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In this paper we obtain the continuity of attractors for semilinear parabolic
problems with Neumann boundary conditions relatively to exterior perturba-
tions of the domain. We show that, if the perturbations on the domain are such
that the convergence of eigenvalues and eigenfunctions of the Neumann Lapla-
cian is granted then, we will also have the continuity of attractors. October,
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1. INTRODUCTION

In this paper we consider parabolic problems of the form

ut −∆u = f(u) in Ωε
∂u
∂n = 0 in ∂Ωε.

(1.1)

where Ωε, 0 ≤ ε ≤ ε0 are bounded Lipschitz domains in RN . The nonlinearity f is assumed
be a C2(R,R) function that satisfies the growth assumption

|f ′(u)| ≤ c(|u| 4
N−2 + 1), for some c > 0, N = 3, 4, or

lim
|u|→∞

|f ′(u)|
eθ|u|2 = 0, ∀ θ > 0, if N = 2

(1.2)
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266 J. M. ARRIETA AND A. N. CARVALHO

(no growth condition is needed for N = 1) and the dissipativeness assumption

lim sup
|s|→∞

f(s)
s

< 0. (1.3)

It has been shown in [5], Theorem 2.6, that, under the assumptions (1.2) and (1.3) the
problem (1.1) has a global attractor Aε and that the attractors Aε are bounded in L∞(Ωε),
uniformly in ε. This enable us to cut the nonlinearity f in such a way that it becomes
bounded with bounded derivatives up to second order without changing the attractors.
After these considerations we may assume, without loss of generality, f : R −→ R is a
C2(R) function satisfying

|f ′(u)| ≤ cf , |f ′′(u)| ≤ c̃f ∀u ∈ R (1.4)

where cf e c̃f are positive constants.
In this paper we prove that the family of attractors {Aε, 0 ≤ ε ≤ ε0} is continuous

at ε = 0 under some sort of convergence of the domains Ωε to Ω0. This problem has
been considered in [7] for Dirichlet boundary conditions. In the case of Dirichlet boundary
conditions the problem is facilitated by the existence of an isometry between H1

0 (Ωε) and
H1(RN ), ∀ ε > 0, given by the extension by zero outside Ωε. The perturbations Ωε of the
domain Ω0 are considered to be exterior perturbations and by continuity of the family of
attractors we mean that; if Ãε = {u|Ω0

: u ∈ Aε} then the family Ãε is upper and lower
semicontinuous, in H1(Ω0), at ε = 0 and supu∈Aε

‖u‖H1(Ωε\Ω0) → 0 as ε → 0.
Next we state precisely the sort of perturbations Ωε of Ω0 considered here. Let Ωε,

0 ≤ ε ≤ ε0, be a family of bounded Lipschitz domains Ωε ⊃ Ω0. We require that the
perturbations Ωε be such that the eigenvalues and eigenfunctions of the Neumann Laplacian
in Ωε converge as ε → 0 to the eigenvalues and eigenfunctions of the Neumann Laplacian
in Ω0. This condition is equivalent (see Lemma 2.1) to the following:

φε ∈ H1(Ωε), 0 < ε ≤ ε0
‖∇φε‖L2(Ωε) ≤ C, 0 < ε ≤ ε0

}
⇒ ‖φε‖L2(Ωε\Ω0) → 0. (1.5)

Also from Lemma 2.1, this condition implies that |Ωε\Ω0| → 0 as ε → 0.
In Section 3 we prove that the family of attractors Aε and the set of equilibria Eε are

upper semicontinuous at ε = 0 showing {Aε, 0 ≤ ε ≤ ε0} is bounded in H1(Ω0) and
that the family of semigroups {Tε(t), t ≥ 0} associated to (1.1) is continuous, uniformly
in compact intervals of [0,∞), in ε at ε = 0; that is, if uε

0 ∈ H1(Ωε), 0 ≤ ε ≤ ε0 with
‖uε − u0‖H1(Ωε) + ‖uε‖H1(Ωε\Ω0) → 0 as ε → 0, then for any 0 ≤ r < R < ∞

sup
r≤t≤R

{‖Tε(t)(uε)− T0(t)u0‖H1(Ω0) + ‖Tε(t)(uε)‖H1(Ωε\Ω0)} → 0, as ε → 0.

Consider the problem

(P )ε

{ −∆u = f(u) in Ωε
∂u
∂n = 0 in ∂Ωε.
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for 0 ≤ ε ≤ ε0. Assume that (P )0 has exactly m distinct solutions, u0
1,...,u

0
m and that

zero is not an eigenvalue for the operator ∆+ f ′(ui)I, with Neumann boundary condition,
1 ≤ i ≤ m. Under these hypotheses, in Subsection 4.1, we prove that , for suitably small
ε, Pε has exactly m distinct solutions uε

1,...,u
ε
m and uε

j → u0
j as ε → 0, 1 ≤ j ≤ m.

In Subsection 4.2, we prove that the unstable manifolds of the equilibrium points uε
k are

continuous at ε = 0.
It follows from the continuity of the unstable manifolds that the attractors are lower

semicontinuous at ε = 0. This can be proved in the following way. If u0 ∈ A0 then u0

belongs to the unstable manifold of u0
k for some 1 ≤ k ≤ n. Let δ > 0 be such that all the

unstable manifolds around uε
k are defined in a ball of radius δ, 0 ≤ ε ≤ ε0. If τ is such that

w0 = T0(−τ, u0) ∈ Bδ(u0
k), from the continuity of the unstable manifolds there is a sequence

wεn which converges to w0 in H1(Ω0) as n → ∞ and such that ‖wεn‖H1(Ωε\Ω0) → 0 as
n → ∞. Now, since the family of semigroups is continuous in this sense we have that
Aεn 3 Tεn(τ, wεn) → T0(τ, w0) = u0 in H1(Ω0) as n →∞ and ‖Tεn(τ, wεn)‖H1(Ωεn\Ω0) → 0
as n →∞. Showing the lower semicontinuity of attractors.

It is important to notice that the the continuity of attractors is a consequence of the
convergence of the eigenvalues and eigenfunctions of the Laplace operator perturbed by a
varying potential in the domains Ωε as ε → 0. Therefore we have organized the results in
the following manner. Section 2 contains the Linear Theory and is divided into a survey
of results on spectral convergence, uniform estimates on the resolvent operators and the
convergence of the linear semigroups. In Section 3 we use the Linear Theory to obtain the
upper semicontinuity of attractors. In Section 4 we obtain the lower semicontinuity of the
set of equilibria and the continuity of unstable manifold to obtain the lower semicontinuity
of attractors.

2. LINEAR THEORY

In this section we analyze the behavior of the linear parts of the operators and prove
several results that will be used throughout the paper.

2.1. Spectral convergence characterization
It is very clear that the spectral behavior of the linear operators is extremely impor-

tant when analyzing the continuity properties of nonlinear dynamics. We include in this
section several results on the spectral behavior of the Laplace operators with Neumann
boundary conditions when the domain is perturbed from the exterior. We are interested in
obtaining characterizations that guarantee that the eigenvalues and eigenfunctions behave
continuously.

