On the orbit structure of \mathbb{R}^n-actions on n-manifolds

J. L. Arraut*

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
E-mail: arraut@icmc.usp.br

and

C. A. Maquera†

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
E-mail: cmaquera@icmc.usp.br

We begin by proving that a locally free C^2-action of \mathbb{R}^{n-1} on $T^{n-1} \times [0,1]$ tangent to the boundary and without compact orbits in the interior has all non-compact orbits of the same topological type. Then, we consider the set $A^2(\mathbb{R}^n, N)$ of C^2-actions of \mathbb{R}^n on a closed connected orientable real analytic n-manifold N. We define a subset $A^\alpha_n \subset A^2(\mathbb{R}^n, N)$ and prove that if $\varphi \in A^\alpha_n$ has a $T^{n-1} \times \mathbb{R}$-orbit, then every n-dimensional orbit is also a $T^{n-1} \times \mathbb{R}$-orbit.

The subset A^α_n is big enough to contain all real analytic actions that have at least one n-dimensional orbit. We also obtain information on the topology of N.

Key Words: Action of \mathbb{R}^n, orbit structure.

1. INTRODUCTION

In this paper we begin by proving the following result that is a generalization of Corollary 2.6 in [4].

Theorem A. Let ψ be a locally free C^2-action of \mathbb{R}^{n-1} on $T^{n-1} \times [0,1]$, $n \geq 2$, tangent to the boundary. If there are no compact orbits in the interior, then all non-compact orbits have the same topological type.

* Partially supported by FAPESP of Brazil Grant 00/05385-8.
† Partially supported by FAPESP of Brazil Grant 99/11311-8 and 02/09425-0.

Publicado pelo ICMC-USP
Sob a supervisão CNPq/ICMC

237
Due to Theorem 2.1, there is no restriction in assuming that the manifold with boundary, in Theorem A, is $T^{n-1} \times [0, 1]$.

N will denote a closed connected orientable real analytic n-manifold with $n \geq 2$. Let \mathcal{H}_n be the family of orientable n-manifolds obtained by gluing two copies of $T^{n-2} \times D^2$, \mathcal{H}_2 contains only S^2 and \mathcal{H}_3 consists of 3-manifolds that admit a Heegaard splitting of genus one. Denote by $A^r(\mathbb{R}^n, N)$ the set of C^r-actions of \mathbb{R}^n on N, $2 \leq r \leq \omega$, with C^r infinitesimal generators. It was proved in [1] that if $\varphi \in A^r(\mathbb{R}^n, N)$, then all n-dimensional orbits of φ have the same topological type, i.e., are $T^k \times \mathbb{R}^{n-k}$-orbits for some fixed k, $0 \leq k \leq n$. Moreover, if the type is $T^{n-1} \times \mathbb{R}$, then N is either homeomorphic to T^n or $N \in \mathcal{H}_n$. It is not difficult to construct counterexamples of this results when $r = \infty$.

In this paper we define a subset $\mathcal{S}_n \subset A^2(\mathbb{R}^n, N)$, see Definition 2.2, which contains all actions $\varphi \in A^2(\mathbb{R}^n, N)$ that have at least one n-dimensional orbit. Then, we prove:

Theorem B. If $\varphi \in \mathcal{S}_n$ has one $T^{n-1} \times \mathbb{R}$-orbit, then every n-dimensional orbit is also a $T^{n-1} \times \mathbb{R}$-orbit. Moreover,

1. if $\text{Sing}_{n-2}(\varphi) = \emptyset$, then N is a T^{n-1} bundle over S^1;
2. if $\text{Sing}_{n-2}(\varphi) \neq \emptyset$, then $\text{Sing}_{n-2}(\varphi)$ is the union of two T^{n-2}-orbits and $N \in \mathcal{H}_n$.

The connection between the two results is that the first is used in the proof of second. It would be interesting to obtain analogous results for actions in $A^2(\mathbb{R}^n, N)$ that have one $T^k \times \mathbb{R}^{n-k}$-orbit with $0 \leq k < n - 1$.

