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Under fairly general conditions one can prove that the asymptotic dynam-
ics of dissipative semi-linear autonomous parabolic problems is upper semi-
continuous with respect to perturbations in the model. In this paper we prove,
for such problems, that the asymptotic dynamics behaves continuously (upper
and lower semi-continuously) with respect to perturbations of the spatial do-
main. We prove the continuity with respect to domain perturbations of the set
of stationary states and use this, together with the continuity of eigenvalues
and eigenfunctions of an elliptic operator to obtain the continuity of the local
unstable manifolds of equilibria and consequently the continuity of attractors.
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1. INTRODUCTION

Let ε0 be a positive number and Ωε ⊂ RN , N ≤ 4, 0 ≤ ε ≤ ε0 be a family of bounded
smooth domains. Also assume that, for any K ⊂⊂ Ω0 and U ⊃ Ω0, U ⊂ RN open, there
exists εK,U > 0 such that K ⊂ Ωε ⊂ Ω̄ε ⊂ U , 0 ≤ ε ≤ εK,U . We say that Ωε, ε > 0 is
a perturbation of Ω0. Our aim is to study the continuity of the asymptotic dynamics of
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254 E. A. M. ABREU AND A. N. CARVALHO

parabolic problems of the form

ut = ∆u + f(u), x ∈ Ωε

u = 0, x ∈ ∂Ωε

u(0) = u0 ∈ H1
0 (Ωε)

(1.1)

where f : R→ R is a C2(R) function satisfying the growth condition

|f ′(u)| ≤ c(|u| 4
N−2 + 1), if N = 3, 4, or

lim
|u|→∞

|f ′(u)|
eθ|u|2 = 0, ∀ θ > 0, if N = 2

(1.2)

(no growth condition is needed for N = 1) and the dissipativeness condition

lim sup
|u|→∞

f(u)
u

≤ 0. (1.3)

The condition (1.2) ensures that the problem (1.1) is locally well posed; that is, for each
u0 ∈ H1(Ωε) the problem (1.1) has a unique η-regular solution which depends continuously
(in H1(Ωε)) on the initial data u0 (this solution is classical), see [2] for the proof. If, in
addition to the growth condition (1.2), f satisfies the dissipativeness condition (1.3) then
all solutions R 3 t 7→ u(t, u0) ∈ H1

0 (Ωε) of (1.1) exist for all t ≥ 0. Define the continuous
nonlinear semigroup {Tε(t) : H1

0 (Ωε) → H1
0 (Ωε) : t ≥ 0} by R+ 3 t 7→ Tε(t)u0 := u(t, u0) ∈

H1
0 (Ωε), were u(t, u0) ∈ C([0,∞), H1

0 (Ωε))∩C1((0,∞), C2(Ωε)) is the classical solution to
(1.1).

If f satisfies (1.2) and (1.3), it is shown in [3] that the problem (1.1) has a global attractor
Aε and that

sup
0≤ε≤ε0

sup
x∈Ωε

sup
u∈Aε

|u(x)| < ∞. (1.4)

With this information in hand we can assume without loss of generality that f is bounded
in C2(R) (f can be cut without changing the attractor in such a way that it is C2(R)-
bounded). Hereafter we assume that f , f ′ and f ′′ are bounded.

Here we note that the attractor Aε is a subset of H1
0 (Ωε). This is saying that as the

parameter varies the space where Aε lives changes and in order to compare such sets we
proceed in the following manner: Let B be a bounded smooth subset of Rn such that
∪0≤ε≤ε0Ωε ⊂ B and extend the solutions of (1.1) to B by zero outside Ωε and consider
them as functions in H1(B). With this understanding we may compare the sets Aε. We
say that the family of attractors {Aε : 0 ≤ ε ≤ ε0} is upper semi-continuous at ε = 0 if
limε→0 supu∈Aε

d(u,A0) = 0 (here d(a, C) = infc∈C ‖a− c‖H1(B)) and we say that {Aε : 0 ≤
ε ≤ ε0} is lower semi-continuous at ε = 0 if limε→0 supu∈A0

