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We investigate the relationship between the local Euler obstruction for non-
singular varieties and the Whitney equisingularidade of a one parameter de-
formation of a corank one finitely determined holomorphic germ f : (Cn, 0) →
(Cp, 0), with n < p. We also study how to determine the minimal number
of invariants to garantee the Whitney equisingularity of such a family. Ac-
cording to a result of Gaffney, these are the 0-stable invariants and all polar
multiplicities which appear in the stable types of a stable deformation of the
germ. First we describe all stable types which appear when n < p. Then we
show that the number of polar multiplicities necessary can be reduced to a
half and show that the local Euler obstruction is an invariant for the Whitney
equisingularity. May, 2003 ICMC-USP

1. INTRODUCTION

The local Euler obstruction for nonsingular varieties, introduced by R. MacPherson in
a purely obstructional way is an invariant that plays an important role in his affirmative
response to a conjecture of Deligne and Grothendieck on the existence of Chern class for
singular complex algebraic varieties (see [12],[20]). Gonzales-Sprinberg gave in [8] a purely
algebraic interpretation of the local Euler obstruction. Lê and Teissier proved in [13] a
formula for the multiplicity of the local polar varieties, and with the aid of Gonzales-
Sprinberg’s interpretation of the local Euler obstruction, they showed that the local Euler
obstruction is an alternate sum of the multiplicities of the local polar varieties.

On the other side, Gaffney in [6] showed that the Whitney equisingularity, hence the
topological triviality, of a 1-parameter family of map germs is controlled by the multiplic-
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2 V. H. J. PEÉZ AND M.J. SAIA

ities of the local polar varieties and the zero stable invariants of all the stable types which
appear in the source and in the target.

Gaffney in [6] and [3] uses this result to analyze mapping from the plane to plane and
the plane to space. The first named author in [9] and [10] applies the results of Gaffney for
mapping from 3-space to 3-space and 3-space to 4-space. More recently Gaffney’s approach
has been used by Vohra [23], to study map germs from n-space (n ≥ 3) to the plane. The
case n = p is investigated in [11] and as a consequence, it is also shown how to compute
the Euler obstruction, in terms of the polar multiplicities, for all stable types.

In this paper we deal with the case of map germs from n-space to p-space with n < p.
According to Gaffney’s result, for a family ft : Cn, 0 → Cp, 0 to be Whitney equisingular it
is needed the constancy of 2(p−k(p−n+1)+`) invariants for each partition P = (r1, ..., r`)
of all k satisfying p− k(p− n + 1) + ` ≥ 0. We reduce this number in the case of corank 1
germs. We do this by finding relations among the invariants and using the fact that these
are upper semi-continuous.

We apply these results to obtain explicit and algebraic formulae for the Euler obstruction
in the stable type of mappings from Cn to Cp, with n < p. As a consequence we show that
the local Euler obstruction is an invariant for the Whitney equisingularity.

2. BASIC DEFINITIONS AND RESULTS

We follow the notation used by Gaffney in [6] and denote by O(n, p) the set of origin
preserving germs of holomorphic mappings from Cn to Cp, Oe(n, p) denotes the set of
germs at the origin but not necessarily origin preserving. We denote by R the group of
diffeomorphisms of the source (Cn, 0), and by L the group of diffeomorphisms of the target
(Cp, 0). The action of the product A := R × L leads to A-equivalence of map germs:
f , g ∈ O(n, p) are A-equivalent if they are equivalent by smooth coordinate changes at
source and target. Similarly the action of the semi direct product K := (R.C) gives rise to
K-equivalence of map germs.

A germ is said to be k-A-determined if any g ∈ O(n, p) with the same k-jet as f , i.e.
jkg = jkf , is A-equivalent to f . The germ f is said to be finitely A-determined if it is
k-A-determined for some k.

A map-germ f : Cn, 0 → Cp, 0 is stable if, up families of (bianalytic) diffeomorphisms
in source and target, every deformation is trivial. That is, if ft is a 1-parameter family
with f0 = f, then there should exist 1-parameter families ϕt and ψt of diffeomorphisms of
source and target such that and ψt ◦ f ◦ϕ−1

t = ft. Stable type is the A-equivalence class
of stable germs.

Our interest is primarily in corank one A-finitely determined map-germs f : (Cn, 0) →
(Cp, 0), with n < p, Σ(f) denotes the critical set of f (if n < p, Σ(f) = Cn). We denote
by F a versal unfolding of such an f .

We say that a stable type Q appears in F if for any representative F = (id, fu(x)) of
F , there exists a point (s, y) ∈ Cs × Cp such that the germ fu : Cn, S → Cp, y is a stable
germ of type Q where S = f−1(y) ∩ Σ(fu). The points (s, y) and (s, x) with x ∈ S are
called points of stable type Q in the target and in the source, respectively.
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EULER OBSTRUCTION AND WHITNEY EQUISINGULARITY 3

If f is stable, we denote the set of points in Cs × Cp of type Q by Q(f) and the set
QS(f) = f−1(Q(f))−QΣ(f), where QΣ(f) denotes f−1(Q(f)) ∩ Σ(f).

