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We present necessary conditions for the formation of internal transition
layers in stationary solutions to some singularly perturbed reaction-diffusion
systems. In particular we prove that the well-known equal-area condition
which is always assumed in a typical set of sufficient conditions for existence
of such solutions is actually a necessary hypothesis. May, 2004 ICMC-USP

1. INTRODUCTION

The prime concern in this paper is to present a necessary condition for the formation of
internal transition layers for stationary solutions in N-dimensional domains of a singularly
perturbed reaction-diffusion system which often appears in the literature.

The system which is the object of our analysis takes the general form





ut = ε div (h1(x)∇u)+f(x, u,v), in IR+ × Ω
vt = div (h2(x)∇v)+g(x, u,v), in IR+ × Ω
∂ v
∂ n̂

= 0 (or v = (0, 0, ..., 0) on IR+ × ∂Ω,

where Ω is a smooth domain in RN and the bold letters stand for vector-valued functions.
However in order to put our work into perspective let us consider a simpler system of
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136 J. CREMA AND A. S. DO NASCIMENTO

reaction-diffusion equations of activator-inhibitor type:




ut = ε4u+f(u, v), (t, x) ∈ IR+ × Ω
vt = 4v+g(u, v), (t, x) ∈ IR+ × Ω
∂ u

∂ n̂
=

∂ v

∂ n̂
= 0, (t, x) ∈ R+ × ∂Ω,

(1.1)

where ε is a small positive parameter and Ω a smooth domain in IRN , N ≥ 1.
Part of the available literature on this problem is devoted to the study of (1.1) in the

context of spatial pattern formation as it appears in many different fields such as mathe-
matical biology, chemical reactions, morphogenesis, combustion, etc.. See [6], for instance,
for a survey on this issue.

Roughly speaking we will say that a uniformly bounded family Φε = (uε, vε) of stationary
(meaning that ut = vt = 0) solutions to (1.1) develops internal transition layer as ε → 0 if
the component uε exhibits a sharp spatial transition between two different states. These
solutions will be referred to as i.t.l.s. solutions, for short, and a rigorous definition will be
provided.

Typically the setting in which the issue of spatial pattern formation in reaction-diffusion
systems is considered involves the choice of a specific parameter region (the rates of diffusion
and/or reaction) and the geometry of the zero-level set (nullcline) of the reaction terms f
and g.

For one-dimensional domains, and using different techniques, existence (sometimes sta-
bility too) of i.t.l.s. solutions to (1.1) has been established in [4], [5], [14], [11], [6], [12], for
instance. There is a vast literature on the subject but the references above best suit our
purposes.

However, regardless of the particular technique used, whenever proving the existence of
i.t.l.s. solutions to (1.1), the following hypotheses are tacitly assumed. The zero set of f ,

Z = {(u, v) ∈ IR2 : f(u, v) = 0}
has at least two different solutions u = h−(v) and u = h+(v), h−(v) < h+(v), in a suitable
domain which contains a real number v = v∗ satisfying

∫ h+(v∗)

h−(v∗)
f(s, v∗) ds = 0.

Usually Z is supposed to take a sigmoidal form in the (u,v)-plane. This assumption is
known as the equal-area condition (or rule) and it is always assumed as a sufficient condition
for existence of i.t.l.s. solutions to (1.1). Sometimes it does not appear explicitly but in an
equivalent form, as a Melnikov integral, for instance. See [10], for this matter.

It might seems at first sight that this hypothesis is not necessary for proving existence
of such solutions. We give herein a rigorous mathematical proof that this is not the case.
Rather it is a necessary condition.

Of course for each phenomenon the mathematical system models there is a physical
mechanism underlying the equal-area condition whenever internal transition layer is cre-
ated.
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INTERNAL TRANSITION LAYER 137

An immediate conclusion of our results is that if the above equal-area condition on f
does not hold then, as long as concentration phenomenon is concerned, we can only expect
formation of spikes and/or boundary layer for stationary solutions of the system considered,
just to mention the simplest geometric configurations that can occur (see example A.4 in
Applications).

See [3], [2] and [9], for instance, for cases of a single scalar equation where the equal-area
condition does not hold and spike and boundary layer solutions are obtained.