d(u,Aε) = 0.
In this paper we prove that the family of attractors {Aε : 0 ≤ ε ≤ ε0} for (1.1) is upper

and lower semi-continuous at ε = 0 in H1
0 (B). The upper semi-continuity of attractors is, in

general, a simple matter depending only on uniform bounds for the family of attractors (we
will see that the bounds obtained in [3] and some uniform embedding results are enough to
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ensure upper semi-continuity), the lower semi-continuity is a much more delicate matter.
A first and decisive task that must be addressed, to obtain the lower semi-continuity, is
the continuity of the set of equilibria Eε for (1.1) (this is shown later in the paper). In
order to be able to prove the continuity {Eε : 0 ≤ ε ≤ ε0} we assume that for ε = 0
all the equilibria are hyperbolic (therefore only a finite number m of equilibria exist) and
prove that for small ε, Eε has exactly m equilibria and these converge to the equilibria for
(1.1) with ε = 0. Once we have obtained the continuity of the set of equilibria we employ
the gradient structure of (1.1) to obtain the lower semi-continuity of attractors using the
results in [7, 8]. This is done in the following manner: Once we have proved the continuity
of the set of equilibria for (1.1), we have that the spectrum of the linearization around
each equilibria behaves continuously with ε and as a consequence of the results in [7] we
obtain the lower semicontinuity of the unstable manifold of each equilibrium. It follows
from Theorem 4.10.8 in [8] that the attractors Aε are lower-semicontinuous at ε = 0.

This paper is organized as follows: In Section 2 we study the upper semicontinuity of
attractors proving some uniform embedding results, in Section 3 we prove that if E0 consists
only of hyperbolic equilibria then the family {Eε, 0 ≤ ε ≤ ε0} is continuous at ε = 0.

2. UPPER SEMICONTINUITY OF ATTRACTORS

In this section we will prove that the family of attractors Aε for (1.1) is upper semicon-
tinuous at ε = 0. We start with the continuity of the spectrum for elliptic operators in
such domains. The perturbations that we are allowing are well behaved in the following
sense, if (λVε

j,ε)ε>0 ⊂ R; (ϕVε
j,ε)ε>0 ⊂ H1

0 (Ωε), j ∈ N are respectively the eigenvalues and
eigenfunctions of the problem

(λ)ε

{ −∆ϕ + Vεϕ = λϕ in Ωε,
ϕ = 0 in ∂Ωε,

where Vε : RN → R, 0 ≤ ε ≤ ε0, are such that ‖Vε‖L∞(RN ) ≤ C, 0 ≤ ε ≤ ε0 and

Vε
L2(RN )→ V0, then we must have that

λVε
j,ε −→ λV0

j , ϕVε
j,ε −→ ϕV0

j as ε −→ 0 and ∀j ∈ N, (2.1)

where (λV0
j )j∈N ⊂ R and (ϕV0

j )j∈N ⊂ H1
0 (Ωε) are respectively the eigenvalues and eigenfunc-

tions of the problem (λ)0. We simply write λj,ε, ϕj,ε for λ0
j,ε, ϕ

0
j,ε and λj , ϕj for λ0

j,0, ϕ
0
j,0.

See [1, 4] and references therein.
A series of uniform bounds for attractors of parabolic problems is obtained in [3]. Next

we state the results of [3] that will be used to obtain upper semi-continuity of attractors.

Proposition 2.1. Assume that (1.2) and (1.3) are satisfied. Then, for each C0 > 0,
there is a constant C1 > 0 such that uf(u) ≤ C0u

2 + C1|u|. If 2C0 < λ1 and we denote by
φ the solution of

∆φε + C0φε + C1 = 0 x ∈ Ωε,
φε = 0 x ∈ ∂Ωε
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256 E. A. M. ABREU AND A. N. CARVALHO

then, 0 ≤ φ ∈ L∞(Ωε), sup0≤ε≤ε0 ‖φε‖L∞(Ωε) < ∞, limt→∞ |u(t, x, u0)| ≤ φε(x), uniformly
in x ∈ Ω̄ε and for u0 in bounded subsets of H1

0 (Ωε). In particular, we have that for any
v ∈ Aε we have |v(x)| ≤ φε(x), 0 ≤ ε ≤ ε0.