If f is finitely determined, we denote by Q(f) = ({0} × Cp) ∩ Q(F ) and QS(f) =
({0} × Cn) ∩ QS(F ), QΣ(f) = ({0} × Cn) ∩ QΣ(F ), here the bar over a set means the
closure of this set.

We say that Q is a zero-dimensional stable type for the pair (n, p) if Q(f) has
dimension 0 where f is a representative of the stable type Q.

We observe that the set Q(F ) = ∩F (j(p+1)F−1(Azi)) is closed and analytic, where zi is
the p + 1 jet of the stable type Q and Azi is the A-orbit of zi.

A finitely determined germ f has discrete stable type if there exist a versal unfolding
of f in which only a finite number of stable types occur. If the numbers (n, p) are in
Mather’s “nice dimensions” (which is our focus here) or on the boundary thereof, then
every finitely determined germ f ∈ O(n, p) has discrete stable type.

2.1. Colength and multiplicities of ideals
The colength of a given ideal I in a complex analytic ring R, is defined as dimC(R/I);

it may or not be finite. The multiplicity of an ideal I is an integer invariant denoted by
e(I) that is defined whenever I has finite colength. If R =< R, m > is local and Cohen-
Macaulay, if I is m-primary and a complete intersection, then the multiplicity of I is just
its colength.

2.2. Finite maps and degree
A smooth map germ f : (X, x) → (Y, y) is said to be finite if the dimension of its local

algebra is finite, i.e. if the number m(f) := dimC
O(X,x)

f∗(my)O(X,x)
< ∞. Note that for f to be

finite, it is necessary that dim X ≤ dim Y . In the context of complex analytic geometry,
we have the following important result for finite maps.

Let f : (X, x) → (Y, y) be an analytic map of analytic spaces of the same dimension,
such that f(X) is Zariski-dense in Y . Suppose f(x) is a smooth point of Y , and {x} a
component of the fiber f−1(f(x)). For open neighborhoods U ⊂ X of x, and V ⊂ Y and
a closed analytic subset B ⊂ Y such that:

(i) V \B is connected;
(ii) f(U) ⊂ V , f |U is proper, f−1(f(x)) = {x}; and
(iii) f |U\f−1(B) smooth,

then the number of pre-images in U , counted with multiplicity, of any point y ∈ V \B, is
called the degree of f at x, denoted deg(f), for a proof see 3.12 in [19].

In particular if X ⊂ (Cn, 0) is an analytic space germ defined as the zero set of germs
g1, ..., gt with dim0(X) = d, and if OX is Cohen-Macaulay, then we can often use a pro-
jection π : (Cn, 0) → (Cd, 0) such that deg(π|X) is the colength of the ideal (π1, ..., πd) in
OX , i.e. dimC On

(π1,...,πd,g1,...,gt)
.

2.3. Unfoldings
A 1-parameter unfolding F of f is a good unfolding if there exist neighborhoods U and

W of the origin in C × Cn and in C × Cp, respectively, such that F−1(W ) = U , F maps
(U ∩ Σ(f)\C × 0) to W\C × 0, and if (t0, y0) ∈ W\C × 0, with S := F−1(t0, y0) ∩ Σ(F ),
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4 V. H. J. PEÉZ AND M.J. SAIA

then the germ ft0 : (Cn, S) → (Cp, y0) is a stable germ. We say that a good unfolding F
of f is excellent if f is a finitely determined germ of discrete stable type, and the 0-stable
invariants are constant in F , if n = p, then an additional requirement for excellence is that
the degree of f be constant in the unfolding.

2.4. Whitney equisingularity and stratification of maps
A Whitney stratification of a given space is a stratification such that for any pair

of strata S, S′, with S′ ⊂ S, the big stratum S is Whitney regular along S′. The local
topological type remains constant along each stratum of a Whitney stratification of a given
space. Note that a Whitney stratification always exists in the local complex analytic space,
see section 1 of [5]. We say a given space X is Whitney equisingular along Y if there is
a Whitney stratification of X with Y as a stratum.

Recall that if F : Cn → Cp is a morphism, and A ⊂ Cn, A′ ⊂ Cp subsets such that
F (A) ⊂ A′, then a stratification of F : A → A′ is a pair (A,A′) of stratifications of A
and A′ respectively, such that F maps strata submersively to strata. A given stratification
(A,A′) of F is a regular stratification if A, A′ satisfy the Whitney regularity conditions,
and all pairs of incident strata in the source satisfy Thom’s Af condition: Let U be an open
subset of some affine space, f : U → C be an analytic function and M be a submanifold of
U . Thom’s Af condition is satisfied between U −Σ(f) and M if, whenever pi ∈ U −Σ(f),
pi → p ∈ M , and TpiV (f − f(pi)) → T , then TpM ⊆ T .

