Bilipschitz determinacy of quasihomogeneous germs

Alexandre Cesar Gurgel Fernandes*

Centro de Ciências, Universidade Federal do Ceará Av. Humberto Monte, s/n Campus do Pici - Bloco 914 Fortaleza, Ceará, Brazil

and

Maria Aparecida Soares Ruas†

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil

We obtain estimates for the degree of bilipschitz determinacy of quasihomogeneous function-germs. April, 2002 ICMC-USP

1. INTRODUCTION

A basic problem in Singularity Theory is the local classification of mappings module diffeomorphisms. In 1965, H. Whitney justified the rigidity of the classification problem by C^1-diffeomorphism giving the following example:

$$F_t(x, y) = xy(x - y)(x - ty); \quad 0 < t < 1$$

which presents the following phenomenon: for any $t \neq s$ in $I = (0, 1)$ it is not possible to construct a C^1-diffeomorphism $\phi : (\mathbb{R}^2, 0) \rightarrow (\mathbb{R}^2, 0)$ such that $F_t = F_s \circ \phi$. This motivated the classification of mappings by “isomorphisms” weaker than diffeomorphisms.

There is an extensive literature related to C^r-equivalence ($1 \leq r < \infty$) of map-germs, among them [5], [4] and [1] which are more closely related to this work. However, only few

* Research partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, (CNPq), Brazil, grant # 140499/00-8.
† Research partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, (CNPq), Brazil, grant # 300066/88-0, and by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil, grant # 97/10735-3.
recent works deal with the problem of bilipschitz classification of map-germs. This work is inspired in a recent paper by J.-P. Henry and A. Parusinski [2], where they show that the bilipschitz equivalence of analytic function-germs admits continuous moduli. We obtain estimates for the degree of bilipschitz determinacy of quasihomogeneous function-germs. Examples are given to show that the estimates are sharp.

2. BILIPSCHITZ EQUIVALENCE

Let $\lambda \in \mathbb{R}$ be a positive number. A mapping $\phi : U \subset \mathbb{R}^n \to \mathbb{R}^p$ is called λ-Lipschitz, or simply Lipschitz if it satisfies:

$$\|\phi(x) - \phi(y)\| \leq \lambda \|x - y\| \quad \forall \ x, y \in U.$$

When $n = p$ and ϕ has a Lipschitz inverse, we say that ϕ is bilipschitz.

Two germs $f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ are called bilipschitz equivalent if there exists a bilipschitz map-germ $\phi : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ such that $f = g \circ \phi$.

Example 2.2.1. Let $f, g : (\mathbb{R}, 0) \to (\mathbb{R}, 0)$ be given by $f(x) = x, g(x) = x^3$. It is easy to show that f and g are not bilipschitz equivalent. On the other hand, there is a homeomorphism $\phi : (\mathbb{R}, 0) \to (\mathbb{R}, 0)$ such that $f = \phi \circ g$.

Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be the germ of an analytic function,

$$f(x) = f_m(x) + f_{m+1}(x) + \cdots,$$

with f_i a homogeneous form of degree i, and $f_m \neq 0$. We denote by $m_f := m$, the multiplicity of f. We say that f has non-degenerate tangent cone if $0 \in \mathbb{R}^n$ is the only point in \mathbb{R}^n in which

$$\frac{\partial f_m}{\partial x_1} = \cdots = \frac{\partial f_m}{\partial x_1} = 0.$$

Proposition 2.2.2. Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be the germ of an analytic function. Then

$$m_f = \text{ord}_r \left[\sup_{B(0,r)} |f| \right],$$

where $B(0, r)$ denote the ball centered at the origin with radius r.

Proof. Let $\alpha = \text{ord}_r \left[\sup_{B(0,r)} |f| \right]$. Write

$$f(x) = f_m(x) + f_{m+1}(x) + \cdots$$
with \(f_i \) a homogeneous form of degree \(i \), and \(f_m \neq 0 \). Let \(x = (x_1, \ldots, x_n) \) be such that \(f_m(x) \neq 0 \). Then, given \(r > 0 \) we have

\[
|f(rx)| = r^m|f_m(x) + rf_{m+1}(x) + \cdots| \\
\geq K r^m
\]

for some constant \(K > 0 \), hence \(m \geq \alpha \).