The present work is an extension to a class of systems of results obtained in [1] for a
single scalar elliptic equation and at the same time an improvement of the approach used
therein. In order to be more specific let us briefly describe one particular case of the main
result in [1].

Let the constants α and β, α < β, satisfy f(x, α) = f(x, β) = 0, ∀x ∈ Ω ⊂ IRN , N ≥ 1
and consider a smooth (N − 1)-dimensional compact manifold without boundary Γ such
that Γ ⊂ Ω.

Suppose that the boundary value problem

{
ε div (h1(x)∇u)+f(x, u) = 0, x ∈ Ω
∂ u

∂ n̂
= 0 on ∂Ω,

(1.2)

has a family {uε} of solutions which develops inner transition layer with interface Γ con-
necting the states α to β. Then necessarily

∫

Γ

{
∫ β

α

f(x, s)ds}x · η̂(x) dS = 0. (1.3)

where η̂ stands for the outward unit normal vector on Γ. In particular if f does not depend
on x then

∫ β

α

f(s)ds = 0. (1.4)

Herein we let α and β be functions of the space-variable x and in order to obtain any
meaningful conclusion we generalize the Pohozaev procedure by working with a vector field
X(x) which satisfies some specific properties. If as in [1] we had worked with the space-
position vector field, i.e. X(x) = x, then we would only have obtained our results at price
of assuming that the interface be part of the boundary of a star-shaped set.

The following remark will help understanding the advantage of working with a vector-
field X̃(x) which when restricted to the interface Γ it coincides with the normal vector-field
η̂(x) on Γ, rather then working with the space-position vector field.

If in [1] we had allowed the interface Γ to intersect ∂Ω in a proper way (as we do herein)
then still for the case α and β constants and f independent of x, (1.3) would become

{
∫ β

α

f(s)ds}
∫

Γ

x · η̂(x) dS = 0.
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138 J. CREMA AND A. S. DO NASCIMENTO

Then we would only recover the equal-area condition at the price of requiring the interface
Γ to be a subset of the boundary of a star-shaped set, as the above equality shows. This
is so because in [1] we used the vector-field X(x) = x. Resorting to the vector-field X̃,
described above and used in the present work, would allows us to recover the equal-area
condition without the star-shape condition since then x · η̂(x) = 1 on Γ.

As an illustration we describe the corresponding version of the above equal-area condition
for (1.1) which is obtained in the present work. Let Φε = (uε, vε) be a family of i.t.l.s.
solutions to (1.1) with interface Γ ⊂ Ω in the sense that Φε ε→0−→ (u0, v0), uniformly on
compact sets of Ω\Γ, where

u0(x) = α(x)χΩα(x) + β(x)χΩβ
(x), x ∈ Ω = Ωα ∪ Γ ∪ Ωβ

and χA stands for the characteristic function of the set A. Then we show that necessarily
f(α(x), v0(x)) = 0 = f(β(x), v0(x)), ∀x ∈ Ω\Γ and there must exist constants ᾱ, β̄ (ᾱ <
β̄) and v̄ such that

∫ β̄

ᾱ

f(s, v̄)ds = 0, (1.5)

where ᾱ = α(x̄) and β̄ = β(x̄), for some x̄ ∈ Γ.

2. NECESSITY FOR FORMATION OF INTERNAL LAYERS

The main theorem is stated in a more general framework than those considered in the
references supplied. Although existence of i.t.l.s. solutions to the full system considered
below seems to be difficulty our results imply that whenever trying to do so the appropriate
equal-area condition must be assumed.

Henceforth the following system will be considered:





ut = ε div (h1(x)∇u)+f(x, u,v), x ∈ Ω
vt = div (h2(x)∇v)+g(x, u,v), x ∈ Ω
∂ v
∂ n̂

= 0 (or v = (0, 0, ..., 0) on ∂Ω,

(2.1)

where Ω a smooth domain in IRN , N ≥ 1, 0 < ε ≤ ε0 for some small ε0; g = (g1, g2, ..., gn)
and f and gi are functions in C1(Ω × IR × IRn), h2 = (h2,1, h2,2, ...h2,n) with h2∇v =
(h2,1∇v1, ..., h2,n∇vn), h1, h2,i ∈ C1,ν(Ω), 0 < ν < 1, satisfying 0 < m < h1, h2,i < M ,
for i = 1, ...n, and some constants m and M. Since our definition of internal transition
layer will be local in space we do not need any boundary condition on u. On the other
hand the boundary condition on v is used just once for technical reasons. This boundary
condition could have been suppressed as well at the price of adding another (not restrictive)
hypothesis in the definition of boundary layer. We will comment on this in the appropriate
place.