If F = ft is an unfolding with parameter axis T , then a regular stratification (A,A′) of
F is said to be a Whitney equisingular along T if T is a stratum of A and of A′, (A
and A′ are Whitney equisingular along T . We also say in this case that F is a Whitney
equisingular map.

The polar multiplicities of the polar varieties (defined by Teissier in [22]) of the stable
types are the invariants needed to show the Whitney equisingularity of unfoldings.

Definition 2.1. Suppose f : (X, 0) → (S, 0) is a smooth flat map which fibers at every
point of X − sing(X), where X is a d-dimensional anlytic complex variety. Let p : Cn →
Cd−k+1 be a linear projection such that ker p = Dd−k+1 where Dd−k+1 is a linear subspace
of (Cn, 0) of dimension k, with 0 ≤ k ≤ d− 1. For x ∈ X − sing(X), the fiber X(f(x)) is
non-singular at x contained in {f(x)} × Cn and one denotes by πx : X(f(x)) → Cd−k+1

the restriction of p to X(f(x)). Let Pk(f, p) be the closure of points x ∈ X− sing(X) such
that x ∈ Σ(πx), one calls the closed analytic subspace Pk(f, p) of X, the relative polar
variety of codimension k associate to Dd−k+1. If f is the constant map, we denote it by
Pk(X), called absolute polar variety.

The key invariant of Pk(f, p) is its polar multiplicity which we denote by mk(X, f), if f
is the constant map, we denote it by m0(Pk(X)) or mk(X).

Gaffney in [6] page 195, defines a new invariant as following: Take a versal unfolding
F : Cn×Cs → Cs×Cn+1 of f . Specify a stable singularity type or stratum D(f) in source
or target such that dimD(f) ≥ 1. Select D1 a linear subspace of (Cn+1, 0) of dimension
1 and form Pd(D(F )) the polar variety on D(F ) with the projection (p, πs) : Cn × Cs →
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EULER OBSTRUCTION AND WHITNEY EQUISINGULARITY 5

C×Cs where d = dim(D(F ))− s. The d-th stable multiplicity of f of type D(f), denoted
md(D(f)), is the multiplicity of msOD(F ),(0,0)

in OD(F ),(0,0)
.

Using the polar multiplicities of the stable types and Thom’s Af, condition, Gaffney
showed the following:

Theorem 2.1. [6] pp. 206-207 Suppose that F : C × Cn, (0, 0) → C × Cp, (0, 0) is
an excellent unfolding of a finitely determined germ f ∈ O(n, p). Also suppose that the
polar invariants of all the stable types defined in the discriminant ∆(f), in Σ(f) and in
f−1(∆(f)) − Σ(f) are constant at the origin for ft. Then the unfolding is Whitney equi-
singular.

The theorem also implies that such unfolding is topologicaly trivial; for the proof of this
result Gaffney uses Thom’s second isotopy lemma for complex analytic mappings, see [6]
p. 204.

The theorem remains valid if we replace the term “an excellent unfolding” in the hy-
pothesis by “a 1-parameter unfolding which, when stratified by stable types and by the
parameter axis T , has only the parameter axis T as 1-dimensional stratum at the origin”.
see [23]

We remember that in the case n < p, our subject in this article, the set f−1(∆(f))−Σ(f)
is empty.

The following results are a key tool in finding relations among our invariants.

Theorem 2.2. (Lê-Greuel, [14],[17]) Let X1 be a complete intersection with isolated
singularity at 0 ∈ Cn ( an ICIS ). Let X be an ICIS defined in X1 by fk = 0, and let
f1, ..., fk−1 be the generators of the ideal that defines X1 at 0 in Cn. Then

µ(X1, 0) + µ(X, 0) = dimC
On

(f1, ..., fk−1, J(f1, ..., fk))

Remark 2. 1. For a zero-dimensional ICIS we use the simpler formula: Let f : (Ck, 0) →
(Ck, 0) be a germ such that X = f−1(0) is an ICIS. Then µ(X, 0) = δ(f) − 1, where
δ(f) = dimC On

f∗(mn)On
, see [16] page 78.

Other elementary result that we appeal is: Let f : (Cn, 0) → (Cn+1, 0) be a finitely
determined germ. Then f : (Cn, 0) → f(Cn) ⊂ (Cn+1, 0) is bimeromorphic; see[4] page
138.
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6 V. H. J. PEÉZ AND M.J. SAIA

3. EQUISINGULARITY OF MAP GERMS IN O(N, P )

3.1. The stable types in O(n, p), n < p

As highlighted in the introduction, our aim is to minimize the number of invariants
defined in the stable types of f whose constancy in the family ft implies the family is
Whitney equisingular (therefore topologically trivial).