and, if H2
D(Ωε) denotes the space H2(Ωε) ∩H1

0 (Ωε) with the norm

‖u‖H2
D(Ωε) = ‖∆u‖L2(Ωε) + ‖u‖L2(Ωε)

we have the following uniform embedding result

Theorem 2.1. Assume f satisfies (1.2) and (1.3). Then, problem ( (1.1)) has a global
compact attractor, Aε, in H1

0 (Ωε) such that

(a)Aε ⊂ Σ(φε) := {u ∈ L∞(Ωε), |u(x)| ≤ φε(x), a.e. x ∈ Ωε}
(b)sup0≤ε≤ε0 supu0∈Aε

supt∈R ‖u(t, u0)‖H1(Ωε) < ∞.

(c)sup0≤ε≤ε0 supu0∈Aε
supt∈R ‖ut(t, u0)‖H1(Ωε) < ∞.

(d)sup0≤ε≤ε0 supv∈Aε
‖v‖H2

D(Ωε) < ∞.

Before we proceed we prove the following uniform embedding result

Theorem 2.2. The embedding bellow are bounded uniformly for 0 ≤ ε ≤ ε0

1.E1,0
ε : H1

0 (Ωε) ↪→ L
2N

N−2 (Ωε),
2.E2,0

ε,p : H2
D(Ωε) ↪→ Lp(Ωε), 1 ≤ p ≤ 2N

N−4 , se N > 4 and ∀ p ≥ 1, se N = 4,
3.E2,0

ε,p : H2
D(Ωε) ↪→ L∞(Ωε), se N < 4.

Furthermore, the embedding operator

E2,1
ε : H2

D(Ωε) ↪→ H1
0 (B) (2.2)

is uniformly bounded 0 ≤ ε ≤ ε0 and if uε ∈ H2
D(Ωε) is such that ‖uε‖H2

D(Ωε) ≤ 1, 0 ≤ ε ≤ ε0
then {uε, 0 ≤ ε ≤ ε0} is relatively compact in H1(B).

Proof: The proof of (1.) follows immediately extending all functions to B and using the
embedding of H1(B) into L

2N
N−2 (B). We prove (2.) only in the case N > 4 (the remaining

case follows similarly). If f ∈ L2(Ωε) and

−∆u + u = f, in Ωε

u = 0, in ∂Ωε
(2.3)

we will prove that u ∈ L
2N

N−4 (Ωε) and that there is a constant independent of ε and of u, f
such that ‖u‖

L
2N

N−4 (Ωε)
≤ c‖f‖L2(Ωε). For that let φ = max{u, 0}, multiply (2.3) by φr−1
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and integrate by parts to obtain

4r − 1
r2

∫

Ωε

|∇φ
r
2 |2 +

∫

Ωε

(φ
r
2 )2 =

∫

Ωε

∆uφr−1 +
∫

Ωε

φr =
∫

Ωε

fφr−1

≤ ‖f‖L2(Ωε)‖φr−1‖L2(Ωε)

≤ ‖f‖L2(Ωε)‖φ
r
2 ‖

2
r′

L
4
r′ (Ωε)

making 4
r′ = 2N

N−2 we have that r
2 = N−2

N−4 and

4c
r − 1
r2

‖φ r
2 ‖2

L
2N

N−2 (Ωε)
≤ 4

r − 1
r2

∫

Ωε

|∇φ
r
2 |2 +

∫

Ωε

(φ
r
2 )2 ≤ ‖f‖L2(Ωε)‖φ

r
2 ‖

2
r′

L
2N

N−2 (Ωε)

where we have used the embedding of H1(Ωε) into L
2N

N−2 (Ωε). Finally, we have that

cN(N−4)
(N−2)2 ‖φ‖L

2N
N−4 (Ωε)