We now state and justify our definition.
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INTERNAL TRANSITION LAYER 139

Definition 2.2.1. Let U be an open connect set in Ω and let Γ ⊂ U be an (N − 1)-
dimensional smooth (at least C2) compact connected orientable manifold whose boundary
∂Γ is such that ∂Γ ∩ ∂Ω is a smooth (N − 2)-dimensional submanifold of ∂Ω.

We will say that an ε-family of stationary solutions to (2.1)

Φε = {(uε,vε) ∈ [C1(U) ∩ C2(U)]N+1, 0 < ε < ε0}
develops internal transition layer, as ε → 0, in U with interface Γ if:

•The family Φε is bounded in Ω uniformly for 0 < ε < ε0.
•uε

ε→0−→ u0, uniformly on compact sets of U\Γ, where u0 is given by

u0(x) = α(x)χUα(x) + β(x)χUβ
(x) (2.2)

for some functions α and β in C0(U), α(x) < β(x) for x ∈ Γ and U = Uα ∪Γ∪Uβ, where
Uα and Uβ are disjoint open connect sets.

•vε
ε→0−→ v0 uniformly in U .

In this case we will refer to Φε, as a family of i.t.l.s. solutions to (2.1) in U with interface
Γ .

This definition is consistent with known existence results for the one-dimensional case,
when v is a scalar function. Indeed consider (1.1) with Ω = (0 , 1) = I and 0 < ε < ε0.
Then the existence of a family Φε of i.t.l.s. solutions (as defined above) is proved, for
instance, in [4]. See also [14] and [11] for related results. Actually Φε is a C2

ε (I) × C1(Ī)
bounded family where Cp

ε (Ī) is the space of p-times continuous differentiable functions on
Ī with the norm ‖u‖Cp

ε
=

∑p
j=0 |εj dj

dxj u(x)|.
The above definition, which is local in space, suffices for our purposes and it allows for

the existence of more than one transition-layer surface (interface) in Ω.

Remark 2.2.1. As in [1] we could equally well have considered the case in which the
interface Γ does not intersect ∂Ω. Actually this case is somehow easier and will be omitted.

Remark 2.2.2. The question of how the interface Γ of an eventual family of i.t.l.s.
solutions to (2.1) intersects the boundary of Ω is in general very difficult. It is known that
in some simple scalar equations the intersection is orthogonal. However since this is not
the issue herein only restriction on the smoothness of the intersection will be assumed.

Next theorem states what is the main result of the present work.

Theorem 2.2.1. Let U ⊂ Ω ⊂ IRN be an smooth open bounded connect set and Φε =
{(uε,vε)}0<ε<ε0 a family of i.t.l.s. solutions to problem (2.1), in U with interface Γ. Then
f(x, u0(x),v0(x)) = 0 on U\Γ and

∫

Γ

{∫ β(x)

α(x)

f(x, s,v0(x))ds

}
dS = 0, (2.3)
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140 J. CREMA AND A. S. DO NASCIMENTO

where dS stands for the element of (N − 1)-dimensional surface measure.

The following lemma will play an important role in the proof of the Theorem 2.1.

Lemma 2.2.1. Under the conditions and notations of Theorem 2.2.1 we have

lim
ε→0

ε

∫

∂U
|∇uε(x)|2 dS = 0.

Proof: To prove this fact it suffices to show that
a) lim

ε→0

∣∣∣ε1/2∇uε(x)
∣∣∣ = 0 , a.e. in ∂U\∂Γ,

and
b) ∃ M > 0 such that

∣∣ε1/2∇uε(x)
∣∣ ≤ M , a.e. in x ∈ ∂U\∂Γ, uniformly for 0 < ε < ε0.

Once this has been accomplished an application of Lebesgue Bounded Convergence The-
orem will conclude the proof.