The strategy is to apply the Theorem 2.1 and the techniques used by Gaffney in [6], that
is, stratify the source and the target by the stable types and establish relations among the
invariants on the strata. As these invariants are upper semi-continuous, the relations will
allow us to reduce the number of invariants required in Gaffney’s theorem.

The main purpose of this subsection is to give a full description of the stratification of the
source and the target by the stable types. For this we first give the following preliminary
definition. Given a continuous mapping f : X → Y on analytic spaces, we define the ktk

multiple point space of f as

Dk(f) = closure{(x1, x2, ..., xk) ∈ Xk : f(x1) = ... = f(xk) forxi 6= xj , i 6= j}.

If g : Cn → C is a function then we define V k
i (g) : Cn+k−1 → C to be

∣∣∣∣∣∣∣

1 z1 · · · zi−1
1 g(x, z1) zi+1

1 · · · zk−1
1

...
...

...
...

...
...

1 zk · · · zi−1
k g(x, zk) zi+1

k · · · zk−1
k

∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣

1 z1 · · · zk−1
1

...
...

...
1 zk · · · zk−1

k

∣∣∣∣∣∣∣

Suppose f :Cn, 0 → Cp, 0, with p ≥ n, is of corank 1 and is given in the form
f(x1, ..., xn−1, z)= (x1, ..., xn−1, h1(x, z), ..., hp−n+1(x, z)).

Theorem 3.1. ([18]) Dk(f) is defined in Cn+k−1 by the ideal Ik(f) generated by
V k

i (hj(x, z)) for all i = 1, ..., k − 1 and j = 1, ..., p− n + 1.

In what follows we will take coordinates on Cn+k−1 = Cn−1 × Ck to be (x, z) =
(x1, ..., xn−1, z1, ..., zk).

Example 3.1. For a corank 1 map-germ f : Cn, 0 → Cp, 0, D2(f) is defined by the
ideal generated by the system

{
hi(x,z1)−hi(x,z2)

z1−z2
, i = 1, ..., p− n + 1

}
.

The main result of [18] is the theorem 2.14 where a description of Dk(f) is obtained for
a finitely A-determined corank 1 map germ. There, it is shown that the multiple point
spaces of f are ICIS. More precisely, f is finitely-determined if and only if for each k, with
p− k(p− n) ≥ 0, Dk(f) is ICIS of dimension p− k(p− n) or empty, and for those k with
p − k(p − n) < 0, Dk(f) = {0}. Furthermore, f is stable if and only if the spaces are
non-singular or empty.

Definition 3.1. Let P = (r1, r2, ..., rm) be a partition of k, i.e., r1 + r2 + ... + rm = k,
with k = 1, ..., p. Let I(P) be the ideal in On−1+k generated by the k−m elements yi−yi+1

for r1 + r2 + ... + rj−1 + 1 ≤ i ≤ r1 + r2 + ... + rj − 1, 1 ≤ j ≤ m, and let ∆(P) = V (I(P)).
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EULER OBSTRUCTION AND WHITNEY EQUISINGULARITY 7

If P,R are two partitions of k, we say P < R if I(P) ⊂ I(R). We define a generic point
of ∆(P) for any partition R of k with P < R.

Define

Ik(f,P) = Ik(f) + I(P), and Dk(f,P) = V (Ik(f,P)),
equipped with the sheaf structure On−1+k/Ik(f,P).

For any k satisfying p − k(p − n + 1) + ` ≥ 0, we consider a partition P = (r1, ..., rm)
of k and define projections πi(P) : Cn−1+k → Cn, for 1 ≤ i ≤ m, by πi(P)(x, z1, ..., zk) =
(x, zr1+...+ri−1+1).

The geometric significance of Dk(f,P) was given by Marar and Mond:

Lemma 3.1. ([18], Lemma 2.7, p. 559) Let P = (r1, ..., rm) be a partition of k, with
p− k(p− n + 1) + ` ≥ 0; at a generic point (x,z) of ∆(P) we have:

Ik(f,P)=I(P) +
{

∂sfj

∂zs
◦ πi(P) | j = 1, ..., p−n+1, 1≤s ≤ ri−1, 1 ≤ i ≤ m

}
+

{fj ◦ π1(P)− fj ◦ πi(P) | j = 1, ....p− n + 1, 2 ≤ i ≤ m} in On−1+k, (x, z).

In the corollary 2.15 of [18] page 562 it is shown the following result. If f is finitely
determined then for each partition P = (r1, ..., r`) of k satisfying p− k(p− n + 1) + ` ≥ 0,
the germ of Dk(f,P) at 0 is either an ICIS of dimension p− k(p− n + 1) + `, or is empty.
Moreover, those D`(f,P) for P not satisfying the inequality consist at most of the single
point 0.

With the definitions above, for any finitely determined germ f ∈ O(n, p) we denote by
D`

1(f,P), the projections of D`(f,P), to the (x, y, z1)-space. Therefore we conclude that
the stratification in the source and target are as follows.