To fix the notations we consider the eigenvalue problems

{ −∆u + Vεu = λu, Ωε
∂u
∂n = 0, ∂Ωε

where ‖V ε‖L∞(Ωε) ≤ C and Vε|Ω0 → V0 weakly in L2(Ω0). We denote by {λε
n}∞n=1, for

ε ∈ [0, ε0], the set of eigenvalues of the operator−∆+Vε with Neumann boundary conditions
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268 J. M. ARRIETA AND A. N. CARVALHO

in Ωε and by {φε
n}ε

n=1 a corresponding family of orthonormalized eigenfunctions. We will
also denote Rε = Ωε \ Ω0.

We will say that the spectra behaves continuously at ε = 0, if we have that λε
n → λ0

n as
ε → 0 and the spectral projections converge in H1, that is, if a 6∈ {λ0

n}∞n=0, and λ0
n < a <

λ0
n+1, then if we define the projections P ε

a(ψε) =
∑n

i=1(φ
ε
i , ψε)φε

i then

‖P ε
a(ψε)− P 0

a (ψε)‖H1(Ω0) + ‖P ε
a(ψε)‖H1(Rε) → 0, as ε → 0

In order to characterize when the spectra behaves continuously we will need the following
auxiliary eigenvalue problem. Denote by τε the first eigenvalue of the following problem,




−∆u = τu, Rε

u = 0, ∂Rε ∩ ∂Ω0
∂u
∂n = 0, ∂Rε \ ∂Ω0

Observe that obviously τε > 0 and it can be characterized as follows

τε = min
φ∈H1(Ωε)

φ=0, in Ω0

∫

Ωε

|∇φ|2
∫

Ωε

|φ|2

We have the following useful characterization

Lemma 2.1. The following three statements are equivalent
i) The spectra of −∆ + Vε behaves continuously as ε → 0.
ii) τε →∞ as ε → 0.
iii) For any family of functions ψε with ‖ψε‖H1(Ωε) ≤ C then ‖ψε‖L2(Ωε\Ω0) → 0 as ε → 0.

Moreover, if any of the three statements above is true then the following also holds
iv) |Ωε \ Ω0| → 0 as ε → 0.

Remark 2. 1. A somehow similar statement of this lemma can be found in the works
of [1, 2]. We include here a proof for completeness.

Proof. That iii) implies ii) is easy since if there exists a sequence of ε → 0 with τε

bounded, then the eigenfunction associated to τε will have L2(Rε) norm equal one and the
H1(Ωε) norm bounded. Also, if iii) holds then iv) also holds, since we can always consider
ψε ≡ 1 ∈ H1(Ωε) and ‖ψε‖L2(Ωε\Ω0) = |Ωε \ Ω0| 12 → 0 as ε → 0.

That ii) implies iv) is also easy. If it were not true then we will have a positive η > 0
and a sequence of ε → 0 such that |Ωε \ Ω0| ≥ η. Let ρ = ρ(η) be a small number
such that |{x ∈ RN \ Ω0, dist(x,Ω0) ≤ ρ}| ≤ η/2. Let us construct a smooth function
γ(x) with γ(x) = 0 in Ω0, γ(x) = 1 x ∈ RN \ Ω0 with dist(x,Ω0) ≥ ρ. Then obviously
‖∇γ‖L2(Ωε) ≤ C and ‖γ‖L2(Ωε) ≥ (η/2)

1
2 . This implies that τε is bounded.
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That ii) implies iii) is proved as follows. If it is not true then there will exists a sequence
of ε → 0 and a sequence of functions φε with ‖φε‖H1(Ωε) ≤ C1 and ‖φε‖L2(Rε) ≥ C2 > 0,
for some constants C1 and C2 independent of ε. We can extract a subsequence, that
we denote by φε again, and a function φ0 ∈ H1(Ω0), such that φε → φ0 in L2(Ω0). If
we denote by E a continuous extension operator from H1(Ω0) to H1(RN ), which is also
continuous from L2(Ω0) to L2(Ωε), by Tε a restriction operator to Ωε, and denote by
φ̃ε = TεET0φε then we have that ET0φε → Eφ0 in L2(RN ) which implies that, since
the measure of Ωε \ Ω0 goes to zero by iv), then ‖φ̃ε‖L2(Rε) → 0 as ε → 0. Moreover
‖φ̃ε‖H1(Ωε) ≤ C. If we define the functions χε = φε−φ̃ε, then χε = 0 in Ω0, ‖χε‖H1(Ωε) ≤ C

and ‖χε‖L2(Rε) ≥ ‖φε‖L2(Rε) − ‖φ̃ε‖L2(Rε) which is bounded away from zero for ε small
enough. Using this function as a test function in the Raleigh quotient to obtain τε we will
deduce that τε is bounded for this sequence of ε, contradicting ii).

Let us prove now that i) implies ii). If this is not the case then we will have again a se-
quence of ε approaching zero and a positive number a with τε ≤ a. Choose n ∈ N with the
property that a < λn < λn+1. Denote by φε the eigenfunction with ‖φε‖L2(Rε) = 1
associated to τε. Observe then that ‖∇φε‖2L2(Rε)

≤ a. Consider the following fam-
ily of functions ψε

i = TεEφ0
i for i = 1, . . . , n. Then if we consider the linear subspace

[ψε
1, . . . , ψ

ε
n, φε] ⊂ H1(Ωε) we get that for ε small enough they are linearly independent.

As a matter of fact they are almost an orthonormal system in L2(Ωε). By the min-max
characterization of the eigenvalues (see Courant-Hilbert) we have that

λε
N+1 ≤ max

φ∈[ψε
1,...,ψε

n,φε]

∫

Ωε

|∇φ|2 +
∫

Ωε

Vε|φ|2
∫

Ωε

|φ|2

By direct calculation of the above quotient we obtain that λε
n+1 ≤ λ0

n + o(1), as ε → 0.
This contradicts the continuity of the eigenvalues given by i).

The proof that ii) implies i) can be deduced from [2]. Notice that since we have already
proved that ii) is equivalent to iii) we trivially have that hypothesis (H) from [2], page 61,
is satisfied (with the notations of [2], ūε can be taken identically zero). In particular we can
apply Theorem 2.1 of [2] which in the particular case that τε →∞ implies the continuity of
the spectra. Nevertheless we provide now a self contained proof that ii) implies i). Notice
first that we have already proved above that ii) implies iv). In particular we have that
|Ωε \ Ω0| → 0 as ε → 0. Considering the test functions TεEφ0

1, . . . , TεEφ0
n to bound λε

n we
easily obtain that lim supε→0 λε

n ≤ λ0
n.