Due to smoothness of ∂Ω we can take without loss of generality U smooth and such that
∂U ∩ ∂Ω = Γ. This will prevent us from taking on Schauder estimates on portions of ∂Ω,
which is a delicate and very technical matter, and at same time this type of neighborhood
of Γ will suffice for our purposes.

A standard procedure will be used and therefore we only sketch the proof. It is based
on a blow-up technique and Schauder estimates that have been used in the scalar case.
Therefore only the points in which the proof differs from the scalar case will be stressed.
See [1], for more details.

Firstly, for x ∈ ∂U\∂Γ we define a C2 local change of variables Σ, with Σ(x) = 0, which
straightens ∂U near x and then set

ũε(y) = uε(Σ−1(y)), for y ∈ B+
ρ ,

where B+
ρ stands for the positive hemisphere of the ball of radius ρ and center at the origin.

Let us consider {εk} any positive sequence converging to 0. Now define scaled functions
ωk(z) and θk(z) by ωk(z) = ũεk

(
ε
1/2
k z

)
, θk(z) = ṽεk

(
ε
1/2
k z

)
for z ∈ B+

ρ/ε
1/2
k

.

All the coefficients in the new differential equation for ωk are Cν bounded, uniformly in
k. For a fixed ρ, we set

ρk
def=

(
ρ/ε

1/2
k

)
k→∞−→ ∞ .

Let Rm be a monotone increasing sequence of positive numbers such that
Rm → +∞, as m →∞. For each m, there is km such that 2Rm < ρk, for k ≥ km.

Since {uε}0≤ε≤ε0 and {vε}0≤ε≤ε0
are bounded in U , uniformly on ε, it follows that

‖θk‖C
�

B+
2Rm

�, ‖ωk‖C
�

B+
2Rm

� ≤ K1, for some constant K1 which is independent of k.
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INTERNAL TRANSITION LAYER 141

Thus by [7], Theorem 8.24, we conclude that θk and ωk are locally Cν bounded in B+
2Rm

,
uniformly in k.

Interior Schauder estimates in BRm
(here the fact that ∂U ∩ ∂Ω = Γ comes into play)

yield that ωk is C2,ν bounded in B+
2Rm

, uniformly for k ≥ km. Then by a diagonal process

we can extract a subsequence, still labeled {ωk}, such that ωk → ωo in C2
loc

(
lRN

+

)
where

lRN
+ =

{
z ∈ lRN : zN ≥ 0

}
.

Consequently, for B+
1 = {z ∈ lRN : zN ≥ 0 and |z| ≤ 1} we have |ωk − ω0 |C2(B+

1 ) → 0.
But from the definition of ωk we conclude that ω0 ≡ β(x) or ω0 ≡ α(x), and so ω0(z) is a
constant function in B+

1 .
In particular limk→∞ |∇ωk(0)| = 0 and then if εk → 0, εk ∈ (0, ε0),

lim
k→∞

∣∣∣ε1/2
k ∇uεk

(x)
∣∣∣ = 0 ,

for any x ∈ ∂U\∂Γ. Since ∂U ∩∂Γ has zero (N − 1)-dimension surface measure, a) follows.
Finally standard Schauder estimates may be evoked to obtain b). Thus our claim is proved.

But note that if Φε = (uε, vε) is a family of i.t.l.s. solutions on U then it still will be on
any smooth open Û ⊂ U containing Γ. Consequently making ut = 0 in the first equation
of (2.1), integrating and using the Divergence Theorem and Lemma 2.1 we conclude that
for any Û such that Γ ⊂ Û ⊂ U

lim
ε→0

∫

Û
f(x, uε(x),vε(x)) = 0,

But for ε → 0, the family (uε,vε) → (u0,v0) uniformly in any compact set K ⊂ Û\Γ. So
by boundness and regularity of f we conclude that for any open set Û such that Û ⊂ U ,

∫

Û
f(x, u0(x),v0(x)) = 0

We have thus proved the following

Lemma 2.2.2. Under the conditions and notations of Theorem 2.2.1 we have that
f(x, u0(x),v0(x)) = 0 for any x ∈ U\Γ.