In the source: The regular part of the critical points set Σ(f) = Cn and the regular part
of the multiple points set D`

1(f), for each partition P of k with p− k(p− n + 1) + ` ≥ 0.

In the target: The regular part of the image of the multiple points set:
f(D`(f,P)) for each partition P of k with p− k(p− n + 1) + ` ≥ 0.

Remark 3. 1. In the case that the number k satisfies the equality p−k(p−n+1)+` = 0,
for each partition P of k, the set f(D`(f,P)) is 0-dimensional and is called a 0-stable type
of the germ. We shall denote this set by Q(f,P).

4. POLAR VARIETIES IN THE TARGET

To show how the polar multiplicities of the stable types in the target are related we
describe the polar varieties of the set f(D`(f,P)) for each partition P of k with p− k(p−
n + 1) + ` ≥ 0.
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8 V. H. J. PEÉZ AND M.J. SAIA

For a map germ f ∈ O(n, p) with corank 1, each analytic set f(D`(f,P)) is of dimension
d = p − k(p − n + 1) + `, the polar varieties of codimension j of these sets, with 0 ≤ j ≤
p− k(p− n + 1) + `, are obtained in the following way:

We choose generic projections p : Cn−1 × C` → Cp and pd−j+1 : Cp → Cd−j+1, each
polar variety is defined as

Pj(f(D`(f,P))) = Σ(pn−m−j+1|f ◦ p(D`
1(f,P)0)

with 0 ≤ j ≤ d.
We see in [22] that each polar variety is of codimension j in Cn. The polar invariants

associate to each polar variety are the multiplicities mj(Pj(f ◦p(D`(f,P)))), 0 ≤ j ≤ d for
each partition P of all k with p− k(p− n + 1) + ` ≥ 0.

To compute the multiplicites mj(Pj(f ◦ p(D`(f,P)))), we need to consider the sets

Σ(pn−m−j+1|f ◦ p(D`(f,P)0),

however it is better to work with the sets

Xj(P) = Σ(pn−m−j+1 ◦ f ◦ p|D`
1(f,P)),

which are nothing more than

Xj(P) = V
(I`(f,P), J(pn−m−j+1 ◦ f ◦ p, I`(f,P)

)
.

The advantages to work with these sets is that they are in the source and the equations
that define the associate polar varieties are computable. Our strategy is to compute the
polar invariants for these sets, choosing generic projections, and considering the fact that
f is bimeromorphic, we compute the polar invariants in the target.

Let P = (r1, · · · , r`) be a partition of m ≤ n with r1 ≥ r2 ≥ · · · r` ≥ 1. Define N(P) to
be the order of the sub group of S` which fixes P. Here S` acts on R` by permuting the
coordinates, for example, if P = (4, 4, 4, 2, 2, 2, 1, 1) we have N(P) = (3!)2.2!, we remark
that if P 6= (ri), then N(P) 6= 1.

4.1. Relations among the invariants in the target
The other strata in the target are the regular part of f ◦ p(D`(f,P)) for each partition

P = (r1, ..., r`) of k with p− k(p− n + 1) + ` ≥ 0, if there is no confusion, we shall denote
f ◦ p(D`(f,P)) by f(D`(f,P)). These sets have dimensions d = p− k(p− n + 1) + ` and
their polar multiplicities are mi(f(D`(f,P))), 0 ≤ i ≤ d.

To compute md(f(D`(f,P))), we take a versal unfolding F : Cn × Cs → Cp × Cs of f
and consider (p, πs) : Cn ×Cs → Cn ×Cs a projection in the source such that F ◦ (p, πs) :
D`(F,P) ⊂ Cn−1−` × Cs → F (D`(F,P)) ⊂ Cp × Cs. We know that F ◦ (p, πs)|D`(F,P)0

is a `-fold cover of F (D`(F,P))0.
Choose p1 : Cp → C, a generic linear projection for (F (D`(F,P)), (p1, πs)). To work

directly with

Pd(F (D`(F,P)), (p1, πs), D1 × Cs) = Σ((p1, πs)|F (D`(F,P))0)
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EULER OBSTRUCTION AND WHITNEY EQUISINGULARITY 9

with D1 × Cs is the kernel of (p1, πs) we must work with

Σ((p1, πs)|F (D2(F ))0).

However, it is much easier to work with Σ((p1, πs) ◦ F ◦ (p, πs)|D`(F,P)) which is

V (I`(F,P), Jx((p1, πs) ◦ F ◦ (p, πs), I`(F,P))),

where I`(F,P) is the ideal that defines D`(F, ), we include the singular set of D`(F,P)
in the critical set of (p1, πs) ◦ F ◦ (p, πs)|D`(F ). This set has two advantages. It is in the
source, and its equations are computable. We shall extract an invariant from it which will
be simply related to md(f(D`(f,P))) and in fact, will control it.