2. PRELIMINARIES AND PROOF OF RESULTS

$M (N)$ will denote a closed connected and orientable real analytic m-manifold (n-manifold). A C^r-action of Lie group G on M is a C^r-map $\varphi : G \times M \rightarrow M$, $1 \leq r \leq \omega$, such that $\varphi(e, p) = p$ and $\varphi(gh, p) = \varphi(g, \varphi(h, p))$, for each $g, h \in G$ and $p \in M$, where e is the identity in G. $O_p = \{\varphi(g, p); g \in G\}$ is called the φ-orbit of p. $G_p = \{g \in G; \varphi(g, p) = p\}$ is called the isotropy group of p. For each $p \in M$ the map $g \mapsto \varphi(g, p)$ induces an injective immersion of the homogeneous space G/G_p in M with image O_p. When $G = \mathbb{R}^n$, the possible φ-orbits are injective immersions of $T^k \times \mathbb{R}^l$, $0 \leq k + l \leq n$, where $T^k = S^1 \times \cdots \times S^1, k$ times.

For each $0 \leq i \leq n - 1$ let $\text{Sing}_i(\varphi) = \{p \in M; \dim O_p = i\}$ and $\text{Sing}(\varphi) = \cup_{i=0}^{n-1} \text{Sing}_i(\varphi)$. If $p \in \text{Sing}(\varphi)$, O_p is called a singular orbit and when $p \in \text{Sing}_0(\varphi)$, O_p is also called a point orbit and p a fixed point by φ. We also write $p \in \text{Sing}_i^j(\varphi)$, $i = 1, \ldots, n - 1$, when O_p is a T^i-orbit. If $\text{Sing}(\varphi) = M$, we call φ a singular action.

For each $w \in \mathbb{R}^n \setminus \{0\}$ φ induces a C^r-flow $(\varphi^w_t)_{t \in \mathbb{R}}$ given by $\varphi^w_t(p) = \varphi(tw, p)$ and its corresponding C^{r-1}-vector field X_w defined by $X_w(p) = D_1\varphi(0, p) \cdot w$. If $\{w_1, \ldots, w_n\}$ is a base of \mathbb{R}^n the associated vector fields X_{w_1}, \ldots, X_{w_n} determine completely the action φ and are called a set of infinitesimal generators of φ. Note that $[X_{w_j}, X_{w_j}] = 0$ for any two of them.

Definition 2.1. Let $\varphi \in A^r(\mathbb{R}^n, N)$ and $p \in N$.

a) φ is of type j at p, $0 \leq j \leq n$, if there exists a neighborhood V of p such that the union of the j-dimensional orbits of $\varphi|_V$ form an open and dense subset of V.

Published pelo ICMC-USP

Sob a supervisão da CNPq/ICMC
b) \(\varphi \) is \(j \)-finite at \(p \), if there exists a neighborhood \(V \) of \(p \) that intersects only a finite number of \(j \)-dimensional orbits.

Definition 2.2. We say that \(\varphi \in \mathscr{A}_n \subset A^2(\mathbb{R}^n, N) \) if \(\varphi \) is of type \(n \) and \(n \)-finite at each \(p \in \text{Sing}_i(\varphi) \) with \(0 \leq i \leq n-3 \), \(\text{Sing}_{n-2}(\varphi) = \text{Sing}_{n-2}^c(\varphi) \) and for each \(p \in \text{Sing}_{n-2}^c(\varphi) \) there exists a neighborhood \(V_p \) of \(\mathcal{O}_p \) in \(N \) that satisfies one of the following two properties:

1. \(V_p \) is \(\varphi \)-invariant, homeomorphic to \(T^{n-2} \times D^2 \), where \(D^2 \) is an open disk, \(V_p \cap (\bigcup_{i=1}^{n-2} \text{Sing}_i(\varphi)) = \mathcal{O}_p \) and \(\text{Front}(V_p) \) is either a \(T^{n-1} \)-orbit or a \(T^{n-2} \)-orbit.

2. \(V_p \) contains at most a finite number of \(i \)-dimensional orbits with \(i = n - 1, n \).

