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In this paper we obtain global well posedness results for the strongly damped
wave equation utt + (−∆)θut = ∆u + f(u), for θ ∈ [ 1

2
, 1], in H1

0 (Ω) × L2(Ω)

when Ω is a bounded smooth domain and the map f grows like |u|
n+2
n−2 . The

local well posedness is considered in [7]. If f = 0, then this equation generates
an analytic semigroup with generator −A(θ). Special attention is devoted to
the case when θ = 1 since in this case the generator −A(1) does not have

compact resolvent, contrary to the case θ ∈ [ 1
2
, 1). Under the dissipativeness

condition, lim sup|s|→∞
f(s)

s
≤ 0 we prove the existence of compact global

attractors for this problem. In the critical growth case we use Alekseev’s
nonlinear variation of constants formula (see [3]) to obtain that the semigroup
is asymptotically smooth. March, 2001 ICMC-USP

1. INTRODUCTION

For θ ∈ [ 12 , 1], η > 0, we consider the global well posedness and existence of global
attractors for a family of problems of the form





utt + η(−∆)θut + (−∆)u = f(u), t > 0, x ∈ Ω,

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω,

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(1)

where Ω is a bounded C2-smooth domain in Rn, n ≥ 3, and A = (−∆) with Dirichlet
boundary conditions. It is well known that A is a positive, self-adjoint operator with
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82 A. N. CARVALHO AND J. W. CHOLEWA

domain D(A) = H2(Ω) ∩ H1
0 (Ω) and therefore −A generates an analytic semigroup on

X = X0 = L2(Ω). We denote by Xα the fractional power spaces associated to the operator
A; that is, Xα = D(Aα) endowed with the graph norm.

The problems (1) will be viewed as ordinary differential equations in a product space
Y = Y 0 = X

1
2 ×X0:

d

dt

[
u
v

]
+A(θ)

[
u
v

]
= F(

[
u
v

]
), t > 0,

[
u
v

]

t=0

=
[
u0

v0

]
, (2)

with A(θ) : D(A(θ)) ⊂ Y 0 → Y 0 and F given by

A(θ) =
[
0 −I
A ηAθ

]
=

[ −ψ
Aθ(A1−θϕ + ηψ)

]
for

[
ϕ
ψ

]
∈ D(A(θ)), F =

[
0
F

]
, (3)

where F is the Nemitskĭı map associated to f(u) and

D(A(θ)) = Y 1
(θ) = {

[
ϕ
ψ

]
; ϕ ∈ X

3
2−θ, ψ ∈ X

1
2 , A1−θϕ + ηψ ∈ Xθ}, θ ∈ [

1
2
, 1]. (4)

Of course,

A(θ)

[
ϕ
ψ

]
=

[ −ψ
Aϕ + ηAθψ

]
for

[
ϕ
ψ

]
∈ X1 ×Xθ,

X1 ×Xθ being a dense subset of D(A(θ)).
The linear problem associated to (2) in Y 0,

ü + ηAθu̇ + Au = 0, t > 0, u(0) = u0, u̇(0) = v0, (5)

is studied in [8, 9, 10], where the sectoriality of A(θ) is established and a description of the
fractional power spaces Y α

(θ), α ∈ [0, 1] is given.

We choose as a base space for (1) the product space Y 0 = X
1
2 × X0. This choice of

space seems to be the best possible to study the asymptotic behavior of (1) since in it we
may exhibit an energy functional to (1).

In the cases α = 1
2 and θ = 1 will deserve special attention. For the case θ = 1

2 , because
of the form of the damping term A

1
2 ut, a more complete description of the fractional power

spaces associated to A( 1
2 ) is available. Using this, we have been able to: (i) completely

describe the extrapolated fractional power scale generated by (Y 0,A( 1
2 )) [7]; (iii) to ob-

tain the convergence of bounded sets from Y 0 to the attractor in the strong topology of
H1+α(Ω)×Hα(Ω)-norm, α ∈ [n−2

n+2 , 1). The fact that −A( 1
2 ) generates a compact analytic

semigroup is essential to the the analysis here. The cases θ ∈ (1
2 , 1) can be treated simi-

larly. For the case θ = 1 we have that: (i) The nonlinearity becomes subcritical; (ii) we
loose compactness of the semigroup and of the nonlinearity (so subcritical is of no help)
but we are still able to ensure the existence of a global attractor with the aid of a nonlinear
variation of constants formula.

The main result of [7] that we will use is that
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STRONGLY DAMPED WAVE EQUATIONS 83

Theorem 1.1. If f satisfies

|f(u)− f(u′)| ≤ c|u− u′|(1 + |u|ρ−1 + |u′|ρ−1) (6)

with ρ ≤ n+2
n−2 then (1) is locally well posed in H1

0 (Ω)× L2(Ω).