The variety V has dimension s, since u is a generic parameter value, the degree of
πs|V (I`(F ), Jx((p1, πs) ◦F ◦ (p, πs), I`(F,P))) is just the colength, denoted by eD`(f,P), of
ms in the local ring of the source at (0, 0):

eD`(f,P) := dimC
On−1+`

(I`(f,P), Jx((p1 ◦ f ◦ p, I`(f)))
(4.1)

where I`(f,P) defines D`(f,P).
We then have the following relation between eD`(f,P) and other invariants.

Theorem 4.1. Let f ∈ O(n, p) be a finitely determined germ of kernel rank 1. Then

eD`(f,P) = N(P)md(f(D`(f,P))) + ΣPcP]Q(f,P)

for all partition P of k satisfying p− k(p− n + 1) + ` ≥ 0 and cP ∈ Z+

Proof The components of the variety

V (I`(F,P), Jx((p1, πs) ◦ F ◦ (p, πs), I`(F,P)))

are the closure of the set F−1(Pd(D`(F,P)) and the set F−1(Q(f,P)). These have dimen-
sion at least s.

For a generic projection p1 and f , the dimension of V is s. As the multiplicity of V is the
sum of the multiplicities of these components, it is enough to calculate the contribution of
the degree of πs restricted to each component, where πs is the projection of Cp×Cs to Cs.

We choose neighbourhoods U1 of 0 in Cs and U2 of 0 in Cp×Cs such that at each point
in U1, πs has eD`(f,P) pre-images in V ∩ U2 counting multiplicity. If u ∈ Cs is a generic
parameter close to the origin we have

eD`(f,P) =
∑

x∈S dimC
Os+n−1+`,x

(ms,I`(F,P),Jx((p1,πs)◦F◦(p,πs),I`(F,P)))

=
∑

x∈S dimC
On−1+`,x

(I`(fs,P),Jx(p1◦fs◦p,I`(fs,P)))
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10 V. H. J. PEÉZ AND M.J. SAIA

where S = π−1
s (0) ∩ V.

We can compute this last number using normal forms. Hence the singularities of type
Q(f,P) for each partition P of k with p−k(p−n+1)+ ` = 0 contributes with cP ∈ Z+. A
similar argument shows that F−1(Pd(F(D`(F,P)))) contributes with N(P)md(f(D`(f,P))).
Since F restricted to each type of each component is bimeromorphic and finite, and the
generic point of each component is reduced, we have

deg(π|V ) = N(P)md(f(D`(f,P))) + ΣPcP]Q(f,P)

Proposition 4.1. Let P be a partition of k with p− k(p− n + 1)` ≥ 0, then

mj(Pj(f(D`(f,P)))) =
1

N(P)
deg((pd−j ◦ f ◦ p)|Xj(P))

Proof For each j = 0, ..., d, we have Xj(P) ⊂ D`
1(f,P), let y = (x, z1, z2, . . . , z`) ∈ Xj(P)

and σ ∈ S`, then we have

yσ = (x, zσ(1), zσ(2), ..., zσ(`)) ∈ Xj(P)

if and only if rσ(k) = ri for all k, i = 1, ..., `. There exist N(P) of these Σ, such that the
points y, yσ are different, but the corresponding sets {z1, z2, ..., z`} are equal, i.e., the germ
f in {(x, z1), (x, z2), ..., (x, z`)} has an ordinary `-multiple point in Xj(P), we observe that
each of these points point gives N(P) points in (pd−j ◦ f ◦ p)−1(z), and these point are all
computable in Xj(P).

Remark 4. 1. Since the projections pd−j and p are generic and the germ f is finitely
determined, the variety Xj(P) is an ICIS, therefore it is Cohen Macaulay, then

deg(Kd−j |Xj(P)) = dimC
On−1+`

(Kd−j , I`(f,P), J(Kd−j+1, I`(f,P))

with Kd−j = pd−j ◦ f

Theorem 4.2. Let f ∈ O(n, p), with n < p, be a finitely determined germ of corank 1.
Then

Σd−1
i=0 (−1)iN(P)mi(f(D`(f,P))) = (−1)dµ(D`(f,P)) + 1+

(−1)d+1dimC
On−1+`

(I`(f,P),J(p1◦f,I`(f,P)))
.

Proof Choose a generic projection pd : Cn → Cd such that the degree of pd|f(D`(f,P))
is equal to the multiplicity of f(D`(f,P)) at the origin and a generic linear projection
pd−1|P1(f(D`(f,P) : Cn → Cd−1 such that its degree is the multiplicity of the polar
variety P1(f(D`(f,P))), denoted by m1(f(D`(f,P))).
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EULER OBSTRUCTION AND WHITNEY EQUISINGULARITY 11

Let X1 = V (pd−1 ◦ f, I`(f,P)), and X = V (pd ◦ f, I`(f,P)). As these varieties are
I.C.I.S., we apply the Theorem of Lê-Greuel and obtain