Infinitesimal generators adapted to a \(T^{n-1} \)-orbit. Assume that \(\mathcal{O}_p \) is a \(T^{n-1} \)-orbit of \(\varphi \in A^r(\mathbb{R}^n, N) \) and let \(G_p \) be its isotropy group. Call \(G^n_p \) the connected component of \(G_p \) that contains the origin and let \(H \) be a \((n-1) \)-dimensional subspace of \(\mathbb{R}^n \) such that \(\mathbb{R}^n = H \oplus G^n_p \). Note that \(G_p \cap H \) is isomorphic to \(\mathbb{Z}^{n-1} \). Let \(\{w_1, \ldots, w_{n-1}\} \) be a base of \(\mathbb{R}^n \) such that \(\{w_1, \ldots, w_{n-1}\} \) is a set of generators of \(G_p \cap H \), \(w_n \in G^n_p \) and write \(X_i = X_{w_i} ; i = 1, \ldots, n \). Note that if \(q \in \mathcal{O}_p \), then for every \(k \in \{1, \ldots, n-1\} \) the orbit of \(X_k \) by \(p \) is periodic of period one and also \(X_n(q) = 0 \). We shall say that \(X_1, \ldots, X_n \) is a set of infinitesimal generators adapted to \(\mathcal{O}_p \). The action \(\psi_p \in A^r(\mathbb{R}^{n-1}, N) \), \(r \geq 2 \), with infinitesimal generators \(X_1, \ldots, X_{n-1} \) will be called the action induced by \(\varphi \) and \(\mathcal{O}_p \). The understanding of the holonomy of \(\mathcal{O}_p \) as an orbit of \(\psi_p \) will bring light on the orbit structure of \(\varphi \) in the neighborhood of \(\mathcal{O}_p \).

Let \(\mathcal{O}_p \) be a \(T^{n-1} \)-orbit of \(\psi \in A^r(\mathbb{R}^{n-1}, N) \), \(\{w_1, \ldots, w_{n-1}\} \) be a set of generators of its isotropy group \(G_p \) and \(X_1 = X_{w_1} , \ldots, X_{n-1} = X_{w_{n-1}} \). For each \(k \in \{1, \ldots, n-1\} \), let \(\psi_k \in A^r(\mathbb{R}^{n-2}, N) \) be the action defined by \(X_1, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{n-1} \). Put a Riemannian metric on \(N \) and let \(\xi \) be the norm one vector field defined in a neighborhood of \(\mathcal{O}_p \) that is orthogonal to the orbits of \(\psi \). Let \(S_k \) be the circle orbit of \(X_k \) through \(p, k = 1, \ldots, n-1 \), and consider the ring \(A = S^1 \times (-1, 1) \) with coordinates \((\theta, x) \). Define \(f_k : A \to N \) by \(f_k(\theta, x) = \xi^x \circ X^k_\theta(p) \) and note that \(f_k(S^1 \times \{0\}) = S_k \) and \(f_k(0, 0) = p \). Fix \(k \in \{1, \ldots, n-1\} \). Since \(S_k \) is a submanifold of \(\mathcal{O}_p \), it is transversal to the orbits of \(\psi_k \), there exists \(\varepsilon > 0 \) such that \(f_k \) restricted to \(A_{\varepsilon} = S^1 \times (-\varepsilon, \varepsilon) \) is an embedding transversal to the orbits of \(\psi_k \). Let \(D^{n-2}_k(\delta) = \{ t = (t_1, \ldots, t_k-1, t_{k+1}, \ldots, t_{n-1}); t_j \in (-\delta, \delta) \} \) and consider the \(C^r \)-map \(h_k : A_{\varepsilon} \times D^{n-2}_k(\delta) \to N \) defined by \(h_k(\theta, x, t) = \psi_k(t, f_k(\theta, x)) \). There exists \(\delta > 0 \) such that \(h_k \) restricted to \(A_{\varepsilon} \times D^{n-2}_k(\delta) \) is a diffeomorphism onto its image \(V_k \). Moreover, in these coordinates the infinitesimal generators of \(\psi \) take the form:

\[
\begin{align*}
X_i(\theta, x, t) &= \frac{\partial}{\partial t_i}, \quad i = 1, \ldots, k-1, k+1, \ldots, n-1 \\
X_k(\theta, x, t) &= \sum_{k \neq j=1}^{n-1} a_{jk}(\theta, x) \frac{\partial}{\partial t_j} + b_k(\theta, x) \frac{\partial}{\partial \theta} + c_k(\theta, x) \frac{\partial}{\partial x}.
\end{align*}
\]
A map like \(h_k \) will be called a **cylindrical coordinate system adapted to \(\mathcal{O}_p \) at \(S_k \). The vector field
\[
\tilde{X}_k = b_k(\theta, x) \frac{\partial}{\partial \theta} + c_k(\theta, x) \frac{\partial}{\partial x}
\]
defines a local flow on \(A_k \) having \(S^1 \times \{0\} \subset A_k \) as an orbit. When \(\psi = \psi_\varphi \) for some \(\varphi \in A^r(\mathbb{R}^n, N) \), then we also have
\[
X_n(\theta, x, t) = \sum_{k \neq j = 1}^{n-1} a_{jk}(\theta, x) \frac{\partial}{\partial t_j} + d_k(\theta, x) \frac{\partial}{\partial \theta} + e_k(\theta, x) \frac{\partial}{\partial x}.
\]
The vector fields \(\tilde{X}_k \) and \(\tilde{X}_n = d_k \partial/\partial \theta + e_k \partial/\partial x \) define a local \(C^r \)-action \(\tilde{\varphi}_k \) of \(\mathbb{R}^2 \) on \(A \) having \(S^1 \times \{0\} \) as a singular orbit.