In particular for fixed n, λε
n is bounded above by a constant independent of ε. Hence for

any sequence of ε approaching zero we can extract another subsequence, that we will still
denote by ε, with the property that λε

i → κi ≤ λ0
i , and R0φ

ε
i → ξi weakly in H1(Ω0) and

strongly in L2(Ω). Moreover, since for fixed n, the functions φε
n are bounded uniformly

in ε in H1(Ωε), applying iii), which is equivalent to ii), we get that ‖φε
n‖L2(Rε) → 0 as

ε → 0. In particular this implies that δnm =
∫
Ωε

φε
nφε

m → ∫
Ω0

ξnξm, which means that the
family of functions ξn is an orthonormal system in L2(Ω0). By passing to the limit in the
weak formulation of the equation it is not difficult to see that ξi is a weak solution of the
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270 J. M. ARRIETA AND A. N. CARVALHO

equation −∆ξi + V0ξi = κiξi and ∂ξi/∂n = 0. Since ‖ξi‖L2(Ω0) = 1 we have that κi is an
eigenvalue and ξi is an eigenfunction. Since κi ≤ λ0

i we necessarily get that κi = λ0
i and

ξi is an eigenfunction associated to λ0
i . This implies the convergence of the eigenvalues

and the convergence of the eigenfunctions in L2 and weakly in H1. To obtain the strong
convergence in H1 we just observe that

‖∇φε
i‖2L2(Ωε)

= λε
i −

∫

Ωε

Vε|φε
i |2 → λ0

i −
∫

Ω0

V0|φi|2 = ‖∇ξi‖2L2(Ω0)
≤ lim inf

ε→0
‖∇φε

i‖L2(Ω0)

from where we obtain that ‖∇φε
i‖L2(Ω0) → ‖∇ξi‖L2(Ω0) and ‖∇φε

i‖L2(Rε) → 0. This implies
the strong convergence in H1. This concludes the proof of the lemma.

2.2. Uniform bounds on the resolvent operators

Lemma 2.2. Consider a family of potentials Vε ∈ L∞(Ωε) with ‖Vε‖L∞(Ω)
≤ C and

Vε → V0 in L2(Ω0). Assume that for the operator −∆ + V0, 0 6∈ σ(−∆ + V0). Then for ε
small enough 0 6∈ σ(−∆ + Vε) and there exists a constant C independent of ε such that

‖(−∆ + Vε)−1gε‖H1(Ωε) ≤ C‖gε‖L2(Ωε), gε ∈ L2(Ωε)

Proof. By the continuity of the spectra given by Lemma 2.1 we have that for ε small
enough 0 6∈ σ(−∆ + Vε). In particular, for gε ∈ L2(Ωε) given we have a unique solution
wε ∈ H1(Ωε) of

{ −∆wε + Vεwε = gε, Ωε
∂wε

∂n = 0, ∂Ωε
(2.1)

We show first that ‖wε‖L2(Ωε) is bounded. Suppose not, then there is a subsequence,
which we again denote by {wε}, such that ‖wε‖L2(Ωε) → ∞. Consider w̃ε = wε

‖wε‖L2(Ωε)
,

then {
−∆w̃ε + Vεw̃ε = gε

‖wε‖L2(Ωε)
, Ωε

∂w̃ε

∂n = 0, ∂Ωε.
(2.2)

Multiplying this equation by w̃ε and integrating by parts we obtain that
∫

Ωε

|∇w̃ε|2 +
∫

Ωε

Vε|ũε|2 =
∫

Ωε

g̃ε

‖wε‖L2(Ωε)
w̃ε

from where it follows that ∫

Ωε

|∇w̃ε|2 ≤ C.

Hence we can extract a subsequence, which we again denote by {w̃ε}, such that

w̃ε
∣∣
Ω0

→ w̃0

{
strongly− L2(Ω0)
weakly−H1(Ω0).
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Let ξ ∈ H1(Ω0) and consider ξ̃ the extension of ξ to B. If we multiply the equation (2.2)
by ξ̃ ∈ H1(Ωε) and integrating by parts we have that

∫

Ωε

∇w̃ε∇ξ̃ +
∫

Ωε

Vεw̃εξ̃ =
∫

Ωε

gε

‖wε‖L2(Ωε)
ξ̃.

Now, note that

∣∣∣∣∣
∫

Ωε\Ω0

∇w̃ε∇ξ̃

∣∣∣∣∣ ≤ ‖∇w̃ε‖L2(Ωε\Ω0)‖∇ξ̃‖L2(Ωε\Ω0) → 0 as ε → 0
∣∣∣∣∣
∫

Ωε\Ω0

Vεw̃εξ̃

∣∣∣∣∣ ≤ ‖Vε‖L∞(Ωε)‖w̃ε‖L2(Ωε\Ω0)‖ξ̃‖L2(Ωε\Ω0) → 0 as ε → 0
∣∣∣∣
∫

Ωε

gε

‖wε‖L2(Ωε)
ξ̃

∣∣∣∣ ≤
‖gε‖L2(Ωε)

‖w̃ε‖L2(Ωε)
‖ξ̃‖L2(Ωε) → 0 as ε → 0

and letting n →∞ we have that

∫

Ω0

∇w̃0∇ξ +
∫

Ω0

V0w̃0ξ = 0.

Thus

−∆w̃0 + V0w̃0 = 0, Ω0
∂w̃0
∂n = 0, ∂Ω0.

(2.3)

which implies w̃0 = 0. Now, since ‖w̃ε‖H1(Ωε) is bounded, by Lemma 2.1 we have that
‖w̃ε‖L2(Ωε\Ω0) → 0 as n → ∞. Hence, necessarily 1 = ‖w̃ε‖L2(Ωε) → 0 which is a contra-
diction. Hence, we obtain that ‖wε‖L2(Ωε) is uniformly bounded in ε.

To show that ‖∇wε‖L2(Ωε) is uniformly bounded in eps we note that Vε are uniformly
bounded in L∞(Ωε) and that

∫

Ω0

|∇wε|2 = −
∫

Ω0

Vε|wε|2 +
∫

Ωε

gεwε.

This concludes the proof of the lemma.

Remark 2. 2. With the conditions of Lemma 2.2 we can even show the convergence of
the resolvent operators. As a matter of fact, if gε

∣∣
Ω0

→ g0 weakly in L2(Ω), then

‖(−∆ + Vε)−1gε − (−∆ + V0)−1g0‖H1(Ω0) + ‖(−∆ + Vε)−1gε‖H1(Ωε\Ω0) → 0, as ε → 0.

Notice that if we denote by wε = (−∆ + Vε)−1gε ∈ H1(Ωε) and w0 = (−∆ + V0)−1g0 ∈
H1(Ω0) then since ‖wε‖H1(Ωε) is uniformly bounded in ε, by Lemma 2.1 we have that
‖wε‖H1(Ωε\Ω0) → 0 as ε → 0.
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Moreover by extracting a subsequence and using the weak formulations of the equations
we can easily obtain that wε

∣∣
Ω0

→ w0 weakly in H1(Ω0) and strongly in L2(Ω0). Now,

multiplying the equations by wε and integrating by parts we have that

∫

Ωε

|∇wε|2 = −
∫

Ωε

Vεw
2
ε +

∫

Ωε

gεwε → −
∫

Ω0

V0w
2
0 +

∫

Ω0

g0w0 =
∫

Ω0

|∇w0|2.

from where we easily obtain the strong convergence in H1(Ω0).

2.3. Convergence of Linear Semigroups
With the continuity of the spectra of the operators −∆ + Vε we can obtain estimates

on the behavior of the linear semigroups that will be very useful for the analysis of the
nonlinear dynamics.