= 4c r−1
r2 ‖φ r

2 ‖
2
r

L
2N

N−2 (Ωε)
≤ ‖f‖L2(Ωε)

which is the desired result.
To prove (3.) we note that, for q ≥ p, Lq(Ωε) is embedded in Lp(Ωε) and the embedding

constant depends only on p, q and |Ωε|. Let k ≥ 0, φ = max{u− k, 0} and Ak = {x ∈ Ωε :
u(x) > k}. Multiplying the equation (2.3) by φ and integrating by parts we arrive at

c‖φ‖2
L

2N
N−2 (Ωε)

≤
∫

Ωε

|∇φ|2 +
∫

Ωε

φ2 =
∫

Ωε

fφ ≤ ‖f‖L2(Ωε)‖φ‖L2(Ωε)

for some c > 0 independent of ε. Note that

‖φ‖Lq(Ωε)|Ak|−
N+2
2N +1− 1

q ≤ ‖φ‖
L

2N
N−2 (Ωε)

.

From this, for q = 1 and q = 2, we have,

c‖φ‖2L1(Ωε)
≤ ‖f‖L2(Ωε)‖φ‖L

2N
N−2 (Ωε)

|Ak|1+ 2
N− 1

2 .

Since 2
N − 1

2 > 0 the result follows from Lemma 5.1 in [10], page 71.
The embedding (2.2) is trivial from the identity

∫

Ωε

|∇uε|2 = −
∫

Ωε

∆uεuε, ∀uε ∈ H2
D(Ωε),

from the embedding (2.) and from Cauchy-Schwarz inequality. The compactness is proved
in the following manner:

a) If ũε denote the extension of uε to B by zero we have that there is a function ũ ∈ H1(B)
and a sequence εn → 0 such that ũεn → ũ weakly in H1(B), strongly in L2(B) and almost
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everywhere. It follows that ũ = 0 almost everywhere in B\Ω0 and therefore the trace of ũ
in ∂Ω0 is zero. Let u be the restriction of ũ to Ω0. The above considerations are saying
that u ∈ H1

0 (Ω0).
b) If

fεn(x) =
{

∆uεn
(x) x ∈ Ωεn

0, x ∈ B\Ω0

we have that ‖fεn‖L2(B) ≤ 1, for all n ≥ 1 and therefore it has a weakly convergent
subsequence (which we again denote by fεn

) to f ∈ L2(B). It is easy to see that f = 0
almost everywhere in B\Ω0. From this we have that for every ϕ ∈ C∞c (Ω0) and sufficiently
small ε ∫

B
uεn∆ϕ =

∫

Ωε

uεn∆ϕ =
∫

Ωεn

∆uεϕ =
∫

B
fεϕ

taking the limit we obtain that
∫

Ω0

u∆ϕ =
∫

Ω0

fϕ, ∀ϕ ∈ C∞c (Ω0)

and f = ∆u ∈ L2(Ω0). Hence, u ∈ H2
D(Ω0).

Thus

‖∇ũεn‖2L2(B) = ‖∇uεn‖2L2(Ωεn ) = 〈∆uεn , uεn〉L2(Ωεn ) → 〈f, u〉L2(Ω0) =
∫

B
|∇ũ|2.

This proves that ũεn → ũ strongly in H1(B) and we have the result.
With the uniform bounds given in Theorem 2.1 we obtain the following result

Theorem 2.3. The problem (1.1), for 0 < ε ≤ ε0, has an attractor Aε and the family
{Aε : 0 < ε ≤ ε0} is uniformly bounded in H1(B) (recall that the functions of H1

0 (Ωε) are
extended by zero outside Ωε). Then the family {Aε : 0 ≤ ε ≤ ε0} is upper semi-continuous
at ε = 0 in H1(B).

Prova: It follows from the results in [3] that the problems (1.1) have global attractors Aε,
0 < ε ≤ ε0, which are uniformly bounded in H1(B).

Now, for each ε take a global trajectory uε(t) lying on the attractor Aε.
From the results in [3] we obtain that

‖∇uε(t)‖L2(B), ‖∇uε
t(t)‖L2(B), ‖∆uε‖L2(Ωε)

are uniformly bounded for 0 ≤ ε ≤ ε0 and t ∈ R.
This implies that for fixed t, uε(t) is relatively compact in H1(B).
Hence, by Arzelá-Ascoli Theorem (taking subsequences if necessary), we have that

uε → u locally uniformly in C(R,H1(B)).
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Following an standard argument we consider the weak formulation of (1.1),
∫

Ωε

uε
tϕ = −

∫

Ωε

∇uε∇ϕ +
∫

Ωε

f(uε)ϕ

for all smooth test functions ϕ. For each test function φ ∈ C∞0 (Ω0), with support K, there
is a constant εK such that K ⊂⊂ Ωε, 0 ≤ ε ≤ εK and the integrals in the above identity
happens in Ω0.