Proof of Theorem 2.1: Let η̂ stands for the normal vector field to Γ (which by
hypothesis is C2) and let us take a C1 vector field X : U → IRN so that when restrict to
Γ it coincides with η̂.
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142 J. CREMA AND A. S. DO NASCIMENTO

As in the Pohozaev procedure, making ut = 0 in the first equation of (2.1), multiplying
it by X(x).∇uε and integrating over U we obtain

∫

U
{εdiv(h1(x)∇uε)(X(x) · ∇uε) + f(x, uε,vε)X(x) · ∇uε} dx = 0 (2.4)

Working with the first term of this equality and using that

div[X(x) · ∇u h1∇u] = X(x) · ∇u div(h1∇u) + h1




N∑

i,k=1

∂Xk

∂xi
uxk

uxi + X(x) · ∇(
|∇u|2

2
)




along with the divergence theorem, it follows that

− ε

∫

∂U
h1(x) X(x) · ∇uε

∂uε

∂n̂
dS +

ε

2

∫

∂U
h1(x)|∇uε|2 X(x) · n̂dS

− ε

2

∫

U
|∇uε|2X(x) · ∇h1 dx− ε

2

∫

U
h1(x)|∇uε|2divX(x) dx

+ ε

∫

U

N∑

i,k=1

h1
∂Xk

∂xi
uxk

uxi =
∫

U
f(x, uε, vε) X(x) · ∇uε dx.

(2.5)

We claim that the left hand side of this equality goes to 0, as ε → 0. In fact, this holds for
the first and second terms by virtue of Lemma 2.1.

By utilizing energy estimates on U applied to the first equation of (2.1) (with ut = 0)
and Lemma 2.2 we obtain

lim
ε→0

ε

∫

U
|∇uε(x)|2 dx = 0.

So the third, fourth and fifth terms of (2.5) approach zero, as ε → 0, too. Hence

lim
ε→0

∫

U
f(x, uε,vε) X(x) · ∇uε dx = 0. (2.6)

Note that if F (x, u) =
∫ u

θ
f(x, s,v) ds

div[ X(x)F (x, u)] = f(x, u,v)∇u·X(x)+
∫ u

θ

X(x)·∇xf(x, s,v)ds+divX(x)F (x, u) (2.7)

where ∇xf(x, s,v(x)) = ∂xf(x, s,v(x)) +
∑

∂3,if(x, s,v(x))∇vi(x), ∂xf(x, s, t1, t2, ..tn) is
the gradient of f with respect to x and ∂3,i(x, s, t1, t2, ...tn) is the partial derivative of f
with respect to ti, i = 1, 2, ...n. The Divergence Theorem yields

∫

U
f(x, uε,vε)X(x) · ∇uε dx =

∫

∂U
X(x) · n̂

∫ uε

θ

f(x, s,vε) ds dS (2.8)
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−
∫

U
{
∫ uε

θ

X(x) · ∇xf(x, s,vε)ds + divX(x)
∫ uε

θ

f(x, s,vε)ds}dx

Now each element of the right-hand term of (2.8) will be analyzed.
By hypothesis, {uε} and {vε} converge uniformly on compact sets K ⊂ U\Γ and U ,

respectively. So by regularity of f we obtain for any x ∈ U\Γ that

∫ uε(x)

θ

f(x, s,vε(x)) ds
ε→0−→

∫ u0(x)

θ

f(x, s,v0(x)) ds,

with the same result when we take ∂xf or ∂3,if , i = i, 2, ...n, instead of f . Then applying
Lebesgue Convergence Theorem we conclude that

∫

∂U
X(x) · n̂

∫ uε

θ

f(x, s,vε) ds dS
ε→0−→

∫

∂U
X(x) · n̂

∫ u0

θ

f(x, s,v0) ds dS (2.9)

and

∫

U

∫ uε

θ

X(x) ∂xf(x, s,vε)ds dx
ε→0−→

∫

U

∫ u0

θ

X(x) ∂xf(x, s,v0)ds dx. (2.10)

Recalling that U\Γ = Uα ∪ Uβ , for σ ∈ {α, β} we obtain

∫

Uσ

divX(x)
∫ uε

θ

f(x, s,vε)ds dx
ε→0−→

∫

Uσ

divX(x)
∫ σ

θ

f(x, s,v0)ds dx. (2.11)

We also have that for i = 1, 2, ...n

X(x)
∫ uε

θ

∂3,if(x, s,vε(x)) ds → X(x)
∫ u0

θ

∂3,if(x, s,v0(x)) ds (2.12)

strongly in L2(U). Then if ∇vε to converge weakly in L2(U) we will have

∫

U

∫ uε

θ

X(x) · ∇xf(x, s,vε(x))ds dx →
∫

U

∫ u0

θ

X(x) · ∇xf(x, s,v0(x))ds dx. (2.13)

In order to establish the weak convergence of {vε} in H1(U) note that energy estimates
on the second equation of (2.1) (with vt = 0) and boundness of g, uε, and vε give us the
boundness of ∇vε in L2(Ω), uniformly on ε.