On the other hand, from the Curve Selection Lemma, there exists an analytic arc \(\gamma : [0, \epsilon) \to \mathbb{R}^n \), \(\gamma(0) = 0 \), such that

\[
\alpha = \text{ord}_r |f(\gamma(r))|
\]

and \(|\gamma(r)| \leq r \) for each \(r > 0 \). Since \(\gamma(0) = 0 \), we can write \(\gamma(r) = r\tilde{\gamma}(r) \) with \(\lim_{r \to 0} \tilde{\gamma}(r) < \infty \). Therefore,

\[
|f(\gamma(r))| = r^m|f_m(\tilde{\gamma}(r)) + rf_{m+1}(\tilde{\gamma}(r)) + \cdots| \\
\leq L r^m
\]

for some constant \(L > 0 \). Hence, \(m \leq \alpha \).

Corollary 2.2.3. Let \(f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0) \) be germs of analytic functions. If \(f \) and \(g \) are bilipschitz equivalent, then \(m_f = m_g \).

The corollary above in the complex case was proved by J.-J. Risler and D. Trotman in [3]. It is obvious that the converse statement is false, but we can prove the following result

Proposition 2.2.4. Let \(F_t : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0) \) be a smooth family of smooth function-germs. If \(m_{F_t} \) is constant and \(F_t \) has non-degenerate tangent cone for each \(t \), then for each \(t \neq s \), \(F_t \) and \(F_s \) are bilipschitz equivalent.

The result above will follow as consequence of Theorem 3.3.3.

Corollary 2.2.5. The family (1) satisfies: \(F_t \) and \(F_s \) are bilipschitz equivalent \(\forall \ t, s \in (0, 1) \).

It is valuable to observe that the Proposition 2.2.4 does not guarantee the non-rigidity of the bilipschitz classification problem for analytic functions. In fact, J.-P. Henry and A. Parusinski ([2]) presented the family \(F_t : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0) \) given by \(F_t(x, y) = x^3 - 3t^2xy^2 + y^6 \) which satisfies: for any \(t \neq s \in (0, \frac{1}{2}) \) there is no bilipschitz map-germ \(\phi : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0) \) such that \(F_t = F_s \circ \phi \). The proof is based on the analysis of the expansion of the germs of the family along each arc of their polar curves. The argument in [2] also holds in the real case, that is, the following holds:
The family $F_t : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ given by $F_t(x, y) = x^3 - 3t^2 xy^2 + y^6$ satisfies: for any $t \neq s \in (0, \frac{1}{2})$ there is no bilipschitz map $\phi : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ such that $F_t = F_s \circ \phi$.

Note that F_t is a deformation of the quasihomogeneous germ $f = x^3 + y^6$ which has an isolated singularity at origin. Therefore, it is natural to ask for which $\theta(x, y)$ the family $f + t\theta$ is bilipschitz trivial.

3. Bilipschitz Determinacy of Quasihomogeneous Germs

Let $f_t : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$, $t \in I$ (an interval in \mathbb{R}), be a smooth family of smooth function-germs. That is, there is a neighborhood U of 0 in \mathbb{R}^n and a smooth function $F : U \times I \to \mathbb{R}$ such that $F(0, t) = 0$ and $f_t(x) = F(x, t)$ $\forall t \in I, \forall x \in U$. We call f_t strongly bilipschitz trivial when there is a continuous family of λ-Lipschitz map-germs (vector field) $v_t : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ such that

$$\frac{\partial f_t}{\partial t}(x) = (df_t)_x(v_t(x))$$

$\forall t \in \mathbb{R}$ and $\forall x$ near 0 in \mathbb{R}^n.

Theorem 3.3.1. If f_t is bilipschitz trivial, then for each $t \neq s \in I$ there is a bilipschitz map-germ $\phi : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ such that $f_t = f_s \circ \phi$.

The above theorem is known as a result of Thom-Levine type and its proof is immediate, since the flow of a Lipschitz vector field is bilipschitz.

Let E_n be the space of smooth function-germs $(\mathbb{R}^n, 0) \to \mathbb{R}$. Given $f \in E_n$, we denote $Nf(x) = \sum \left[\frac{\partial f}{\partial x_i}(x)\right]^2$. We say that $Nf(x)$ satisfies a Lojasiewicz condition if there exist constants $c > 0$ and $\alpha > 0$ such that $Nf(x) \geq c\|x\|^\alpha$.

Fix the weights (r_1, \ldots, r_n). We recall that a function f is called quasihomogeneous with respect to the given weights if there is a number d such that f satisfies the following equation:

$$f(\lambda \cdot x) = \lambda^d(x_1, \ldots, x_n)$$

$\forall \lambda \in \mathbb{R}$ and $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, where $\lambda \cdot x = (\lambda^{r_1}x_1, \ldots, \lambda^{r_n}x_n)$. With respect to the given weights, for each monomial $x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, we define $\text{fil}(x^\alpha) = \sum_{i=1}^{n} \alpha_i r_i$. We define a filtration in the ring E_n via the function $\text{fil}(f) = \min\{\text{fil}(x^\alpha) : (\frac{\partial f}{\partial x_i})(0) \neq 0\}$, for each $f \in E_n$. We can extend this definition to E_{n+1}, the ring of 1-parameter families of smooth function-germs in E_n, by defining $\text{fil}(x^\alpha t^\beta) = \text{fil}(x^\alpha)$.