We have the following result

Proposition 2.1. Let a ∈ R and n ∈ N such that λ0
n < a < λ0

n+1. Consider the spectral
projections over the linear space generated by the first n eigenfunctions P ε

a defined in the
pervious section. Denote also by b a number such that b < λ0

1. There exists a γ < 1 and a
function θ(ε) with θ(ε) → 0 as ε → 0 such that

‖eAεtuε − e−A0tuε|Ω0
‖H1(Ω0) ≤ Mθ(ε)t−γe−bt‖uε‖L2(Ωε), uε ∈ L2(Ωε), t > 0

‖eAεt(I−P ε
a)uε−e−A0t(I−P 0

a )uε|Ω0
‖H1(Ω0) ≤ Mθ(ε)t−γe−at‖uε‖L2(Ωε), uε ∈ L2(Ωε), t > 0

‖eAεtuε‖H1(Ωε\Ω0) ≤ Mθ(ε)t−γe−bt‖uε‖L2(Ωε)

Proof. We will very much follow the lines given by [3], Proposition 2.1. Let us prove
the second inequality. So let us consider n and a given, satisfying the hypothesis of the
proposition. Notice that we can choose a constant M independent of ε such that

‖eAεt(I − P ε
a)uε‖H1(Ωε) ≤ Mt−

1
2 e−at‖uε‖L2(Ωε), uε ∈ L2(Ωε), t > 0, ε ∈ [0, ε0)

As it is done in [3] we separate the estimate for t small and t large.
Choose γ ∈ (α, 1) fixed. Let δ > 0 be a small parameter and let us consider two different

cases according to t ∈ (0, δ] or t > δ.
i) If t ∈ (0, δ] we easily check that

‖e−Aεt(I − P a
ε )uε − e−A0t(I − P a

0 )uε‖H1(Ω0) ≤ 2Mt−
1
2 e−at‖uε‖L2(Ωε)

≤ Mδγ− 1
2 t−γe−at‖u‖L2(Ωε)

(2.4)
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ii) If t > δ we proceed as follows. Notice first that we can always choose a positive number
l = l(δ) such that if z ≥ l then ze−2zt ≤ δt−γe−at for all t ≥ δ. Since we have λε

k
ε→0−→ λ0

k

and λ0
k

k→∞−→ +∞, there exists N = N(δ) > n such that λε
k ≥ l(δ), eps ∈ [0, ε0). Without

loss of generality we can assume that we have λ0
N(δ) < λ0

N(δ)+1. Hence, from the spectral
decompositions of the linear semigroups, we obtain

‖e−Aεt(I − P a
ε )uε − e−A0t(I − P a

0 )uε‖H1(Ω0) ≤

‖
N(δ)∑

k=n+1

e−λε
kt(uε, φ

ε
k)φε

k −
N(δ)∑

k=n+1

e−λ0
kt(uε, φ

0
k)P0φ

0
k‖H1(Ω0)

+‖
∞∑

N(δ)+1

e−λε
kt(uε, φ

ε
k)φε

k‖H1(Ω0) + ‖
∞∑

N(δ)+1

e−λ0
kt(uε, φ

0
k)φ0

k‖H1(Ω0) = I1 + I2 + I3

(2.5)
Analyzing I2, I3 and I1 respectively, we get

I2 ≤
∞∑

N(δ)+1

λε
ke−2λε

kt|(uε, φ
ε
n)|2 ≤ δt−γe−at‖uε‖L2(Ωε)

I3 ≤
∞∑

N(δ)+1

λ0
ke−2λ0

kt|(u0, φ
0
n)|2 ≤ δt−γe−at‖uε‖L2(Ωε)

I1 = ‖
N(δ)∑

k=n+1

e−λε
kt(uε, φ

ε
k)φε

k −
N(δ)∑

k=n+1

e−λ0
kt(uε, φ

0
k)φ0

k‖H1(Ω0)

≤ ‖
N(δ)∑

k=n+1

(e−λε
kt − e−λ0

kt)(uε, φ
ε
k)φε

k‖H1(Ω0) + ‖
N(δ)∑

k=n+1

e−λ0
kt((uε, φ

ε
k)φε

k − (uε, φ
0
k)φ0

k)‖H1(Ω0)

≤
N(δ)∑

k=n+1

((λε
k)

1
2 + 1)|e−λε

kt − e−λ0
kt|‖uε‖L2(Ωε)

+
k(δ)∑

i=r

e−µit‖
ni+1∑

k=ni+1

((uε, φ
ε
k)φε

k − (uε, φ
0
k)φ0

k)‖H1(Ω0)

Moreover, from the convergence of the eigenvalues and of the spectral projections, we
can find ε1(δ) ∈ (0, ε0) so that

N(δ)∑
n=1

((λε
k)

1
2 + 1)|e−λε

nt − e−λ0
nt| ≤ δt−γe−at, ε ∈ (0, ε1(δ))

k(δ)∑

i=r

e−µit‖
ni+1∑

k=ni+1

((uε, φ
ε
k)φε

k − (uε, φ
0
k)φ0

k)‖H1(Ω0) ≤

e−λ0
ntδ‖uε‖L2(Ωε) ≤ Cδt−γe−at‖uε‖L2(Ωε) ε ∈ (0, ε1(δ)).
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From the estimates for I1, I2 and I3 we obtain

‖e−Aεt(I − P ε
a)uε − e−A0t(I − P 0

a )uε‖H1(Ω0) ≤ Cδt−γe−at‖uε‖L2(Ωε), t > δ, ε ∈ (0, ε1(δ)).
(2.6)

Finally, since δ is an arbitrary small number, the inequalities (2.4) and (2.6) prove the
result.

The proof of the first inequality of the proposition is very similar to the one provided
for the second inequality. The role of a is played now by b and P ε

a = P 0
a = 0.

The proof for the third inequality is also very similar. Notice that we are estimating the
H1 norm in Ωε \ Ω0. Step i) is the same and for step ii) the sums I2 and I3 are estimated
in a similar way. The only difference is now for I1 where we will have

‖
N(δ)∑

k=1

e−λε
kt(uε, φ

ε
k)φε

k‖H1(Ωε\Ω0) ≤ e−λε
1t

N(δ)∑

k=1

|(uε, φ
ε
k)| sup

i=1,..,N(δ)

{‖φε
i‖H1(Ωε\Ω0)}

≤ e−λε
1tN(δ) sup

i=1,..,N(δ)

{‖φε
i‖H1(Ωε\Ω0)}‖uε‖L2(Ωε)

but since supi=1,..,N(δ){‖φε
i‖H1(Ωε\Ω0)} → 0 as ε → 0 we can always choose a ε1(δ) small

enough such that N(δ) supi=1,..,N(δ){‖φε
i‖H1(Ωε\Ω0)} ≤ δ. Hence

‖
N(δ)∑

k=1

e−λε
kt(uε, φ

ε
k)φε

k‖H1(Ωε\Ω0) ≤ e−λε
1tδ‖uε‖L2(Ωε) ≤ Cδt−γe−bt‖uε‖L2(Ωε)

and the proof continues as we did above. This concludes the proof of the proposition.

3. UPPER SEMICONTINUITY OF ATTRACTORS AND THE SET OF
EQUILIBRIA

In the previous section we have studied in detail the behavior of the linear parts of
the operators under the perturbation we are considering and have proved a result on the
continuity of the linear semigroups, Proposition 2.1. We will see in this section that the
attractors and the stationary states, solutions of the nonlinear elliptic problem, are upper
semicontinuous with respect to this perturbations.