The ring \(\Sigma_k = f_k(A_k) \) is transversal to the orbits of \(\psi \) and so is \(J = \cap_{k=1}^{n-1} \Sigma_k \). Note that \(p \in J \). The vector fields \(\tilde{Y}_k = (f_k)_* \tilde{X}_k \) and \(\tilde{Y}_n = (f_k)_* \tilde{X}_n \) are tangent to \(\Sigma_k \) and define a local \(C^r \)-action of \(\mathbb{R}^2 \) on \(\Sigma_k \). The map \(\alpha_k : [0, 1] \rightarrow \Sigma_k \) given by \(\alpha_k(t) = \tilde{Y}_k^t(p) \) is a parametrization of \(S_k \). Let \(\omega_k : (J, p) \rightarrow (J, p) \) be the Poincaré map of \(\alpha_k \) and
\[
\text{Hol} : \pi_1(\mathcal{O}_p, p) \cong \mathbb{Z}^k \rightarrow \text{Diff}^r(J, p)
\]
the holonomy of \(\mathcal{O}_p \) as a leaf of the foliation defined by the orbits of \(\psi \). Then, \(\omega_k = \text{Hol}(\alpha_k) \). Write \(J \) as the union of two intervals \(J^+ \cup J^- \) with \(J^+ \cap J^- = \{p\} \). Since \(\mathcal{O}_p \) is two-sided in \(N \), each \(\omega_i \) leaves \(J^+ \) \((J^-) \) invariant.

Remark 2.1. Note that \(\{X_1, \ldots, X_{k-1}, \tilde{X}_k, X_{k+1}, \ldots, X_{n-1}, \tilde{X}_n\} \) define a local \(\mathbb{R}^n \)-action \(\tilde{\varphi} \) on \(A \times D_k^{n-2}(\epsilon) \) and that \(\mathcal{O}_{(\theta, x,t)}(\tilde{\varphi}) = \mathcal{O}_{(\theta, x,t)}(h_k \circ \varphi \circ h_k^{-1}) \) for each \((\theta, x, t) \in A \times D_k^{n-2}(\epsilon) \).

The following lemma is essencial in the proof of Theorem A.

Lemma 2.1. Let \(\mathcal{O}_p \) be a \(T^{n-1} \)-orbit of \(\psi \in A^1(\mathbb{R}^{n-1}, N) \) and assume that \(\psi \) has no \(T^{n-1} \)-orbits, aside \(\mathcal{O}_p \), in a neighborhood \(V \) of \(\mathcal{O}_p \). Then there exists a neighborhood \(I^+ \) of \(p \) in \(J^+ \) such that for each \(k \in \{1, \ldots, n-1\} \) one of the following statements is verified:

1. \(\omega_k|_{I^+} = \text{id} \); i.e., every \(\tilde{Y}_k \)-orbit near \(S_k \) is periodic.
2. Either \(\omega_k|_{I^+} \) or \((\omega_k|_{I^+})^{-1}\) is a topological contraction, i.e., every \(\tilde{Y}_k \)-orbit near \(S_k \) spirals towards \(S_k \).

