Since

lim
n→∞

Tnf(y) = f(y), y ∈ Sm, f ∈ C(Sm), (4.1)

we have that

f(y) = lim
n→∞

1
σm

n∑

k=0

N(m,k)∑

l=1

akl(n)f̂(k, l)Ykl(y)

= lim
n→∞

1
σm

∫

Sm

n∑

k=0

N(m,k)∑

l=1

akl(n)Ykl(y)Ykl(x)f(x) dσm(x)

= lim
n→∞

1
σm

∫

Sm




n∑

k=0

N(m,k)∑

l=1

cy
kl(n) Ykl(x)


 f(x) dσm(x), y ∈ Sm, f ∈ X,

in which cy
kl(n) := akl(n)Ykl(y).

The definition can now be introduced. Let y ∈ Sm and let {Sy
n}n∈N be a sequence of

operators on X that depends on y. The sequence is called an approximate identity in y if

lim
n→∞

1
σm

∫

Sm

Sy
n(x)f(x) dσm(x) = f(y), f ∈ C(Sm). (4.2)

Theorem 4.1 If {Tn}n∈N is an approximate identity in X then the sequence {T y
n}n∈N

given by

T y
n (x) :=

n∑

k=0

N(m,k)∑

l=1

cy
kl(n)Ykl(x), x ∈ Sm, (4.3)

Publicado pelo ICMC-USP
Sob a supervisão CPq/ICMC



76 V. A. MENEGATTO AND A. C. PIANTELLA

in which cy
kl(n) = akl(n)Ykl(y), k = 0, 1, . . ., l = 1, 2, . . . , N(m, k), is an approximate

identity in y.

In what follows we will seek for conditions in order that a general sequence {T y
n}n∈N as

in (4.3), but with arbitrary coefficients cy
kl(n), be an approximate identity in y. We begin

computing the norm of the operator generated by (4.3).

Theorem 4.2 Let Ly
n denote the linear functional on X given by

Ly
n(f) =

1
σm

∫

Sm

T y
n (x)f(x) dσm(x), f ∈ C(Sm). (4.4)

Then Ly
n is continuous and ‖Ly

n‖C(Sm) = ‖T y
n‖1.

Proof. This is standard but we include a sketch of the proof for the sake of completeness
and because the same arguments are present in the proof of the next result. If f ∈ C(Sm),
then

|Ly
n(f)| =

∣∣∣∣
1

σm

∫

Smm

T y
n (x)f(x)dσm(x)

∣∣∣∣

≤ 1
σm

∫

Smm

|T y
n (x)||f(x)|dσm(x)

≤ ‖f‖∞‖T y
n‖1, f ∈ C(Sm),

and, consequently,

‖Ly
n‖C(Sm) = sup{|Ly

nf | : ‖f‖∞ ≤ 1} ≤ ‖T y
n‖1.

On the other hand, since F := {x ∈ Sm : T y
n (x) = 0} is closed, given an ε > 0, there exists

an open set Oε ⊂ Sm such that F ⊂ Oε and

∫

Oε

|T y
n (x)| dσm(x) < ε. (4.5)

Since Sm is a normal space, we can find a continuous function gε : Sm 7→ [0, 1] such that
gε(x) = 0, x ∈ F and gε(x) = 1, x ∈ Oε. Now, it is promptly seen that the function hε

defined by hε(x) = gε sign T y
n (x), x ∈ Sm is continuous and ‖hε‖∞ ≤ 1. In addition,

Ly
n(hε) =

1
σm

∫

Sm

T y
n (x)gε(x)sign T y

n (x) dσm(x) ≥ 1
σm

∫

Sm\Oε

|T y
n (x)| dσm(x) ≥ ‖T y

n‖1− ε.

(4.6)
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Thus, ‖Ly
n‖C(Sm) ≥ ‖T y

n‖ − ε. This completes the proof.

The existence of localized approximate identities follows from the results in the previous
sections along with the comments we have made at the beginning of this section. Theorem
4.3 provides an independent proof of this same result.

Theorem 4.3 Given y ∈ Sm, there always exists an approximate identity in y.

Proof. Let y ∈ Sm and let Oy
n be the set formed by the elements of Sm which are within

1/n of y. Since Oy
n is open in Rm+1, Urysonh’s Lemma implies that we can find a sequence

{gy
n}n∈N ⊂ C(Sm) such that gy

n(x) ≥ 0, x ∈ Sm, gy
n(x) = 0 para x ∈ Sm \Oy

n and
∫

Sm

gy
n dσm = 1. (4.7)

On the other hand, the Weierstrass Approximation Theorem allows us to find a family
{qy

n}n∈N of polynomials in m + 1 variables such that

‖gy
n − qy

n‖∞ <
1
n

, n ∈ N. (4.8)

Let f ∈ C(Sm) and fix ε > 0. From the continuity of f , we can find an n0 = n0(ε) ∈ N
such that

|f(y)− f(x)| < ε, x ∈ Oy
n0

. (4.9)