To this end we will follow the ideas in [3] that relate the continuity of the linear semi-
groups with the continuity of the nonlinear semigroups for dissipative parabolic equations
by using the variation of constants formula. This in turn will imply the upper semiconti-
nuity of the attractors and the stationary states. See also [11] and [6] for other examples
that use a similar technique.

We will show the following result

Proposition 3.1. There exists a 0 ≤ γ < 1 and a function c(ε) with c(ε) → 0 as ε → 0
such that for each τ > 0 we have

‖Tε(t, uε)− T0(t, uε|Ω0
)‖H1(Ω0) ≤ M(τ)c(ε)t−γ , t ∈ (0, τ ], uε ∈ Aε, ε ∈ (0, ε0) (3.1)
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‖Tε(t, uε)‖H1(Ωε\Ω0) ≤ M(τ)c(ε)t−γ , t ∈ (0, τ ], uε ∈ Aε, ε ∈ (0, ε0) (3.2)

Moreover the attractors are upper semicontinuous at ε = 0 in H1(Ω0), in the sense that

sup
uε∈Aε

[
inf

u0∈A0
{‖uε|Ω0

− u0‖H1(Ω0)}
]
→ 0, as ε → 0 (3.3)

sup
uε∈Aε

‖uε‖H1(Ωε\Ω0) → 0, as ε → 0 (3.4)

Also, the stationary states are upper semicontinuous at ε = 0 in H1(Ω), in the sense that if
we denote by Eε, ε ∈ [0, ε0] the set of stationary states of (1.1), that is, the set of solutions
of the nonlinear elliptic problem, then

sup
uε∈Eε

[
inf

u0∈E0
{‖uε|Ω0

− u0‖H1(Ω0)}
]
→ 0, as ε → 0 (3.5)

Proof. We will follow the lines given by [3]. Notice that the nonlinear semigroups Tε(t)
are given by the variation of constants formula.

Tε(t, uε) = eAεtuε +
∫ t

0

eAε(t−s)f(Tε(s, uε))ds, ε ∈ [0, ε0) (3.6)

Hence, calculating Tε(t, uε)−T0(t, uε
∣∣
Ω0

) and with some elementary computations we obtain

‖Tε(t, uε)− T0(t, uε
∣∣
Ω0

)‖H1(Ω0) ≤ ‖eAεtuε − eA0t(uε
∣∣
Ω0

)‖H1(Ω0)+
∫ t

0

‖eAεtf(Tε(s, uε))− eA0tf(Tε(s, uε))∣∣
Ω0

‖H1(Ω0)ds

+
∫ t

0

‖eA0t(f(Tε(s, uε))∣∣
Ω0

− f(T0(s, uε
∣∣
Ω0

))‖H1(Ω0)ds ε ∈ [0, ε0)

Applying now Proposition 2.1 we get

‖Tε(t, uε)− T0(t, uε
∣∣
Ω0

)‖H1(Ω0) ≤ Mθ(ε)t−γe−bt‖uε‖L2(Ωε)

+Mθ(ε)
∫ t

0

(t− s)−γe−b(t−s)‖f(Tε(s, uε))‖L2(Ωε)

+M

∫ t

0

(t− s)−1/2e−b(t−s)C‖Tε(t, uε)− T0(t, uε
∣∣
Ω0

)‖H1(Ω0)

But since we have uniform bounds in L2(Ωε) in the attractors and f is a bounded func-
tion, the first two terms in the last inequality can be bounded by M(τ)θ(ε)t−γ . Applying
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now Gronwall’s lemma, see [10], we obtain statement (3.1). To obtain, (3.2) we just use
the variations of constants formula (3.6) and use the estimates in H1(Ωε \ Ω0) of Lemma
2.1

Now, the upper semicontinuity of the attractors in H1(Ω0), statement (3.3) follows
directly from (3.1) and the fact that A0 attracts ∪0<ε≤ε0Aε

∣∣
Ω0

in the topology of H1(Ω0),

see for instance [3, 8]. Statement (3.4) follows directly from (3.2) and from the invariance
properties of the attractors.

To show the upper semicontinuity in H1(Ω0) of the stationary states we will prove that
for any sequence of ε → 0 and for any uε ∈ Eε we can extract a subsequence, that we
still denote by ε, and obtain a u0 ∈ E0 such that uε|Ω0

→ u0 in H1(Ω). From the upper
semicontinuity of the attractors given by (3.3), we obtain the existence of a u0 ∈ A0 such
that uε|Ω0

→ u0 in H1(Ω) as ε → 0. To show that u0 ∈ E0 we first observe that for any
t > 0, ‖uε|Ω0

− T0(t, u0)‖H1(Ω) → ‖u0 − T0(t, u0)‖H1(Ω). Moreover, for a fixed τ > 0 and
for any t ∈ (0, τ) we have that,

‖uε|Ω0
− T0(t, u0)‖H1(Ω) = ‖Tε(t, uε)|Ω0

− T0(t, u0)‖H1(Ω)

≤ ‖Tε(t, uε)|Ω0
− T0(t, uε|Ω0

)‖H1(Ω) + ‖T0(t, u0)− T0(t, uε|Ω0
)‖H1(Ω) → 0, as ε → 0

where we have used that uε is a stationary state, the continuity of the semigroup T0 in
H1(Ω0) and (3.1). In particular we have that for each t > 0, u0 = T0(t, u0) which implies
that u0 is a stationary state. This concludes the proof of the Proposition.

Remark 3. 1. Observe that from (3.4) we also have that

sup
uε∈Eε

‖uε‖H1(Ωε\Ω0) → 0, as ε → 0

4. CONTINUITY OF EQUILIBRIA AND THEIR UNSTABLE
MANIFOLDS

In order to obtain lower semicontinuity of attractors we must ensure that the set of
equilibria Eε behaves lower-semicontinuously. In this section we prove that, for the sort of
domain perturbations considered here, Eε is a finite set with constant cardinality; that is,
Eε = {uε

1, · · · , uε
n}, 0 ≤ ε ≤ ε0. This set behaves continuously with respect to ε; that is,

max
1≤k≤n

{‖uε
k − u0

k‖H1(Ω0) + ‖uε
k‖H1(Ωε\Ω0)} ε→0−→ 0.

It follows from the results in Section 3 that if εn → 0 and uεn is a solution for (P )ε, then

‖uεn − u0‖H1(Ω0) + ‖uεn‖H1(Ωεn\Ω0) → 0

where u0 is a solution to P0.
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We also prove, in this section, that the unstable manifolds of equilibrium solutions are
continuous as ε → 0. For that we use the convergence of equilibria to obtain the continuity
of the spectrum of the linearization around such equilibria and consequently the continuity
of the unstable manifolds.