Proof. We give the proof for \(k = n-1 \); the other cases are similar. Assume that \(\omega_{n-1} \) does not satisfy neither (1) nor (2). Then, there is a sequence \(\{q_l \in J^+; l \in \mathbb{N}\} \) such that \(\omega_{n-1}(q_l) = q_l \) and \(\lim_{l \to \infty} q_l = p \). We claim that \(p \) is an isolated fixed point of \(\omega_j \) for at least one \(j \in \{1, \ldots, n-2\} \). Otherwise, for each \(1 \leq j \leq n-2 \) there exists a sequence \(\{q_{jk} \in J^+; k \in \mathbb{N}\} \) such that \(\omega_j(q_{jk}) = q_{jk} \) and \(\lim_{k \to \infty} q_{jk} = p \). If \(q_{jk} \in V \) and \(\omega_i(q_{jk}) = q_{jk} \) for each \(i \in \{1, \ldots, n-1\} \), then the \(\psi \)-orbit of \(q_{jk} \) is a
Lemma 2.2. If \(\varphi \in A^1(\mathbb{R}^n, N) \) has an orbit \(\mathcal{O} \) diffeomorphic to \(T^{n-1} \times \mathbb{R} \), then \(\text{Front}(\mathcal{O}) \) is the union of at most two \(T^k \)-orbits with \(k \in \{n-2, n-1\} \).

The proof of this lemma is given in [1].

Corollary 2.1. Let \(\mathcal{O} \) be an \(T^{n-1} \)-orbit of \(\varphi \in A^1(\mathbb{R}^n, N) \) and \(V \) be a neighborhood of \(\mathcal{O} \) such that \(V \setminus \mathcal{O} \) has exactly two connected components \(V_1 \) and \(V_2 \). Assume that there exist points \(p, q \in V_1 \) such that \(\dim \mathcal{O}_p = n \), \(\mathcal{O}_p \neq \mathcal{O}_q \) and \(\text{cl}(\mathcal{O}_p) \supset \mathcal{O} \subset \text{cl}(\mathcal{O}_q) \). Then, \(\mathcal{O}_p \) is not a \(T^{n-1} \)-orbit.

Proposition 2.1. Assume that \(\varphi \in A^2(\mathbb{R}^n, N) \) with \(n \geq 2 \). If \(\mathcal{O} \) is a \(T^k \times \mathbb{R}^{n-k} \)-orbit with \(k \leq n-2 \), then \(\text{cl}(\mathcal{O}) \) cannot contain a \(T^{n-1} \)-orbit.

If \(X \in \mathcal{C}(M^2) \), let \(\mathcal{C}(X) \) be the set of diffeomorphisms \(f \in \text{Diff}^\infty(M^2) \) that preserve orbits of \(X \). Assume that the orbit \(\gamma_p \) of \(X \) by \(p \) is periodic of period \(\tau \). Let \(\Sigma \) be a cross section to \(X \) at \(p \) and \(P_X : (\Sigma, p) \to (\Sigma, p) \) be Poincaré map.

Lemma 2.3. There exists a cross section \(\Sigma_p \subset \Sigma \) and a neighborhood \(V \subset \text{Diff}^\infty(M^2) \) of the identity map in the \(C^0 \) topology such that every \(f \in \mathcal{C}(X) \cap V \) induces a local diffeomorphism \(f_X : (\Sigma_p, p) \to (\Sigma_p, p) \) of class \(C^\tau \), with \(f_X \circ P_X = P_X \circ f_X \).

Proof. Let \(\tau > 0 \) be the period of \(\gamma_p \). We can assume that \(\Sigma = h^{-1}(\{0\} \times (-1,1)) \), where \(h : V \to (-1,1)^2 \) is a flow box for \(X \) at \(p \). Let \(\pi : V \to \Sigma \) be the projection along of the orbits of \(X \) and recall that \(P_X = \pi \circ X^\tau \). Put \(U = h^{-1}((-1/2,1/2)^2) \) and

Publicado pelo ICMC-USP
Sob a supervisão CPq/ICMC
There exists a neighborhood \mathcal{U} of $id \in \text{Diff}^s(M^2)$, in the C^0 topology, and $\epsilon > 0$ such that $f(U) \subset V$ and $f(\Sigma_\epsilon) \subset U$ for each $f \in \mathcal{U}$ and also $X^r(\Sigma_\epsilon) \subset U$. Choose $\Sigma_p = \Sigma_\epsilon$. For each $f \in \mathcal{U}$ there is defined a map $f_X : \Sigma_p \to \Sigma$ by $f_X(q) = \pi(f(q))$. We are going to show that $f_X \circ P_X = P_X \circ f_X$. Let $[x,y] \subset \Sigma$ be the arc with extremes x and y and define $x \leq y$ if $[p,x] \subset [p,y]$. Assume that $P_X(q) \leq q$ for every $q \in \Sigma_p$. For a fixed $f \in \mathcal{U}$ there are two possibilities $f_X(q) \geq q$ or $f_X(q) \leq q$. Let us consider the case $P_X(q) \leq q$ and $f_X(q) \geq q$. If $P_X(q) = q$, i.e., the orbit of q by X is periodic, then the orbit by $f_X(q)$ is also closed, therefore $f_X \circ P_X(q) = f_X(q)$. If $P_X(q) < q$, then $f_X(P_X(q))$ belongs to the orbit of X by $f_X(q)$ and $P_X(q) \leq f_X(P_X(q)) < f_X(q)$. Thus, $f_X \circ P_X(q) = P_X \circ f_X(q)$. The other cases are analogous.