From the convergence of uε, we can pass to the limit and obtain that the limiting function
u satisfies ∫

Ω0

utϕ = −
∫

Ω0

∇u∇ϕ +
∫

Ω0

f(u)ϕ

for each φ ∈ C∞0 (Ω0). Thus, u is a globally defined solution to (1.1), with ε = 0, which is
bounded in H1(Ω0) ∩ C(Ω̄0). Hence u(t) ∈ A0 for all t ∈ R.

The rest of the proof now follows in an standard way (see, for example, [9]).

3. CONTINUITY OF THE SET OF EQUILIBRIA

Let Ω0 ⊂ Rn (n ≥ 3) be a bounded smooth domain and f : R −→ R be a C2(R) function
with

|f(u)| ≤ cf , |f ′(u)| ≤ c′f , |f ′′(u)| ≤ c′′f ∀u ∈ R (3.1)

where cf and c′f are positive constants.
In this section we will address the following problem

(P )ε

{
∆u + f(u) = 0 in Ωε

u = 0 in ∂Ωε.

for each 0 ≤ ε ≤ ε0.
Assume that the problem (P )0 has exactly m distinct solutions, u1,...,um and that zero

is not an eigenvalue of the operator ∆ + f ′(ui)I for i = 1, ..., m. Our goal is to show that,
for small perturbations of the domain Ω0, there are yet exactly m distinct solutions for the
perturbed problem and, when the perturbed domains Ωε converge (in the sense explained
in the introduction) to the domain Ω0, they converge to the solutions of the problem (P )0.

Once we have shown that the problem (P )ε has exactly m solutions u1,ε,...,um,ε, we show
that ui,ε −→ ui strongly in H1(B), i = 1, ..., m. Here, the functions uk, k = 1, ..., m denote
the m solutions of the problem (P )0.

The idea is to show that there are compact continuous maps Fk and Fk,ε, associated
respectively to the problems (P )0 and (P )ε. Then we look for fixed points of these oper-
atores and show that for sufficiently small ε we have exactly m solutions for the problem
(P )ε and that Fk,ε(wk,ε) = wk,ε −→ F(uk) = uk, ∀k = 1, ..., m.

It follows from the convergence of eigenvalues that, if λ = 0 is in the resolvent set of the
operator (−∆ + V0I) then, there exists C̄ > 0 such that

lim sup
ε→0

‖(−∆ + VεI)−1‖L(L2(Ωε,L2(Ωε) ≤ C̄.
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From this, we obtain that

lim sup
ε→0

‖(−∆ + VεI)−1‖L(L2(Ωε,H1(Ωε) ≤ C, (3.2)

for some C > 0. To prove this let f ∈ L2(Ωε) and u ∈ H2
D(Ωε) be such that

−∆u + Vεu = f.

Multiplying this equation by u and integrating by parts we obtain that

‖∇u‖2L2(Ωε)
≤ C̄(C̄‖Vε‖L∞(Ωε) + 1)‖f‖2L2(Ωε)

and the result follows.
Next we define de operators Fε, Fk,ε and verify some facts about them. Let (Fε)ε≥0,

where F0 = F , simply putting

Fε : H1
0 (Ωε) −→ H1

0 (Ωε)
vε 7→ Fε(vε)

(3.3)

in such a way that

(P )o,ε

{ −∆Fε(vε) = f(vε) in Ωε,
Fε(vε) = 0 in ∂Ωε.

Since this problem has a unique solution, see [[5]-Cap. X], the operator Fε is well defined.

Proposition 3.1. The fixed points of Fε, converge to the fixed points of F0.