4.1. Continuity of the Set of Equilibria
Consider the following family of elliptic problems

(P )ε

{
∆u + f(u) = 0 in Ωε
∂u
∂n = 0 in ∂Ωε.

for each 0 ≤ ε ≤ ε0 (ε0 > 0).
Assume that the problem (P )0 has exactly m distinct solutions, u0

1,...,u
0
m and that zero

is not in the spectrum of any of the operators ∆ + f ′(u0
i )I : H2

n(Ω0) ⊂ L2(Ω0) → L2(Ω0),
i = 1, ..., m. We show that, there is ε0 > 0 such that, for any 0 ≤ ε ≤ ε0, there are yet
exactly m distinct solutions uε

1,...,u
ε
m for the (P )ε. Furthermore,

‖uε
k − u0

k‖H1(Ω0) + ‖uε
k‖H1(Ωε\Ω0) → 0, as ε → 0, 1 ≤ k ≤ m.

To show the existence and uniqueness of a solution for (P )ε in a neighborhood of u0
k

we proceed as follows. Consider the extension operator E : H1(Ω0) → H1(B) and let
u0,ε

k = E(u0
k)∣∣

Ωε

and define the operators

Ak,ε : H1(Ωε) → H1(Ωε)

Ak,ε(uε) =
(
−∆ + f ′(u0,ε

k )I
)−1 (

f(uε) + f ′(u0,ε
k )uε

)
.

(4.1)

The operator Ak,ε is a continuous compact operator for each 0 ≤ ε ≤ ε0, k = 1, ..., m.
We firstly show the following lemma

Lemma 4.1. There exists δ > 0 such that the operator Ak,ε is a strict contraction from
Bδ(u

0,ε
k ) ⊂ H1(Ωε) into itself.

Prova: Given vε, wε ∈ Bδ(u
0,ε
k ), we have that:

‖Ak,ε(vε)−Ak,ε(wε)‖H1(Ωε)

≤ ‖
(
−∆ + f ′(u0,ε

k )I
)−1

‖L(L2(Ωε),H1(Ωε)‖f(vε)− f(vε)− f ′(u0,ε
k )(vε − wε)‖L2(Ωε)

≤ C‖f(vε)− f(vε)− f ′(u0,ε
k )(vε − wε)‖L2(Ωε).

(4.2)
Where we have used Lemma 2.2 to obtain that

{‖
(
−∆ + f ′(u0,ε

k )I
)−1

‖L(L2(Ωε),H1(Ωε), 0 ≤ ε ≤ ε0}

is bounded. Next we study ‖f(vε)− f(vε)− f ′(u0,ε
k )(vε − wε)‖L2(Ωε). Note that

|f(vε(x))− f(vε(x))− f ′(u0,ε
k (x))(vε(x)− wε(x))| ≤ C̄γε(x)|vε(x)− uε|
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where γε(x) = min{1, |vε(x) − u0,ε
k (x)| + |vε(x) − u0,ε

k (x)|}. It follows, from the definition
of γε, that ‖γε‖L∞(Ωε) ≤ 1, 0 ≤ ε ≤ ε0 and that, for any 1 ≤ p < ∞, ‖γε‖Lp(Ωε) → 0 as
ε → 0. Hence

‖f(vε)− f(vε)− f ′(u0,ε
k )(vε − wε)‖L2(Ωε) ≤ C̄‖γε(uε − vε)‖L2(Ωε)

Now if ϕε = uε − vε we denote by ϕ̃ε = E(ϕε
∣∣
Ω0

)∣∣
Ωε

. Then

‖ϕ̃ε − ϕε‖L2(Ωε) = ‖ϕ̃ε − ϕε‖L2(Ωε\Ω0) ≤ 1
τε
1
‖∇ϕ̃ε −∇ϕε‖L2(Ωε\Ω0)

≤ C 1
τε
1
(‖ϕε‖H1(Ωε) + ‖ϕ̃ε‖H1(B)) ≤ C 1

τε
1
(‖ϕε‖H1(Ωε) + ‖ϕε‖H1(Ω0))

≤ C 2
τε
1
‖ϕε‖H1(Ωε),

where we have used that E : H1(Ω0) → H1(B) is bounded and τ ε
1 is the first eigenvalue of

−∆ in Ωε\Ω0 with Dirichlet boundary condition in ∂Ω0 and Neumann boundary condition
in ∂Ωε. Now

‖γεϕε‖L2(Ωε) ≤ ‖γε(ϕε − ϕ̃ε‖L2(Ωε\Ω0) + ‖γεϕ̃ε‖L2(Ωε\Ω0) + ‖γεϕε‖L2(Ω0)

≤ ‖γε‖L∞(Ωε)‖ϕε − ϕ̃ε‖L2(Ωε\Ω0) + ‖γε‖
L

2N
N+2 (Ωε\Ω0)

‖ϕ̃ε‖H1(B) + ‖γε‖
L

2N
N+2 (Ω0)

‖ϕε‖H1(Ω0)

≤
(

C 2
τε
1

+ C̃|Ωε\Ω0|N+2
2N + ‖γε‖

L
2N

N+2 (Ω0)

)
‖ϕε‖H1(Ωε)

where we have used that E : H1(Ω0) → H1(B) is bounded. Now, given ρ < 1 choose ε0
such that C̄C 2

τε
1

+ C̃|Ωε\Ω0|N+2
2N ≤ ρ

2 and δ small so that C̄‖γε‖
L

2N
N+2 (Ω0)

< ρ
2 . Then

C̄

(
C

2
τ ε
1

+ C̃|Ωε\Ω0|
N+2
2N + ‖γε‖

L
2N

N+2 (Ω0)

)
≤ ρ < 1

and Ak,ε is a contraction from Bδ(u
0,ε
k ) ⊂ H1(Ωε) into itself.

4.2. Continuity of Unstable Manifolds
In this section we show that the local unstable manifolds of uε

k are continuous at ε = 0.
This follows from standard invariant manifold theory and the convergence of the spectrum
proved before for the linearization around such equilibria. The invariant manifold result
presented here is reproduced from classical invariant manifold results as in [10]. Its proof
is adapted to encompass the possibility that the space changes according to a parameter
and to track the dependence of the invariant manifold upon the parameter. After this we
show that the unstable manifolds are close for small ε.

Let uε
k be a family of solutions for (2.1). Then, we have already proved that

‖uε
k − u0

k‖H1(Ω0) + ‖uε
k‖H1(Ωε\Ω0)

ε→0→ 0.

Rewriting (1.1) for w = u− uε
k to deal with the neighborhood of uε

k we arrive at

wt = ∆w + f ′(uε
k)w + f(w + uε

k)− f(uε
k)− f ′(uε

k)w, in Ωε
∂u
∂n = 0, in ∂Ωε

(4.3)
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Let λε
1, λ

ε
2, λ

ε
3, · · · denote the eigenvalues of (∆ + f ′(uε

k)I) and ϕε
1, ϕ

ε
2, ϕ

ε
3, · · · are corre-

sponding orthonormalized eigenfunctions. If λ0
1, · · · , λ0

n are positive and λ0
n+1, λ

0
n+2, · · · are

negative, let β > 0 and ε0 > 0 such that λε
1 ≥ · · · ≥ λε

n ≥ β > 0 > −β ≥ λε
n+1 ≥ λε

n+2 · · · ,
0 ≤ ε ≤ ε0. Denote by Wε = [ϕε

1, · · · , ϕε
n] and W⊥

ε = {ψ ∈ H1(Ωε) :
∫
Ωε

ψφ = 0, ∀φ ∈ W}.
Let Pε : H1(Ωε) → H1(Ωε) be the orthogonal projections on Wε

Pεψ =
n∑

i=1

(∫

Ωε

ψϕε
i

)
ϕε

i

and P⊥ε = I − Pε.