Let $(r_1, \ldots, r_n; 2k)$ be fixed. The standard control function of type $(r_1, \ldots, r_n; 2k)$ is $\rho(x) = x^{2\alpha_1} + \cdots + x^{2\alpha_n}$, where the α_i are chosen such that the function ρ is quasihomogeneous of type $(r_1, \ldots, r_n; 2k)$.
Lemma 3.3.2. Let \(h(x) \) be a quasihomogeneous polynomial function of type \((r_1, \ldots, r_n; 2k)\), with \(r_1 \leq \cdots \leq r_n \), \(\rho \) the standard control function of same type that \(h \) and \(h_t(x) \) a deformation of \(h \) such that:

\[
\text{fil}(h_t) \geq 2k + r_n, \quad t \in [0, 1].
\]

Then the function \(\frac{h_t(x)}{\rho(x)} \) is \(c \)-Lipschitz, with \(c \) independent of \(t \).

Proof. Without loss of generality, we can suppose that \(h_t(x) \) is quasihomogeneous of type \((r_1, \ldots, r_n; d)\) where \(d \geq 2k + r_n \). We consider \(G_t(x, y) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) given by \(G_t(x, y) = |\rho(y)h_t(x) - \rho(x)h_t(y)| \), \(m_t(x, y) = \|x - y\|\rho(x)\rho(y)\) and \(M = \{(x, y, t) : G_t(x, y) = 1\} \). Since \(M \) is closed, the number \(c = \inf\{m_t(x, y) : (x, y, t) \in M\} \) is positive.

Now, let \(x, y \in \mathbb{R}^n \) be sufficiently near the origin \(x \neq 0 \), \(y \neq 0 \) and \(x \neq y \). Let \(\lambda > 0 \) be such that \(G_t(\lambda \cdot x, \lambda \cdot y) = 1 \), that is,

\[
G_t(x, y) = \frac{1}{\lambda^{2k+d}}
\]

On the other hand, we use that \(\lambda > 1 \) to obtain:

\[
m_t(\lambda \cdot x, \lambda \cdot y) = \lambda^{4k}\|\lambda \cdot x - \lambda \cdot y\|\rho(x)\rho(y)
\leq \lambda^{4k+r_n}\|x - y\|\rho(x)\rho(y)
\]

\[
= \lambda^{4k+r_n}m_t(x, y)
\]

\[
\therefore
\]

\[
m_t(x, y) \geq \frac{1}{\lambda^{4k+r_n}} c.
\]

Now, we use that \(\lambda > 1 \), \(d \geq 2k + r_n \), (3), (3) and we obtain the following inequality \(m_t(x, y) \geq cG_t(x, y) \), that is,

\[
\|\frac{h_t(x)}{\rho(x)} - \frac{h_t(y)}{\rho(y)}\| \leq c^{-1}\|x - y\|.
\]

Theorem 3.3.3. Let \(f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) be the germ of a quasihomogeneous polynomial function of type \((r_1, \ldots, r_n; d)\), \(r_1 \leq \cdots \leq r_n \) with isolated singularity. Let \(f_t(x) = f(x) + t\Theta(x, t), t \in [0, 1], \) be a smooth deformation of \(f \). If \(\text{fil}(\Theta) \geq d + r_n - r_1 \), then \(f_t \) admits a strong bilipschitz trivialization along \(I = [0, 1] \).

Proof. We can see that for each \(i \) there exists a \(s_i \) such that \(\frac{\partial f}{\partial x_i} \) is quasihomogeneous of the type \((r_1, \ldots, r_n; s_i)\), \(s_i = d - r_i \).
Let N^*f be defined by

$$N^*f = \sum \left[\frac{\partial f}{\partial x_i} \right]^{2\alpha_i},$$

where $\alpha_i = \frac{k}{s_i}$ and $k = \text{l.c.m.}(s_i)$. Therefore N^*f is a quasihomogeneous control function of the type $(r_1, \ldots, r_n; 2k)$.

The lemma below is proved in [4].