In addition, we can choose n1 ≥ n0 such that

|f(y)− f(x)| < ε, x ∈ Oy
n1

(4.10)

and ‖f‖∞ < εn1. Since
∣∣∣∣f(y)−

∫

Sm

qy
n(x)f(x) dσm(x)

∣∣∣∣ ≤
∣∣∣∣
∫

Sm

[f(y)− f(x)]gy
n(x) dσm(x)

∣∣∣∣

+
∣∣∣∣
∫

Sm

[gy
n(x)− qy

n(x)]f(x) dσm(x)
∣∣∣∣

≤
∫

Sm

|f(y)− f(x)|gy
n(x) dσm(x)

+
∫

Sm

|gy
n(x)− qy

n(x)||f(x)| dσm(x),

we deduce that
∣∣∣∣f(y)−

∫

Sm

qy
n(x)f(x) dσm(x)

∣∣∣∣ ≤
∫

Oy
n

|f(y)− f(x)|gy
n(x) dσm(x) + ‖gy

n − qy
n‖∞‖f‖∞

≤ ε

∫

Oy
n

gy
n(x) dσm(x) +

‖f‖∞
n

≤ 2ε, n ≥ n1.
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The qy
n being representable in the form

qy
n(x) =

Mn∑

k=0

N(m,k)∑

l=1

cy
kl(n) Ykl(x), x ∈ Sm, (4.11)

for some Mn, the result follows.

The main result of this section is as follows.

Theorem 4.4 Let y ∈ Sm. The sequence {T y
n}n∈N is an approximate identity in y if and

only if the following conditions hold:
(i) There exists a positive constant C such that ‖T y

n‖1 ≤ C, n ∈ N;
(ii) limn→∞ cy

kl(n) = Ykl(y), k ∈ N, l = 1, 2, . . . , N(m, k).

Proof. Assume {T y
n}n∈N is an approximate identity in y. Since limn→∞ Ly

n(f) = f(y),
f ∈ C(Sm), it follows that each sequence {Ly

n(f)}n∈N is bounded. Hence, for every f ∈
C(Sm), we can find a constant Cf ≥ 0 such that

sup{|Ly
n(f)| : n ∈ N} ≤ Cf . (4.12)

The Uniform Boundedness Principle implies that

‖T y
n‖1 = ‖Ly

n‖C(Sm) ≤ C, n ∈ N, (4.13)

for some C ≥ 0. It is an easy matter to verify that C is in fact positive. Since

Ly
n(Yµν) =

1
σm

n∑

k=0

N(m,k)∑

l=1

cy
kl(n)Ŷµν(k, l)

=
µ∑

k=0

N(m,k)∑

l=1

cy
kl(n)

(
1

σm

∫

Sm

Yµν(x) Ykl(x) dσm(x)
)

= by
µν(n), n ≥ µ.

then

lim
n→∞

cy
µν(n) = lim

n→∞
Ly

n(Yµν) = Yµν(y), µ ∈ N, ν = 1, 2, . . . , N(m,µ). (4.14)

Conversely, assume that (i) and (ii) hold. Let f ∈ C(Sm) and fix ε > 0. By the Weierstrass
Approximation Theorem we can find a polynomial q in m+1 variables so that ‖q−f‖∞ < ε.
Writing q in the form

q =
M∑

µ=0

N(m,µ)∑
ν=1

rµνYµν , (4.15)
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and observing that Ly
n(q) =

∑M
k=0

∑N(m,k)
l=1 cy

kl(n)rkl, n ≥ M , Condition (i) implies that

lim
n→∞

Ly
n(q) = lim

n→∞

M∑

k=0

N(m,k)∑

l=1

cy
kl(n)rkl =

M∑

k=0

N(m,k)∑

l=1

rklYkl(y) = q(y). (4.16)

Choosing N(ε) so that

|Ly
n(q)− q(y)| < ε, n ≥ N(ε), (4.17)

we can use Condition (ii) to reach

|Ly
n(f)− f(y)| ≤ |Ly

n(f)− Ly
n(q)|+ |Ly

n(q)− q(y)|+ |q(y)− f(y)|
≤ |Ly

n(f − q)|+ ε + ‖q − f‖∞
< ‖Ly

n‖ ‖(f − q)‖∞ + 2ε

= ‖T y
n‖1 ‖(f − q)‖∞ + 2ε

< (C + 2)ε, n ≥ N(ε).

This completes the proof.

We close the paper stating a theorem that includes a positiveness hypothesis on the
operators.

Theorem 4.5 Let y ∈ Sm and assume that every T y
n is positive. Then {T y

n}n∈N is an ap-
proximate identity in y if and only if limn→∞ cy

kl(n) = Ykl(y), k ∈ N, l = 1, 2, . . . , N(m, k).

Proof. Left to the reader.
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