If ψ ∈ Wε then ψ =
∑n

i=1

(∫

Ωε

ψϕε
i

)
ϕε

i and

‖ψ‖Wε =

(
n∑

i=1

(1 + λε
i)

(∫

Ωε

ψϕε
i

)2
) 1

2

and since λε
i → λ0

i , 1 ≤ i < ∞, we have that Wε is isomorphic to Rn through the
isomorphism

Wε 3 ψ
Tε→

(∫

Ωε

ψϕε
1, · · · ,

∫

Ωε

ψϕε
n

)
∈ Rn.

Tε is bounded with bounded inverse T−1
ε and the norms of Tε and T−1

ε are uniformly
bounded 0 ≤ ε ≤ ε0.

Now we decompose the equation (4.3) in the following way. If w is a solution to (4.3)
we write

w =
n∑

i=1

viϕ
ε
i + z

where vi =
∫

Ωε

wϕε
i . Hence

v̇i = λε
ivi +

∫

Ωε

[f(w + uε
k)− f(uε

k)− f ′(uε
k)w] ϕε

i

and

zt = ∆z + f ′(uε
k)z+f(w + uε

k)− f(uε
k)− f ′(uε

k)w

−
n∑

i=1

(∫

Ωε

[f(w + uε
k)− f(uε

k)− f ′(uε
k)w]ϕε

)
ϕε

i

∂z
∂n = 0.

We write v = (v1, · · · , vn)>,

F ε
i (v, z) =

∫

Ωε

[
f

(
n∑

i=1

viϕ
ε
i + z + uε

k

)
− f(uε

k)− f ′(uε
k)

(
n∑

i=1

viϕ
ε
i + z

)]
ϕε,
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F (v, z) = (F1(v, z), · · · , Fn(v, z))> and

Gε(v, z) = f

(
n∑

i=1

viϕ
ε
i + z + uε

k

)
− f(uε

k)− f ′(uε
k)w −

n∑

i=1

Fi(v, z)ϕε
i .

Hence, we have that, Fε(0, 0) = 0, Gε(0, 0) = 0 and given ρ > 0 there exists δ > 0 such
that ‖v‖Rn + ‖z‖H1(Ωε) < δ implies

‖Fε(v, z)‖Rn < ρ,
‖Gε(v, z)‖H1(Ωε) < ρ,
‖Fε(v, z)− Fε(ṽ, z̃)‖Rn < ρ(‖v − ṽ‖Rn + ‖z − z̃‖H1(Ωε)),
‖Gε(v, z)−Gε(ṽ, z̃)‖H1(Ωε) < ρ(‖v − ṽ‖Rn + ‖z − z̃‖H1(Ωε))

0 ≤ ε ≤ ε0. We can extend Fε, Gε outside Bδ(uε
k) without changing the above bounds.

Denote by Aε = (∆ + f ′(uε
k)I)∣∣

W⊥
ε

, Bε = diag(λε
1, · · · , λε

n). Then, equation (4.3) can be

rewritten in the following abstract form

v̇ = Bεv + Fε(v, z)
ż = Aεz + Gε(v, z), (4.4)

v ∈ Rn, z ∈ W⊥
ε , where

supv,z ‖Fε(v, z)‖Rn < ρ,
supv,z ‖Gε(v, z)‖H1(Ωε) < ρ,
‖Fε(v, z)− Fε(ṽ, z̃)‖Rn < ρ(‖v − ṽ‖Rn + ‖z − z̃‖H1(Ωε)),
‖Gε(v, z)−Gε(ṽ, z̃)‖H1(Ωε) < ρ(‖v − ṽ‖Rn + ‖z − z̃‖H1(Ωε)).

Also, for some positive M,β, independent of ε, 0 ≤ ε ≤ ε0

‖eAεtz‖H1(Ωε) ≤ Me−βt‖z‖H1(Ωε), t ≥ 0,

‖eAεtz‖H1(Ωε) ≤ Mt−
1
2 e−βt‖z‖L2(Ωε), t ≥ 0,

‖eBεtv‖Rn ≤ Meβt‖v‖Rn , t ≤ 0.

Then, for suitably small ρ, there is an unstable manifold for uε
k

Sε = {(v, z) : z = σ∗ε (v), v ∈ Rn}

where σ∗ε : Rn → W⊥
ε is bounded and Lipschitz continuous. Furthermore

sup
v∈Rn

‖σ∗ε (v)− σ∗0(v)‖H1(Ω0)
ε→0→ 0.
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Proof of the Results. The first step is to prove the existence of the invariant manifold.
For D > 0, ∆ > 0, 0 < θ < 1, given, if ρ > 0 is such that

ρMβ−
1
2 Γ( 1

2 ) ≤ D

ρM2(1 + ∆)β−
1
2 ≤ ∆

β − ρM(1 + ∆) ≥ β
2

ρMΓ( 1
2 )

[
1

β
1
2

+ 1 + ∆
β − ρM(1 + ∆)

]
≤ θ < 1.

let σ : Rn → W⊥
ε satisfying

|‖σε|‖ := sup
v∈Rn

‖σε(v)‖H1(Ωε) ≤ D, ‖σε(v)− σε(ṽ)‖H1(Ωε) ≤ ∆‖v − ṽ‖Rn . (4.5)

Let vε(t) = ψ(t, τ, η, σε) be the solution of

dvε

dt
= Bεvε + Fε(vε, σε(vε)), for t < τ, vε(τ) = η, (4.6)

and define

Φ(σε)(η) =
∫ τ

−∞
eAε(τ−s)Gε(vε(s), σε(vε(s)))ds. (4.7)

Note that

‖Φ(σε)(·)‖H1(Ωε) ≤
∫ τ

−∞
ρM(τ − s)−

1
2 e−β(τ−s)ds = ρMβ−

1
2 Γ(

1
2
). (4.8)

From the choice of ρ we have that, ‖Φ(σε)(·)‖H1(Ωε) ≤ D. Next, suppose that σε and σ̃ε are
functions satisfying (4.5), η, η̃ ∈ Rn and denote vε(t) = ψ(t, τ, η, σε), ṽε(t) = ψ(t, τ, η̃, σ̃ε).
Then,

vε(t)− ṽε(t) = eBε (t−τ)(η − η̃) +
∫ t

τ

eBε (t−s)[Fε(vε, σε(vε))− Fε(ṽε, σ̃ε(ṽε))]ds.
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And

‖vε(t)− ṽε(t)‖Rn≤ Meβ(t−τ)‖η − η̃‖Rn + M

∫ τ

t

eβ(t−s)‖Fε(vε, σε(vε))− Fε(ṽε, σ̃ε(ṽε))‖Rnds

≤ Meβ(t−τ)‖η − η̃‖Rn

+ρM

∫ τ

t

e−β(t−s)
(‖σε(vε)− σ̃ε(ṽε)‖H1(Ωε) + ‖vε − ṽε‖Rn

)
ds

≤ Meβ(t−τ)‖η − η̃‖Rn

+ρM

∫ τ

t

eβ(t−s)
(‖σε(ṽε)− σ̃ε(ṽε)‖H1(Ωε) + (1 + ∆)‖vε − ṽε‖Rn

)
ds

≤ Meβ(t−τ)‖η − η̃‖Rn

+ρM

∫ τ

t

eβ(t−s)
(
(1 + ∆)‖vε − ṽε‖Rn + |‖σε − σ̃ε|‖H1(Ωε)

)
ds

≤ Meβ(t−τ)‖η − η̃‖Rn

+ρM(1 + ∆)
∫ τ

t

eβ(t−s)‖vε − ṽε‖Rnds + ρM |‖σε − σ̃ε|‖H1(Ωε)

∫ τ

t

eβ(t−s)ds.