Proof: In fact, suppose that (vε)ε>0 ⊂ H1
0 (Ωε), for each ε > 0 is a fixed point of Fε.

So ∫

Ωε

∇vε∇ϕε =
∫

Ωε

f(vε)ϕε , ∀ϕε ∈ H1
0 (Ωε). (3.4)

From the hypothesis f(u)u < 0 for |u| ≥ R and for some R > 0, we conclude that the
sequence vε is uniformly bounded in H1

0 (Ωε). From this we conclude that there is a sequence
εn → 0 such that (vεn) (viewed as a sequence in H1(B)) converges to v ∈ H1(B) weakly
in H1(B) and strongly in L2(B). Since v = 0 almost everywhere in B\Ω0 we have that
v ∈ H1

0 (Ω0).
From the hypotheses on Ωε, for each K ⊂⊂ Ω0, there is εK such that, K ⊂⊂ Ωε

0 ≤ ε ≤ εK . Then, if φ ∈ C∞0 (Ω0) we have that φ ∈ C∞0 (Ωε) 0 ≤ ε ≤ εK , K = supp(φ).
Thus, for n large,

∫

Ω0

∇vεn∇φ =
∫

Ω0

f(vεn)φ. (3.5)

Taking the limit as n →∞ we have that
∫

Ω0

∇v∇φ =
∫

Ω0

f(v)φ. (3.6)
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The above argument holds for each compact K ⊂⊂ Ω0, and we have
∫

Ω0

∇v∇φ =
∫

Ω0

f(v)φ ∀φ ∈ H1
0 (Ω0). (3.7)

Since v ∈ H1
0 (Ω0) we have that v = F0(v).

Since f is bounded we have that {‖vεn
‖H2

D(Ωεn ) : n ≥ 1} is a bounded sequence. It
follows from Theorem 2.2 that {vεn

} converges strongly in H1(B) to v.
We know that F0 has exactly m fixed points. Let us show that, for sufficiently small ε,

(Fε)ε>0 has at least m fixed points.

Proposition 3.2. The maps Fε defined in (P )0,ε have at least m fixed points in H1
0 (Ωε)

for sufficiently small ε > 0.

Proof: Note that, proceeding as before we can prove that each sequence of solutions
to (P )0,ε converges to a solution of (P )0.

Now, since the solutions u1,...,um of (P )0 are distinct, we can chose δ > 0, such that
the balls Bδ(uk) ⊂ H1(Ω0), k = 1, ...,m; are pairwise disjoint. Define the function uk,ε

k = 1, ..., m, as the unique solution of the problem

(P )k,ε

{ −∆uk,ε = f(ũk) in Ωε

uk,ε = 0 in ∂Ωε.

Here, ũk represents the extension by zero outiside Ω0. Proceeding as in Proposition 3.1,
we can show that uk,ε −→ uk as ε −→ 0 strongly in H1(B). Hence, for small ε > 0, we still
have Bδ(ui,ε)

⋂
Bδ(uj,ε) = ∅, for i, j = 1, ...,m e i 6= j (balls in H1

0 (Ωε)). Also note that
Bδ(uk,ε) ⊂ H1

0 (Ωε), for k = 1, ..., m.
To conclude the existence of solutions for the problem (P )0,ε, let us define the following

auxiliary map

Fk,ε(uε) = (−∆ + f ′(uk,ε))
−1 (f(uε) + f ′(uk,ε)uε) . (3.8)

for k = 1, ...,m, uε ∈ H1
0 (Ωε). Note that Fk,ε is continuous and compact for each k =

1, ...,m.
To conclude we will use the following lemma

Lemma 3.1. Fk,ε is a strict contraction from Bδ(uk,ε) into itself; that is, Fk,ε(Bδ(uk,ε)) ⊂
Bδ(uk,ε) and Fk,ε is a contraction.