µ(X1) + µ(X) = dimC
On−1+`

(pd−1 ◦ f, I`(f,P), J (pd ◦ f, I`(f,P)))

Since the germ f is bimeromorphic and the projections are generic, we have

deg((pd−1 ◦ f)|X1(P)) = deg(pd−1|P1(f(D`(f,P))))

from the Proposition 4.1 and the Remark 4.1, it follows that

µ(X1) + µ(X) = N(P)m1(f(D`(f,P))) (4.2)

Now we choose a generic projection pd−2 : Cn → Cd−2 such that the degree of
pd−2|P2(f(D`(f,P))) is m2(f(D`(f,P))) and call X2 = V (pd−2 ◦ f, I`(f,P)) hence

µ(X1) + µ(X2) = dimC
On−1+`

(pd−2 ◦ f, I`(f,P), J(pd−1 ◦ f, I`(f,P)))
(4.3)

Again, as f is bimeromorphic and the projection pd−2 is generic, we obtain

deg((pd−2 ◦ f)|X2(P)) = deg(pd−2|P2(f(D`(f,P))))

applying the Proposition 4.1 to the equality (4.3), it follows from the Remark 4.1 that

µ(X1) + µ(X2) = N(P)m2(f(D`(f,P))).

This equality and the equality (4.2) gives us

N(P)m1(f(D`(f,P)))− µ(X) + µ(X2) = N(P)m2(f(D`(f,P)))

Now, for all s with 3 < s < n−m− 2 we choose generic projections pd−s in a successive
way and construct the sets Xs and Xs−1 analogously than above to obtain the sets

Xd−1 = V (p1 ◦ f, I`(f,P)), Xd = D`(f,P)

and the equality

Σd−1
i=1 (−1)iN(P)mi(f(D`(f,P)))−µ(Xn−m)+µ(X) =dimC

On−1+`

(I`(f,P), J(p1 ◦ f ◦ p, I`(f,P)))
,

therefore µ(X) = deg(pd ◦ f, I`(f,P))− 1.
Since f ◦ p : D`(f,P) → f(D`(f,P)) is finite and bimeromorphic we obtain

deg(pd|f(D`(f,P))) = deg(pd ◦f, I`(f,P)) and deg(pd ◦f, I`(f,P)) = N(P)m0(f(D`(f,P))).
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4.2. Relations among the invariants of the stable types in the source
In this section we stablish relations among the invariants of the stable types in the

source. The strata in this case are the regular part of the critical points set Σ(f) = Cn

and the regular part of the multiple points set D`
1(f), for each partition P of k with

p−k(p−n+1)+` ≥ 0. The situation is less difficult than in the case of the target because,
in the case of corank 1 germs, all these sets are ICIS.

We know from [21] that the absolute polar multiplicities of a hypersurface X with isolated
singularity are related to the Milnor numbers µ(k) of the plane sections (µ(k)(X) = µ(X ∩
Hk)) by the following equalities

mk(X) = µ(k+1)(X) + µ(k)(X),

for 0 ≤ k ≤ d− 1, where d = dim(X). This result is also valid for ICIS (see [14], [7]). The
absolute polar multiplicities are defined when the dimension of X is ≥ 1. The multiplicity
md(X) cannot be defined directly like the other mk, 0 ≤ k ≤ d−1, because the singularities
of p1|X are isolated points. However, Gaffney [7] defines this multiplicity for spaces that
are ICIS as follows.

Definition 4.1. The d-th polar multiplicity of (Xd, 0) (Xd is ICIS of dimension d),
denoted by md(Xd), is defined by

md(Xd) = dimC
OX

J(p1, f)

where f : (Cn, 0) → (Cn−d, 0), f−1(0) = Xd and p1 : Cn → C is a generic linear projection.

Remark 4. 2. As V (p1, f) is ICIS, then by Lê-Greuel theorem, we have

md(Xd) = µ(Xd) + µ(Xd ∩ p−1
1 (0)).

When f ∈ O(n, p) is finitely determined and of corank 1, n < p the multiple points sets
D`(f,P) for all partitions P of k, with p− k(p−n + 1) + ` ≥ 0 are ICIS. Therefore we can
apply the definition 4.1 and all the properties above to obtain the following.

Proposition 4.2. Let f ∈ O(n, p) be a finitely determined germ of corank 1. For each
partition P of k, with p− k(p− n + 1) + ` ≥ 0 we have

Σd−1
i=0 (−1)imi(D`(f,P)) = (−1)dµ(D`(f,P)) + 1+

(−1)d+1 dimC
On−1+`

(I`(f,P),J(p1◦f,I`(f,P)))
.

Σd−1
i=0 (−1)imi(D`

1(f,P)) = (−1)dµ(D`
1(f,P)) + 1+

(−1)d+1 dimC On

(I`
1(f,P),J(p1◦f,I`

1(f,P)))
.
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Therefore we can now deduce our main theorem. From the results given in the subsec-
tions 4.1 and 4.2, we reduce the number of invariants in Gaffney’s theorem 2.1 for half in
the corank 1 case.