Lemma 3.3.4. There exist constants $0 < c_2 < c_1$ such that

$$c_2 \rho(x) \leq N^*f_t(x) \leq c_1 \rho(x).$$

We have the following equation:

$$\frac{\partial f_t}{\partial t} N^*f_t = df_t(W),$$

where W is given by

$$W = \sum W_i \frac{\partial}{\partial x_i} \text{ where } W_i = \frac{\partial f_t}{\partial t} \left[\frac{\partial f}{\partial x_i} \right]^{2\alpha_i-1}.$$

Since $\text{fil} \left(\frac{\partial f_t}{\partial t} \right) \geq d + r_n - r_1$ and

$$\text{fil} \left(\left[\frac{\partial f_t}{\partial x_i} \right]^{2\alpha_i-1} \right) = (2\alpha_i - 1)\text{fil} \left(\frac{\partial f_t}{\partial x_i} \right) = (2\alpha_i - 1)(d - r_i) = 2K - d + r_i \geq 2k - d + r_1$$

we have that $\text{min} \text{fil}(W_i) \geq \text{fil}(\Theta) + 2k - d + r_1 \geq 2k + r_n$.

Let $v: \mathbb{R}^n \times \mathbb{R}, 0 \to \mathbb{R}^n \times \mathbb{R}, 0$ be the vector field given by $\frac{W}{\sqrt{N^*f_t}}$. From Lemma 3.3.2, it follows that v is a Lipschitz vector field.

Finally the equation $(\frac{\partial f_t}{\partial t})(x) = (df_t)(v(x,t))$ gives the strong bilipschitz triviality of the family $f_t(x)$ along a small open interval around $t = 0$. Since the same argument is true for each $t \in I$, the proof is complete.

The following result shows that the estimate given in Theorem 3.3.3 is sharp.

Proposition 3.3.5. Let $f_t: (\mathbb{R}^2, 0) \to (\mathbb{R}, 0); \ t \in I = (-\delta, \delta) \subset \mathbb{R}$ be given by

$$f_t(x, y) = \frac{1}{3}x^3 - \frac{1}{2}x^2y + y^3.$$
Then f_t is not strongly bilipschitz trivial.

Remark 3.3.6. Let $f(x, y) = \frac{1}{3}x^3 + y^3$. Note that f is quasihomogeneous of type $(n, 1; 3n)$. From Theorem 3.3.3 it follows that $f + t\theta$ is strongly bilipschitz trivial for each $\theta(x, t)$ such that $fil(\theta) \geq 4n - 1$.

Proof (of the Proposition 3.3.5). Let $m = 3n - 2$. Here we repeat the argument-proof from Theorem 1.1 in [2]. Suppose that $v(x, y, t) = v_1(x, y, t)\frac{\partial}{\partial x} + v_2(x, y, t)\frac{\partial}{\partial y}$ is a vector field such that:

$$\left(\frac{\partial f_t}{\partial t}\right)(x, y) = (df)_x(v(x, y, t))$$

The polar curve of $f_t \{ (x, y) \in \mathbb{R}^2 : \frac{\partial f_t}{\partial x}(x, y) = 0 \}$ is equal to the set $\{ (x, y) \in \mathbb{R}^2 : x^2 = t^2y^m \}$. Thus, $v_1(ty^{m/2}, y, t)$ and $v_2(-ty^{m/2}, y, t)$ satisfy:

$$v_1(ty^{m/2}, y, t)\frac{\partial f_t}{\partial y}(ty^{m/2}, y, t) = -\frac{\partial f_t}{\partial t}(ty^{m/2}, y, t)$$ (5)

$$v_2(-ty^{m/2}, y, t)\frac{\partial f_t}{\partial y}(-ty^{m/2}, y, t) = -\frac{\partial f_t}{\partial t}(-ty^{m/2}, y, t).$$ (6)

From equations (5) and (6) we have:

$$v_1(ty^{m/2}, y, t) = \frac{2t^2y^{m/2-1}}{mt^4y^{m/2-2} + 3n}$$

$$v_2(-ty^{m/2}, y, t) = \frac{-2t^2y^{m/2-1}}{mt^4y^{m/2-2} + 3n}$$

Thus,

$$v_1(ty^{m/2}, y, t) - v_2(-ty^{m/2}, y, t) \sim y^{m/2-1}$$ (7)

On the other hand,

$$\|(ty^{m/2}, y, t) - (-ty^{m/2}, y, t)\| \sim y^{m/2}$$ (8)

But, (7) and (8) show that v_2 is not Lipschitz. Hence f is not strongly bilipschitz trivial.

The invariant for bilipschitz equivalence $\text{Inv}(f_t)$ presented in [2] is independent of t, hence does not distinguish the element of the given family f_t.

Publicado pelo ICMC-USP
Sob a supervisão CPq/ICMC
REFERENCES