Proof: Given vε, wε ∈ Bδ(uk,ε), we have that:

‖Fk,ε(vε)−Fk,ε(wε)‖H1
0 (Ωε) ≤ ‖Tk,ε‖L‖f(vε)− f(vε)− f ′(uk,ε)(vε − wε)‖L2(Ωε) (3.9)

where Tk,ε = (−∆− f ′(uk,ε))
−1 and L = L(L2(Ωε,H

1(Ωε). Using

f(vε)− f(wε)− f ′(uk,ε)(vε − wε) = Rwk,ε
, (3.10)
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where, from the fact that f ′′ is bounded, |Rwk,ε
| ≤ c(|vε − uk,ε| + |wε − uk,ε|)(vε − wε).

Hence
∫

Ωε

|Rwk,ε
|2≤ c

∫

Ωε

(|vε − uk,ε|2 + |wε − uk,ε|2)|vε − wε|2

≤ c

[(∫

Ωε

|vε − uk,ε|N
)2

+
(∫

Ωε

|wε − uk,ε|N
)2

] (∫

Ωε

|vε − wε|
2N

N−2

)2

.

Using Theorem 2.2, (1.) we have that ‖Rwk,ε
(vε − wε)‖L2(Ωε) ≤ c̃δ‖vε − wε‖H1(Ωε), for

N ≤ 4. So,

‖Fk,ε(vε)−Fk,ε(wε)‖H1
0 (Ωε) ≤ c̃ δ‖Tk,ε‖L ‖vε − wε‖H1(Ωε). (3.11)

Note that, from (3.2),

‖Tk,ε‖L ≤ C (3.12)

with C independent of ε. With this, for sufficiently small δ > 0, we obtain that

c̃ C δ < 1. (3.13)

Hence, Fk,ε is a contraction.
Conclusion of the Proof of Proposition 3.2 Now, in view of Lemma 3.1, we can apply
the Banach Contraction Principle to the operator Fk,ε in the closed set Bδ(uk,ε) to obtain
a fixed point uε ∈ Bδ(uk,ε). With this we conclude the existence of at least m solutions to
the problem (P )0,ε.

In what follows we prove that, for small enough ε, there are exactly m equilibrium points
for (1.1); that is, Fk,ε has exactly m fixed points. This is to say that the perturbed problem
(P )0,ε has exactly m solutions for sufficiently small ε > 0.

We start with the following Corollary of the Proposition 3.2.

Corollary 3.1. The operator Ak,ε has a unique fixed point in the ball Bδ(uk,ε).

We know that each sequence of solutions of the problems (P )0,ε converge, as ε → 0,
to a solution of the problem (P )0 (See Proposition 3.1). In particular, fixed points of Fε

converge to fixed points of F0. Hence, recalling that there exists a unique fixed point
satisfying

‖uε − uk,ε‖H1
0 (Ωε) ≤ δ (3.14)

for ε > 0 small and for all k, we conclude that

Proposition 3.3. The fixed points uε of Fε that are in the neighborhood of uk,ε; that
is, uε ∈ Bδ(uk,ε) are, for suitably small ε, the only fixed points of Ak,ε.
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Proof: Let ε1 be such that Fk,ε has a unique fixed point in Bδ(uk,ε), 0 ≤ ε ≤ ε1, 1 ≤ k ≤ m.
Assume that there is a sequence εn such that uεn

is a fixed point of Fk,εn
such that

‖uεn
− uk,εn

‖L2(Ωεn ) > δ, n = 1, 2, 3 · · · .
From Proposition 3.1 there is u ∈ H1

0 (Ω0) such that uεn −→ u strongly in H1(B) as
n →∞ and that u ≡ uk for some 1 ≤ k ≤ m. From this we have that

lim sup
ε→0

‖uεn
− uk,εn

‖H1(Ωε) ≤ lim
ε→0

{‖uεn
− uk‖H1(B) + ‖uk − uk,εn

‖H1(B)} = 0. (3.15)

Thus, uεn
∈ Bδ(uk,εn

) for suitably large n which is a contradiction and proves the result.

This last result is telling us that for suitably small ε > 0, there are no fixed points of the
operator Fk,ε outside the ball Bδ(uk,ε) for if that was not the case a fixed point outside such
balls would eventually enter these balls and contradicting the uniqueness of fixed points in
these balls. Here the essential feature is the independence of δ relatively to ε. With this,
we have that the problem (P )0,ε has precisely m solution for small ε > 0.
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