Proof (of Proposition 2.1). We begin proving this proposition for $n = 2$. Let $\varphi \in A^2(\mathbb{R}^2, N)$ and assume that there exist an \mathbb{R}^2-orbit P such that its closure, $\text{cl}(P)$, contains an S^1-orbit O_0, see Figure 2. Then, there exists at least one \mathbb{R}-orbit O contained in $\text{Front}(P)$ such that $\text{cl}(O) \supset O_0$. If G_0 and G are the isotropy groups of O_0 and O, respectively, then $G = G_0^0$. Let $X_i = X_{w_i}$, $i = 1, 2$, where $\{w_1, w_2\}$ is a set of generators of G_0 such that $w_2 \in G_0^0$. Note that $X_i|_{O \cap O_0} \equiv 0$ and O_0 is a periodic orbit of X_1 of period 1. Let Σ be a transversal section to X_1 at $p \in O_0$ and $P_{X_1} : (\Sigma, p) \to (\Sigma, p)$ be the Poincaré map. Without loss of generality we can assume that P_{X_1} is a topological contraction, otherwise we consider the Poincaré map of $-X_1$. Let \mathcal{U} and Σ_p be as in the Lemma 2.3 and $\delta > 0$ such that $X_1^t \in \mathcal{U}$ for all $t \in (-\delta, \delta)$. Fix a $t \neq 0$ in the interval $(-\delta, \delta)$ and put $f = X_1^t$. It follows from the commutativity of X_1 with X_2 that $f \in \mathcal{C}(X_1)$. Note that $fX_1(q) = q$ if $q \in O \cap \Sigma_p$ and that $fX_1(q) \neq q$ if $q \in P$. By Lemma 2.3, $fX_1 \circ P_{X_1} = P_{X_1} \circ fX_1$, and by N. Kopell Lemma $fX_1 = id$. This contradiction completes the proof in the case $n = 2$.

Assume now that $n \geq 3$ and that there exist a $T^k \times \mathbb{R}^{n-k}$-orbit P, with $k < n-1$, such that $\text{cl}(P)$ contains a T^{n-1}-orbit O_0. If G_0 and G_P are the isotropy groups of O_0 and P, respectively, then $G_P \subset G_0$. Let X_1, \ldots, X_n the infinitesimal generators adapted to O_0 such that the linear $(n-2)$-subspace H of \mathbb{R}^n generated by $\{w_1, \ldots, w_{n-2}\}$ contains G_P. There exists a neighborhood V of O_0 such that the action $\psi_\varphi \in A^2(\mathbb{R}^{n-1}, N)$ induced by

![FIG. 1.](image-url)
ON THE ORBIT STRUCTURE OF \mathbb{R}^n-ACTIONS ON N-MANIFOLDS

φ and O_0, i.e., generated by X_1, \ldots, X_{n-1}, has not T^{n-1}-orbits inside V. Otherwise, by Corollary 2.1, either P is an $T^{n-1} \times \mathbb{R}$-orbit or $O_0 \not\subset \text{cl}(P)$. If O is a $T^s \times \mathbb{R}^{n-s-1}$-orbit of φ such that $O \subset \text{cl}(P)$, then $O_0 \subset \text{cl}(O)$ and $s < n - 1$. Consequently, if G_O is the isotropy group of O, then $G_O \subset G_0$ and $G_O^0 = G_0^0$. Since $k, s < n - 1$, we can assume that $H \cap G_O$ is isomorphic to \mathbb{Z}^s and $w_{n-1}, w_n \notin H$. Let $p \in O_0$ and consider $\omega_1, \ldots, \omega_{n-1}$ as in the proof of Lemma 2.1. By Lemma 2.1 ω_{n-1} (or ω_{n-1}^1) is a topological contraction. Therefore, if $q \in \Sigma_{n-1} \cap P$, then $O_{h_{n-1}^1(q)}(\widehat{\varphi}_{n-1})$ is a \mathbb{R}^2-orbit in A that contains the $\widehat{\varphi}_{n-1}$-orbit $S^1 \times \{0\}$ in its closure. By the first part of the proof this is a contradiction.