Moreover vε → v0 uniformly in U . So vε is bounded in H1(U) and ∇vε converges
weakly to ∇v0 in L2(Ω).
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Passing to the limit in (2.8), as ε → 0, and using (2.6), (2.9) to (2.11) and (2.13) we
obtain

0 =
∫

∂U
X(x) · n̂

∫ u0(x)

θ

f(x, s,v0(x))ds dS

−
∫

Uα

{
∫ α(x)

θ

X(x) · ∇xf(x, s,v0(x)) + divX(x)f(x, s,v0(x)) ds} dx

−
∫

Uβ

{
∫ β(x)

θ

X(x) · ∇xf(x, s,v0(x)) + divX(x)f(x, s,v0(x)) ds} dx .

By (2.7) and Lemma 2.2 it holds that

0 =
∫

∂U
X(x)·n̂ F (x, u0(x)) dS−

∫

Uα

div{X(x)F (x, α(x))}dx−
∫

Uβ

div{X(x)F (x, β(x))}dx.

The Divergence Theorem implies

∫

Γ

{
∫ β(x)

α(x)

f(x, s,v0(x))ds }X(x) · η̂ dS = 0. (14)

Due to the way X was taken we obtain

∫

Γ

{
∫ β(x)

α(x)

f(x, s,v0(x))ds } η̂ · η̂ dS =
∫

Γ

{
∫ β(x)

α(x)

f(x, s,v0(x))ds } dS = 0,

thus proving (2.3).

Remark 2.2.3. It is worthwhile to note that boundary condition vε = 0 or ∂vε

∂η̂ = 0 in
IR+ × ∂Ω was need in order to obtaining (2.13). Without the boundary condition on vε,
the same conclusion could have been obtained had we required boundness of {vε} in C1(Ω),
uniformly in ε, in Definition 2.2.1.

This additional hypothesis is not restrictive since the existence of a family Φε = (uε,vε)
which satisfies also this condition is proved, for instance, in [14], for the case Ω = [0, 1].

In the next results our goal is to recover the equal-area condition on f .

Corollary 2.2.1. If Ω = (0, 1) then the interface Γ is a point x ∈ (0, 1) and condition
(2.3) becomes

∫ β(x)

α(x)

f(x, s,v0(x)) ds = 0 (15)

which is the known equal-area condition for f .
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Corollary 2.2.2. If Φε is a family of i.t.l.s. solutions to (2.1) as in Theorem 2.1, then
there must exist x ∈ Γ such that (x, α(x),v0(x)) and (x, β(x),v0(x)) are roots of f and

∫ β(x)

α(x)

f(x, s,v0(x)) ds = 0. (16)

Proof: It follows from the continuity of α, β, v0 and f.
Next we provide sufficient conditions so that α(x), β(x) and v0(x) be constant functions,

thus recovering the equal-area formula for f .
First of all we observe that if g is allowed to depend on ε, i.e., g = g(ε, x, u,v) is

a continuous function in any point (ε, x, u,v) then the conclusions of Theorem 2.1 still
remains true. In particular we have

Corollary 2.2.3. With the notation of Theorem 2.1 let us take f = f(u,v) and g =
g(ε, x, u,v). If {(uε,vε)} is a family of i.t.l.s. solutions in Ω with interface Γ and if
g(ε, x, uε(x),vε(x)) ε→0−→ 0 a.e. in Ω then v0 is a constant vector-valued function. Moreover
if for any constant vector c = (c1, c2, ..., cn) there holds that the set {s : f(s, c) = 0} is
discrete, then α0 and β0 are also constant functions. In this case (2.3) simplifies to

∫ β0

α0

f(s,v0)ds = 0 (17)

Proof: Since (uε,vε) satisfies (2.1) (with time derivatives vanishing), by multiplying
the second equation by vε, integrating on Ω and passing to the limit as ε → 0, we conclude
that v0 is a constant vector-valued function.