Theorem 4.3. Suppose that f ∈ O(n, p) with n < p is a finitely determined germ
of corank 1. If F = (t, ft) is a good 1−parameter unfolding of f , then F is Whitney
equisingular along T = C×{0} if, and only if, m2i−1(D`

1(ft,P)) and m2i−1(ft(D`
1(ft,P)))

are constant for t close to the origin.

5. FORMULA FOR THE EULER OBSTRUCTION IN STABLE TYPES

The local Euler obstruction for nonsingular varieties, introduced by R. MacPherson in
[20], in a purely obstructional way is a topological invariant that is also associated to the
polar multiplicities. The local Euler obstruction plays an important role in his affirmative
response to a conjecture of Deligne and Grothendieck on the existence of Chern class for
singular complex algebraic varieties (see [12],[20].)

Definitions equivalent to MacPherson’s have been given by several authors. We recall
here the one given in [2], see also [1], pp. 38–42.

Let X be an d-dimensional analytic complex subvariety of an m-dimensional manifold
M . We consider the Nash transform X̃ and the restriction ν : X̃ → X, where ν : G → Pm

denotes the Grassmann bundle over Pm whose fibre over x is the Grassmann manifold
G(d,m) of d-linear subspaces in TxPm.

Let us consider a Whitney stratification {Vα} of M such that X is a union of strata. Let
v be a radial vector field with an isolated singularity at x ∈ Vα. Let B be a ball centered
at x, small enough to be transversal to every stratum Vβ with Vα ⊂ Vβ , and such that
x is the unique zero of v inside B. In the proposition 9.1 of [2] it is shown that, using
the Whitney conditions it is possible to prove that there is a canonical lifting ṽ of v|∂B∩X

as a section of Ẽ|ν−1(∂B∩X). The obstruction to the extension of ṽ, on ν−1(B ∩ X), as
a non-zero section of Ẽ, evaluated on the corresponding fundamental class, is an integer,
called the Euler obstruction and denoted by Eux(X).

In [13], Lê and Teissier proved a formula for the multiplicity of the local polar varieties,
and, with the aid of Gonzales-Sprinberg’s purely algebraic interpretation of the local Eu-
ler obstruction, they showed that the local Euler obstruction is an alternate sum of the
multiplicity of the local polar variety.

Theorem 5.1. [13] Let X be an analytic space of dimension d reduced at 0 ∈ Cn+1.
Then

Eu0(X) = Σd−1
i=0 (−1)d−i−1mi(X),

where Eu0(X) denotes the Euler obstruction of X at 0 and mi(X) is the polar multiplicity
of the polar varieties Pi(X).
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14 V. H. J. PEÉZ AND M.J. SAIA

With this theorem and the theorems above we formulate the formula for Euler obstruc-
tion for the stable types in the source and the target.

Theorem 5.2. Let f ∈ O(n, p), n < p be a finitely determined germ of corank 1. Then

N(P)Eu0(f(D`(f,P))) = (−1)dµ(D`(f,P)) + 1+
(−1)d+1dimC

On−1+`

(I`(f,P),J(p1◦f,I`(f,P)))
.

Eu0(D`(f,P)) = (−1)dµ(D`(f,P)) + 1+
(−1)d+1 dimC

On−1+`

(I`(f,P),J(p1◦f,I`(f,P)))
.

Eu0(D`
1(f,P)) = (−1)dµ(D`

1(f,P)) + 1+
(−1)d+1 dimC On

(I`
1(f,P),J(p1◦f,I`

1(f,P)))
.

Remark 5. 1. For a germ f of corank 1, consider the partition P = (1), then we have
D1(f, (1)) = Cn, therefore µ(D1(f, (1))) = 0 and

dimC
On

(I1(f, (1)), J(p1 ◦ f, I1(f, (1))))
= 0

for a linear projection p1 = x therefore Eu0(f(Cn)) = 1 for all f .
In particular if f(x, y) = (x, y2, xy) we have that the Euler obstruction of the Cross-cap

is 1.

FIG. 1. Cross-Cap

We observe that Gonzalez-Sprinberg in [8], p. 28, uses the usual method to compute
the local Euler obstruction of this example, and our method is much simpler to do this
computation.

As a consequence of Gaffney’s theorem 2.1 and the Theorem 5.1 we obtain in the next
theorem that the local Euler obstruction is an invariant for the Whitney equisingularity.
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Theorem 5.3. Suppose that f ∈ O(n, p), with n < p, is a finitely determined germ of
corank 1 and F = (t, ft) is a good 1−parameter unfolding. If F is Whitney equisingular
along T = C × {0}, then Eu0(D`

1(ft,P)), Eu0(ft ◦ p(D`(ft,P))), are constant for t close
to the origin, for all partition P of k satisfying p− k(p− n + 1) + ` ≥ 0.
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