Our main result, concerning the asymptotic behavior of (1), can be stated in the following
form

Theorem 1.2. If in addition to (6) we have that f satisfies the dissipativeness condition

lim sup
|u|→∞

f(u)
u

≤ 0. (7)

Then, the problem (1) with θ ∈ [ 12 , 1] has a compact global attractor A0.

Some regularity results for the local solutions and for the attractors are also obtained.
Among other things we prove that A0 is a bounded subset of X

1
2 ×X

1
2 .

This paper is organized as follows. In Section 2 we prove state the solvability results for
(1) proved in [7] for f satisfying (6). Section 3 is devoted to obtaining some additional
regularity for solutions of (1). In Section 4 we treat the global solvability and the existence
of global attractors for (1). This section is divided into three subsections. In Subsection
4.1 we prove the existence of a compact global attractor (2) for the case θ = [ 12 , 1], ρ < n+2

n−2

and f satisfying (7) and (6). In Section 4.2 we treat the subcritical case ρ < n+2
n−2 for

θ = 1. In Subsection 4.3 we treat the critical case ρ = n+2
n−2 for θ = 1. We remark that for

θ = 1 the resolvent of A(θ) is not compact. However, we show that the semigroup {T (t)}
corresponding to (1) is asymptotically smooth. This is proved decomposing of {T (t)} on
a sum of the exponentially decaying semigroup and a family of compact maps (cf. [12]).
In the subcritical case this is accomplished using the fact that the nonlinearity is compact
and in the critical case we employ the nonlinear variation of constants formula as in [3].

Acknowledgements: This work was carried out while the second author visited the
Department of Mathematics of the Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, Brazil. He would like to acknowledge the great hospitality of
the people from this institution.

2. LOCAL SOLVABILITY IN Y 0

In this section we state the results of [7] on local well posedness and regularity for (2)
with initial conditions in Y 0 and nonlinearities f growing critically. We first recall that

Proposition 2.1. A(θ), θ ∈ [ 12 , 1], is a sectorial, positive operator in Y 0. The semigroup
of contractions {e−A(θ)t} is analytic in Y α

(θ), α ∈ [0, 1). It is also compact for t > 0 except
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84 A. N. CARVALHO AND J. W. CHOLEWA

the case θ = 1. Furthermore,

Y α
(θ) = [Y 0, Y 1

(θ)]α

=





X
1
2+α(1−θ) ×Xθα, α ∈ [0, 1

2 ],

{
[
ϕ

ψ

]
∈ X

1
2+α(1−θ) ×Xθ− 1

2+α(1−θ); A1−θϕ + ηψ ∈ Xθα}, α ∈ [ 12 , 1].
(8)

Also recall that the extrapolation space Y(θ)−1 of Y 0 generated by A(θ) is the completion
of the normed space (Y 0, ‖A−1

(θ) · ‖Y 0). Similarly as in [7, Lemma 2] one may infer that

• A(θ)−1 (A(θ)−1 being the closure of A(θ) in Y(θ)−1) is sectorial and positive operator in
Y(θ)−1 with D(A(θ)−1) = Y 1

(θ)−1
= Y 0.

• Imaginary powers of A(θ)−1 are bounded.
• If θ 6= 1, the A(θ)−1 has compact resolvent.

We shall thus study (1) as a sectorial problem (2) in Y(θ)−1 . Our concern will be the
solutions to (2) originating at the elements of Y 0.

The embeddings below relate the spaces in the extrapolated fractional power scale and
known spaces. They will be needed to obtain regularity results and asymptotic compactness
of the semigroup generated by (2).

Lemma 2.1. Let [(Xα, Aα), α ∈ R] (Aα being the realization of A in Xα) be generated
by (L2(Ω), (−∆D)). Then: i) for α(1− θ) < 1

4 and n = 3 or n > 3,

Y 1+α
(θ)−1

⊂ H1+2α(1−θ)(Ω)×H2θα(Ω) ⊂ Lq1(Ω)× Lq2(Ω), (9)

1 ≤ q1 ≤ 2n
n−2−4α(1−θ) , 1 ≤ q2 ≤ 2n

n−4αθ , α ∈ [0, 1
2 ], θ ∈ [ 12 , 1], ii) for n = 3 and

α = θ = 1
2 the embedding (9) holds for 1 ≤ q1 ≤ ∞, 1 ≤ q2 ≤ 3, iii) for n ≥ 3

Y 1+α
( 1
2 )−1

⊂ H1+α(Ω)×Hα(Ω) for any α ∈ [0, 1]. Furthermore,

Y α
(θ)−1

⊃ X
1
2−(1−α)(1−θ) ×X− 1

2+α(1−θ) ⊃ X
1
2−(1−α)(1−θ) × Lq(Ω), (10)

q ≥ 2n
n+2−4α(1−θ) , α ∈ [0, 1

2 ], θ ∈ [ 12 , 1], n ≥ 3 and also Y α
( 1
2 )−1

⊃ X
α
2 (Ω) ×H−1+α(Ω) for

any α ∈ [0, 1], n ≥ 3.