Let

φ(t) = e−β (t−τ)‖vε(t)− ṽε(t)‖Rn .

Then,

φ(t) ≤ M‖η − η̃‖Rn + ρM

∫ τ

t

eβ(τ−s)ds|‖σε − σ̃ε|‖H1(Ωε) + M ρ (1 + ∆)
∫ τ

t

φ(s)ds.

By Gronwall’s inequality

‖vε(t)− ṽε(t)‖Rn≤ [M‖η − η̃‖Rneβ (t−τ) + ρM

∫ τ

t

eβ(t−s)ds|‖σε − σ̃ε|‖H1(Ωε)]e
−ρM(1+∆)(t−τ)

≤ [M‖η − η̃‖Rn + ρMβ−1|‖σε − σ̃ε|‖H1(Ωε)]e
−ρM(1+∆)(t−τ)

Thus,

‖Φ(σε)(η)− Φ(σ̃ε)(η̃)‖H1(Ωε) ≤ M

∫ τ

−∞
(τ − s)−

1
2 e−β(τ−s)‖Gε(vε, σε(vε))−Gε(ṽε, σ̃ε(ṽε))‖L2(Ωε)ds

≤ ρM

∫ τ

−∞
(τ − s)−

1
2 e−β(τ−s)

(‖σε(vε)− σ̃ε(ṽε)‖H1(Ωε) + ‖vε − ṽε‖Rn

)
ds

≤ ρM

∫ τ

−∞
(τ − s)−

1
2 e−β(τ−s) [(1 + ∆)‖vε − ṽε‖Rn + |‖σε − σ̃ε|‖] ds.

Using the estimates for ‖vε − ṽε‖Rn we obtain

‖Φ(σε)(η)−Φ(σ̃ε)(η̃)‖≤ ρMΓ(
1
2
)
[
β−

1
2 +

1 + ∆
β−ρM(1 + ∆)

]
|‖σε−σ̃ε|‖+ρM2(1+∆)β−

1
2 ‖η−η̃‖Rn .

Let

Iσ(ε) = ρM Γ(
1
2
)

[
β−

1
2 +

1 + ∆
β − ρM(1 + ∆)

]
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and

Iη(ε) = ρM2(1 + ∆)β−
1
2 .

It is easy to see that, given θ < 1, there exists a ρ0 such that, for ρ ≤ ρ0, Iσ(ε) ≤ θ and
Iη(ε) ≤ ∆ and

‖Φ(σε)(η)− Φ(σ̃ε)(η̃)‖H1(Ωε) ≤ ∆‖η − η′‖Rn + θ|‖σε − σ̃ε|‖. (4.9)

The inequalities (4.8) and (4.9) imply that G is a contraction map from the class of
functions that satisfy (4.5) into itself. Therefore, it has a unique fixed point σ∗n = Φ(σ∗n)
in this class.

It remains to prove that S = {(v, σ∗ε (v)) : v ∈ Rn} is an invariant manifold for (4.4).
Let (v0, z0) ∈ S, z0 = σ∗ε (v0). Denote by v∗ε (t) the solution of the following initial value
problem

dv

dt
= Bε v + Fε(v, σ∗ε (v)), v(0) = v0.

This defines a curve (v∗ε (t), σ∗ε (v∗ε (t))) ∈ S, t ∈ R. But the only solution of

ż = Aεz + Gε(v∗ε (t), σ∗ε (v∗ε (t))),

which remains bounded as t → −∞ is

z∗(t) =
∫ t

−∞
eAε(t−s)f(v∗ε (s), σ∗ε (v∗ε (s))ds = σ∗ε (v∗ε (t)).

Therefore, (v∗ε (t), σ∗ε (v∗ε (t))) is a solution of (4.4) through (v0, z0) and the invariance is
proved.

Next we show that the fixed points σ∗ε depend continuously upon ε at ε = 0. This is
accomplished in the following manner. If 0 ≤ ε ≤ ε0 is such that the unstable manifold is
given by the graph of σ∗ε , 0 ≤ ε ≤ ε0, we want to show that

sup
η∈Rn

‖σ∗ε (η)− σ∗0(η)‖H1(Ω0) = |‖σ∗ε − σ∗0 |‖.

It follows from Proposition 2.1 that

‖σ∗ε (η)∣∣
Ω0

− σ∗0(η)‖H1(Ω0) ≤
∫ τ

−∞
‖eAε(τ−s)Gε(vε, σ

∗
ε (vε))∣∣

Ω0

− eA0(τ−s)G0(v0, σ
∗
0(v0))‖H1(Ω0)ds

≤ Mθ(ε)
∫ τ

−∞
eβ(τ−s)(τ − s)−α‖Gε(vε, σ

∗
ε (vε))‖L2(Ω0)ds

+M

∫ τ

−∞
eβ(τ−s)(τ − s)−

1
2 ‖Gε(vε, σ

∗
ε (vε))∣∣

Ω0

−G0(v0, σ
∗
0(v0))‖L2(Ω0)ds

≤ o(1) + ρMβ−
1
2 Γ( 1

2 ) |‖σ∗ε − σ∗0 |‖+ ρM(1 + ∆)
∫ τ

−∞
e−β(τ−s)(τ − s)−

1
2 ‖vε − v0‖Rnds.
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Thus, it is enough to estimate ‖vε − v0‖Rn . Note that

‖vε − v0‖Rn≤
∫ τ

t

‖eBε(t−s) − eB0(t−s)‖ ‖Fε(vε, σ
∗
ε (vε))‖Rnds

+
∫ τ

t

‖eB0(t−s)‖ ‖Fε(vε, σ
∗
ε (vε))− F0(v0, σ

∗
0(v0))‖Rnds

≤ ρMβ−1[o(1) + |‖σ∗ε − σ∗0 |‖] + ρM(1 + ∆)
∫ τ

t

eβ(t−s)‖vε − v0‖Rnds

Therefore

‖vε − v0‖Rn ≤ ρMβ−1 [o(1) + |‖σ∗ε − σ∗0 |‖] e−ρM(1+∆)(τ−t)

which proves that

sup
η∈Rn

‖σ∗ε (η)− σ∗0(η)‖H1(Ω0)
ε→0→ 0.

We have just proved the continuity of the local unstable manifolds of equilibria and these
conclude the proof of lower semicontinuity of attractors.
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