\[\text{FIG. 2.}\]

Remark 2.2. Let $\varphi \in \mathcal{A}_n$, $p \in \text{Sing}_{n-2}(\varphi)$ and V_p a neighborhood of O_p. (a) Assume that V_p satisfies (1) and $\text{Front}(V_p)$ is a T^{n-1}-orbit. Since $r \geq 2$, it follows by Proposition 2.1, that there is no $T^s \times \mathbb{R}^{n-s}$-orbit with $s \neq n - 1$ inside V_p. Thus, we can say that one of the following possibilities is satisfied:

(a1) $V_p \setminus O_p$ is a $T^{n-1} \times \mathbb{R}$-orbit;
(a2) V_p contains infinitely many $T^{n-1} \times \mathbb{R}$-orbits;
(a3) $V_p \setminus O_p$ contains only $(n - 1)$-dimensional orbits.

(b) Assume now that V_p satisfies (2), then:

(b1) if there is one $T^s \times \mathbb{R}^{n-s-1}$-orbit, $s \neq n - 1$, such that its closure contains O_p, then every n-orbit in $V_p \setminus O_p$ is not homeomorphic to $T^{n-1} \times \mathbb{R}$;
(b2) if there are no $T^s \times \mathbb{R}^{n-s-1}$-orbits, $s \neq n - 1$, which contain O_p in its closure, then there is only one n-orbit and it is homeomorphic to $T^{n-1} \times \mathbb{R}$.

Proposition 2.2. Let O_0 be a T^{n-1}-orbit of $\varphi \in A^2(\mathbb{R}^n, N)$. Then, there exists a φ-invariant neighborhood V_0 of O_0, such that every connected component U of $V_0 \setminus O_0$ satisfies one of the following properties:

\[\text{Publicado pelo ICMC-USP}\]
\[\text{Sob a supervisão CPq/ICMC}\]
J. L. ARRAUT AND C. A. MAQUERA

(1) \(U \) is an \(T^{n-1} \times \mathbb{R} \)-orbit;

(2) \(U \) contains infinitely many \(T^{n-1} \)-orbits approaching \(O_0 \) and every \(n \)-dimensional orbit inside \(U \) is a \(T^{n-1} \times \mathbb{R} \)-orbit;

(3) There exist \(s \in \{0, 1, \ldots, n-2\} \) such that \(U \) is the union of \(T^s \times \mathbb{R}^{n-s-1} \)-orbits.

Proof. By the continuity of the infinitesimal generators of \(\varphi \) there is a neighborhood \(V \) of \(O_0 \) such that every orbit by points in \(V \) has dimension at least \(n-1 \). Since \(r \geq 2 \), it follows from Proposition 2.1 that there are no \(T^s \times \mathbb{R}^{n-s} \)-orbits, \(s \neq n-1 \) approaching \(O_0 \). Therefore, if \(U \) one connected component of \(V \setminus O_0 \), then there are two possibilities:

(i) There are infinitely many \(n \)-orbits in \(U \) approaching \(F \). In this case we will show that (2) is verified. The other possibility is that there exists a sequence \(\{O_i\}_{i \in \mathbb{N}} \) of \(n \)-dimensional orbits inside \(U \), which are not homeomorphic to \(T^{n-1} \times \mathbb{R} \) and that approach \(O_0 \). Since \(\text{cl}(O_i) \cap \text{Sing}(\varphi) = \emptyset \) for each \(j \in \{0, \ldots, n-2\} \), then the compact set \(\text{cl}(O_i) \setminus O_i \) is the union of \((n-1)\)-dimensional orbits, of which at least one is compact, this contradicts the Proposition 2.1.