For a proof, see [7].
We will now recall the concept of ε-regularity of maps and solutions. If P is a sectorial,

positive operator acting in a Banach space Z = Z0 and ε is a nonnegative number, then

Definition 2.1. G : D(G) → Z is ε-regular relatively to (Z1, Z0) (equivalently, G is
of class F(ε, ρ, γ(ε), C)) if and only if there are constants ρ > 1, γ(ε) ≥ 0, C > 0 such that
ρε ≤ γ(ε) < 1, G takes Z1+ε into Zγ(ε), and the following estimate holds:

‖G(z1)−G(z2)‖Zγ(ε) ≤ C‖z1 − z2‖Z1+ε(‖z1‖ρ−1
Z1+ε + ‖z2‖ρ−1

Z1+ε + 1), z1, z2 ∈ Z1+ε. (11)
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STRONGLY DAMPED WAVE EQUATIONS 85

For the maps in (1) we have the following result

Theorem 2.1. Assume that f satisfies (6) with 1 < ρ ≤ n+2
n−2 . Let F be the map defined

by

F(
[
u
v

]
) =

[
0

F (u)

]
(12)

where F (u) is the Nemitskĭı map associated to f . Then, F is an ε−regular map relatively
to (Y 1

(θ)−1
, Y(θ)−1) for each ε ∈ [0, 1

2ρ ] (ε ∈ [0, 1) if θ = 1
2 ) and γ(ε) = ρε. That is,

‖F(
[
u
v

]
)−F(

[
u′

v′

]
)‖

Y
γ(ε)
(θ)−1

≤ c‖
[
u
v

]
−

[
u′

v′

]
‖Y 1+ε

(θ)−1
(1 + ‖

[
u
v

]
‖ρ−1

Y 1+ε
(θ)−1

+ ‖
[
u′

v′

]
‖ρ−1

Y 1+ε
(θ)−1

),
[
u
v

]
,

[
u′

v′

]
∈ Y 1+ε

(θ)−1
,

(13)

for ε ∈ [0, 1
2ρ ] (ε ∈ [0, 1) if θ = 1

2 ).

For a proof see [7]. The above result plays an important role in the regularity of the
solutions of (1) and we will refer to it later in the paper.

Consider an abstract problem:

·
z +Pz = G(z), t > 0, z(0) = z0 (14)

with P being a sectorial, positive operator in a Banach space Z0. Let ε ≥ 0, τ > 0, z0 ∈ Z1,
and z = z(·, z0) : [0, τ ] → Z1. Recall that

Definition 2.2. z is an ε-regular solution to the problem (14), if and only if z ∈
C([0, τ ], Z1) ∩ C((0, τ ], Z1+ε), and

z(t) = e−Ptz0 +
∫ t

0

e−P (t−s)G(z(s))ds for z ∈ [0, τ ].

Concerning the local existence and regularity of ε-regular solutions we quote the following
result from [7].

Theorem 2.2. Let (6) be satisfied,
[
u0

v0

]
∈ Y 0 and let BY 0(

[
u0

v0

]
, r) denote a ball in Y 0

with radius r > 0 centered at
[
u0

v0

]
.

Then, there are r > 0 and τ0 > 0 such that for each
[
u0

v0

]
∈ BY 0(

[
u0

v0

]
, r) there exists a

unique ε̃-regular solution
[
u
v

]
(·, u0, v0) to (2). In addition,
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86 A. N. CARVALHO AND J. W. CHOLEWA

(i)tζ‖
[
u
v

]
(t, u0, v0)‖Y 1+ζ

(θ)−1

→ 0 as t → 0+, (0 < ζ < 1
2 , 0 ≤ ζ ≤ ζ0 < 1 if θ = 1

2 )

(ii)tζ‖
[
u
v

]
(t, u1, v1) −

[
u
v

]
(t, u2, v2)‖Y 1+ζ

(θ)−1

≤ C ′‖
[
u1

v1

]
−

[
u2

v2

]
‖Y 0 whenever t ∈ [0, τ0],

0 ≤ ζ ≤ ζ0 < 1
2 (0 ≤ ζ ≤ ζ0 < 1 if θ = 1

2 ),
[
u1

v1

]
,

[
u2

v2

]
∈ BY 0(

[
u0

v0

]
, r),

(iii)
[
u
v

]
(·, u0, v0) ∈ C((0, τ0], Y

1+ 1
2

(ζ)−1
) ∩ C1((0, τ0], Y

1+ζ
(ζ)−1

) for 0 ≤ ζ < 1
2 (0 ≤ ζ ≤ ζ0 < 1 if

θ = 1
2 ); in particular,

[
u
v

]
(·, u0, v0) satisfies both relations in (2).