By our hypotheses, f(uε,vε)
ε→0→ f(u0,v0), uniformly in compact sets K ⊂ Ω\Γ. Thus

Lemma 2.2 implies f(u0(x),v0) = 0 and therefore u0(x) ∈ {s; f(s,v0) = 0} for any x ∈
Ω\Γ. But this is a discrete set and uε

ε→0→ u0 uniformly in compact sets K ⊂ Ω\Γ.
Therefore u0 = α χΩα + β χΩβ

is a constant function on each connect component of Ω\Γ,
i.e., α and β are constant functions on Ωα and Ωβ , respectively. But in particular (uε,vε) is
a ε-family of i.t.l.s. solutions in a open set U ⊂ Ω with U as in Theorem 2.1. Consequently
(2.3) holds and by above considerations it simplifies to (2.17) .

Remark 2.2.4. Under the hypothesis of Corollary 2.2.3 the nodal curve of f must in-
tersect the set {s : f(s,v0) = 0} at least three times in order that (2.17) holds.

3. APPLICATIONS

We single out four examples from the extensive existing bibliography concerning existence
of internal transition layers for such systems and conclude that the different forms of the
equal-area assumed therein are in fact necessary conditions.
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A.1 Spatial dependent reactions terms.

The following model problem is considered, for instance, in [8]:





ut = ε2uxx+(1− u2)(u− a)− v − k

ω
sin(ωx + b)

vt =
1
σ

vxx+(δu− v), x ∈ [0, 1]

ux = vx = 0 for x = 0 = 1.

(1)

where a ∈ (−1, 0), ε > 0 and small, σ > 0 and small, δ > 0, k > 0, ω > 0 and b ∈ IR.
In particular the existence of a family of stationary solution to (3.1) which develops

internal transition layer, as ε → 0, is proved therein.
Corollary 2.2.1 implies that a necessary condition for existence of such a family is that

for some x0 ∈ [0, 1] the following holds

∫ h+(v(x0))

h−(v(x0))

[(1− ξ2)(ξ − a)− v(x0)− k

ω
sin(ωx0 + b)]dξ = 0.

But this is just hypothesis A.2 (p. 372) in [8], assumed therein as a sufficient condition.
Note that in the notation of Corollary 2.1 above equation reads

ṽ =
1

β(x0)− α(x0)

∫ β(x0)

α(x0)

[(1− ξ2)(ξ − a)] dξ

where ṽ = v(x0) + k
ω sin(ωx0 + b).

A.2 A rescaled system regarding instability of patterns.

Let us consider the following reaction-diffusion system





ut = ε24u+f(u, v),
vt = D4v+g(u, v), (x, t) ∈ Ω× (0,∞)
∂u

∂n̂
=

∂v

∂n̂
= 0, (x, t) ∈ ∂Ω× (0,∞)

(2)

where u is the activator, v is the inhibitor, Ω is a smooth domain in IRN , D > 0 and ε
a small positive parameter. The nullcline of f is sigmoidal and consists of three smooth
curves u = h−(v), u = h0(v) and u = h+(v) defined on the intervals I−, I0 and I+,
respectively. Also if minI− = v and maxI+ = v then the inequality h−(v) < h0(v) < h+(v)
holds for I∗ = (v, v) and h+(v) (resp., h−(v)) coincides with h0(v) at only one point v = v
(resp., v = v), respectively.

In [13], (2) is assumed to satisfy a set of hypotheses, which we denote by H, among
which we mention the following one concerning f :

• J(v) =
∫ h+(v)

h−(v)
f(ξ, v)dξ has one isolated zero at v = v∗ ∈ I∗.
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Under the hypotheses H, they suppose the existence of a family of i.t.l.s. solutions
(uε, vε) to (2), whose interface Sε is smooth up to ε = 0. Under this hypothesis it is proved
that this family of i.t.l.s. solutions becomes unstable for ε small.