(ii) There are only a finite number of \(n \)-orbits in \(U \). If it happens to exist a \(T^{n-1} \times \mathbb{R} \)-orbit \(O \) such that \(\text{Front}(O) \supset O_0 \), then we can assume that \(U = O \), therefore (1) is verified. If there is no such \(T^{n-1} \times \mathbb{R} \)-orbit, then we can assume that the orbit of each \(p \in U \) is \((n-1)\)-dimensional. We also can assume that \(\varphi \) has no \(T^{n-1} \)-orbits inside \(U \), otherwise (2) is verified. Reducing the size of \(V \) it follows, from Lemma 2.1 that there exist \(s \in \{0, \ldots, n-2\} \) such that \(O_p \) is a \(T^s \times \mathbb{R}^{n-s-1} \)-orbit for each \(p \in U \). Thus, (3) is verified and this completes the proof.

Theorem 2.1 (Chatelet-Rosenberg, [3]). Let \(N \) be a compact orientable \(n \)-manifold with non-empty boundary. Suppose that \(\psi \) is a \(C^2 \) locally free action of \(\mathbb{R}^{n-1} \) on \(N \), then \(N \) is diffeomorphic to \(T^{n-1} \times [0, 1] \).

Figure 3 illustrates Theorem B for some \(\varphi \in \mathcal{A}_2 \).

FIG. 3.

Proof (of Theorem B). Let \(\mathcal{O} \) be a \(T^{n-1} \times \mathbb{R} \)-orbit and \(\mathcal{U} \) the family of all \(\varphi \)-invariant neighborhoods \(U \supset \mathcal{O} \) homeomorphic to \(T^{n-1} \times \mathbb{R} \) that do not contain a \(T^s \times \mathbb{R}^{n-s} \)-orbit.
with $s < n - 1$. The inclusion relation defines a parcial order in \mathcal{W} and by Zorn’s Lemma there exists a maximal element U_M in \mathcal{W}. We are going to show that $N \setminus U_M$ is either an T^{n-1}-orbit or the union of two T^{n-2}-orbits. Assume that $N \setminus U_M$ has non-empty interior, then $\text{cl}(U_M) \setminus U_M$ has two connected components. By Definition 2.2 at each $p \in \text{Sing}_i(\varphi)$, $i = 1, \ldots, n - 3$, φ is of type n and n-finite. This fact and Lemma 2.2 implies that $(\text{cl}(U_M) \setminus U_M) \cap \text{Sing}_i(\varphi) = \emptyset$, $i = 1, \ldots, n - 3$. Moreover, there exists one connected component F of $\text{cl}(U_M) \setminus U_M$ that is not a T^{n-2}-orbit. We know that F is φ-invariant and will show that $F \cap \text{Sing}_{n-2}(\varphi) = \emptyset$. In fact, if there exists $p \in F$ such that O_p is a T^{n-2}-orbit and V_p is a neighborhood of O_p that satisfies Definition 2.2 (1), then $U_M \cup V_p$ would be a member of \mathcal{W} containing U_M properly. If V_p satisfies condition (2), then, since $F \neq F_p$, there are $T^s \times \mathbb{R}^{n-s-1}$-orbits, $s \neq n - 1$, arriving at O_p and by Remark 2.2 we would have $T^l \times \mathbb{R}^{n-l}$-orbits, $l \neq n - 1$, inside U_M. Therefore F is an T^{n-1}-orbit. If (1) or (2) of Proposition 2.2 is verified, then there exists an open φ-invariant set V homeomorphic to $T^{n-1} \times \mathbb{R}$, which does not contain $T^s \times \mathbb{R}^{n-s}$-orbits with $s \neq n - 1$ and such that $\text{Front}(V) \subset F$. If (3) of Proposition 2.2 is verified, then by Theorem 2.1 there exists an open φ-invariant set V homeomorphic to $T^{n-1} \times \mathbb{R}$ and such that $\text{Front}(V) \subset F$. The open set $U_M \cup V \in \mathcal{W}$ and contains properly U_M, but this contradicts the fact that U_M is maximal. Thus, $\text{Front}(U_M) = N \setminus U_M$.

Assume that $\text{Sing}_{n-2}(\varphi) = \emptyset$, then $\text{Front}(U_M)$ is homeomorphic to T^{n-1}. Therefore, N is T^{n-1} bundle over S^1. If $\text{Sing}_{n-2}(\varphi) \neq \emptyset$, then $\text{Front}(U_M)$ is the union of two T^{n-2}-orbits consequently, $N \in \mathcal{H}_n$.

REFERENCES