By “smooth up to ε = 0” it is meant that there exists an (N − 1)-dimensional smooth
compact connected manifold S0 without boundary in IRN such that Sε

ε→0−→ S0.
In order to capture the morphology of the patterns which should be very intricate in

the limit and based on the balance of the bulk force and the mean curvature effect they
formally derive that the rate of shrinking of this patterns is of order ε1/3. See [13], p.
1103. Then by a suitable scaling, the resulting rescaled equations capture the morphology
of the magnified patterns. After performing the change of variable X = x−x∗

ε1/3 for a suitable
x∗ ∈ RN , the rescaled system becomes





ũt = ε̃24ũ+f(ũ, ṽ),
νε̃ṽt = D4ṽ+ε̃g(ũ, ṽ), (X, t) ∈ Ωε × (0,∞)
∂ũ

∂n̂
=

∂ṽ

∂n̂
= 0, (X, t) ∈ ∂Ωε × (0,∞)

(3)

where ε̃ = ε2/3 and the rescaled domain Ωε satisfies Ωε
ε→0−→ Ω̃ with |Ω̃| < ∞. This conver-

gence may be any one as long as the hypotheses of Theorem 2.1 on the tubular neighborhood
U of Γ are satisfied.

It turns out however that the system for the stationary solutions to (3) is just (2.1) when
h1 = 1, h2 = D and g = εg(u, v), namely,





ε̃24ũ+f(ũ, ṽ) = 0, X ∈ Ωε

D4ṽ+ε̃g(ũ, ṽ) = 0, X ∈ Ωε

∂ũ

∂n̂
=

∂ṽ

∂n̂
= 0, X ∈ ∂Ωε

(4)

Thus Corollary 2.2.3 applies to any family (ũε, ṽε) of solutions to (3.4) which develops
internal transition layer with interface S0. In our notation v0 = v∗, α0 = h−(v∗) and
β0 = h+(v∗). We conclude that ṽε → v0 where J(v0) = 0 and v0 ≡constant. The point
to be stressed here is that the equal-area condition J(v0) = 0 assumed in [13] is actually a
necessary condition.

A.3 The FitzHugh-Nagumo system .

Let us now consider the well-known FitzHugh-Nagumo system (F-N system, for short)
which by its turn is a simplified version of the Hodgkin-Huxley equations, which models
electrical impulses travelling in the axon of the squid:





ut = ε4u+h(u) + v, (t, x) ∈ IR+ × Ω
vt = d4v+δu− γv, (t, x) ∈ IR+ × Ω
∂ u

∂ n̂
=

∂ v

∂ n̂
= 0, (t, x) ∈ R+ × ∂Ω.

(5)

Here ε, δ and γ are positive constants whereas d is a nonnegative one. For the case
Ω = [0, 1], existence of i.t.l.s. solutions to F-N system above has long been related to the
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existence of fronts and pulses for F-N system in the positive real line. Therefore according
to (1.5) if one expects to obtain a family (uε, vε) of i.t.l.s. solutions to F-N system above
then h must satisfy the following hypothesis: there are constants α, β (β > α) and v̄ such
that h(α) = h(β) = v̄ and

1
(β − α)

∫ β

α

h(s)ds = v̄.

Hence if this condition is violated one can only expect existence of pulses for the F-N
system in the real line.

A.4 A model from morphogenesis.

As another application let us consider the system introduced in [15] in the context of
morphogenesis and which inspired many related works:





ut = d14u− u + (up/vq), (t, x) ∈ IR+ × Ω
τvt = d24v − v + (ur/vs), (t, x) ∈ IR+ × Ω
∂ u

∂ n̂
=

∂ v

∂ n̂
= 0, (t, x) ∈ R+ × ∂Ω,

(6)

where d1, d2, p, q, r, τ are positive constant, s ≥ 0 and

0 <
p− 1

q
<

r

s + 1
.

Our results give a rigorous proof to the heuristic fact that solutions to (3.6) do not develop
internal transition layers as d1 −→ 0. This will follow from Corollary 2.2 along with the fact
that for each fixed v, say v̄, the line (u, v̄) intersects the graph of the function v = up−1/q at
most twice thus making it impossible for (2.16) to hold. Therefore, as d1 → 0, among the
simplest geometric configuration possible, stationary solutions to (3.16) can only develop
formation of spikes and/or boundary layer.
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