The existence of the ε-regular solution to (2) under the assumptions (6) has been already
discussed in [7]. We remark that such considerations are the extension of the original results
reported in [4], [5].

3. SMOOTHING ACTION OF ε−REGULAR SOLUTIONS

Assume that f satisfies (6). Then we have the following results

Lemma 3.1. For α ∈ [n−2
n+2 , 1), the map F corresponding to (2) takes Y α

(θ) into Y 0 and
is Lipschitz continuous on bounded subsets of Y α

(θ).

Proof: Description of Y α
(θ) spaces has been given in [7]. The proof follows by standard

calculations based on the Hölder inequality and Sobolev embedding.
The above lemma and the general results of [13] imply:

Lemma 3.2. For α ∈ [n−2
n+2 , 1) and

[
u0

v0

]
∈ Y α

(θ) there exists a unique Y α
(θ)-solution to

(1) defined on a maximal interval of existence [0, τu0,v0). That is, there exists a unique

function
[
u(·, u0, v0)
v(·, u0, v0)

]
∈ C([0, τu0,v0), Y

α
(θ)) such that:

(i)
[
u(t, u0, v0)
v(t, u0, v0)

]
∈ C((0, τu0,v0), Y

1
(θ)),

(ii)
[
u(·, u0, v0)
v(·, u0, v0)

]
∈ C1((0, τu0,v0), Y

β
(θ)), β ∈ [0, 1),

(iii)both relations in (2) are satisfied.

Theorem 3.1. If, in addition to (6), we assume that either 3 ≤ n and θ = 1
2 or

3 ≤ n ≤ 5 and θ ∈ ( 1
2 , 1] are satisfied. Then, the ε-regular solutions from Theorem 2.2

fulfill the conditions (i)-(iii) of Lemma 3.2.
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Proof: Take
[
u
v

]
and choose ε > 0 such that γ(ε) ≥ n−2

n+2 . Let
[
u(·, u0, v0)
v(·, u0, v0)

]
be ε-regular

solution obtained in Theorem 2.2.
Since Y

1+γ(ε)
(θ)−1

= Y
γ(ε)
(θ) ⊂ Y

n−2
n+2

(θ) we find from Theorem2.2 (iii) that

[
u(s, u0, v0)
v(s, u0, v0)

]
∈ Y

n−2
n+2

(θ) for each s ∈ (0, τ0).

According to Lemma 3.2 there exists Y
n−2
n+2

(θ) -solution
[
ũ(·, u(s, u0, v0))
ṽ(·, v(s, u0, v0))

]
to (1). This proves

that [
u(t + s, u0, v0)
v(t + s, u0, v0)

]
=

[
ũ(t, u(s, u0, v0))
ṽ(t, v(s, u0, v0))

]
, t ∈ [0, τu0,v0),

and consequently,
[
u(t, u0, v0)
v(t, u0, v0)

]
∈ Y 1

(θ), t ∈ (s, τu0,v0),
[
u(·, u0, v0)
v(·, u0, v0)

]
∈ C1((s, τu0,v0), Y

β
(θ)), β ∈ [0, 1).

Since s > 0 could be arbitrarily small, the proof is complete.

4. GLOBAL SOLVABILITY AND GLOBAL ATTRACTOR

4.1. Subcritical Case: θ ∈ [1
2
, 1)

In this section we consider the existence of a global compact attractor for (1) when f
is subcritical; that is, it satisfies (6) with ρ < n+2

n−2 . We restrict our attention to the cases
when either θ = 1

2 and n ≥ 3 or θ ∈ ( 1
2 , 1) and 3 ≤ n ≤ 5.

Lemma 4.1. If f satisfies (6) with ρ < n+2
n−2 ; then, for any bounded set B ⊂ Y 0 there

is a time τB > 0 such that the ε-regular solutions
[
u(·, u0, v0)
v(·, u0, v0)

]
, given by Theorem 2.2,

originating at
[
u0

v0

]
∈ B exists and are bounded in Y θ0

(θ) for arbitrary θ0 < γ(ε), where

γ(ε) > max{n−2
n+2 , ρε}. In particular, the set

{
[
u(t, u0, v0)
v(t, u0, v0)

]
,

[
u0

v0

]
∈ B}

is precompact in Y
n−2
n+2

(θ) for each t ∈ (0, τB).

Proof: The proof is a direct consequence of Theorem 2.2 (ii). We remark that, for γ(ε) > ρε
a number r in Theorem 2.2 can be chosen arbitrarily large so that the time of the existence
of ε-regular solutions is uniform on bounded sets of Y 0 (cf. [4, Corollary 1]).
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Remark 4. 1. We mention for completeness that one may choose in Lemma 4.1 e.g.

γ(ε) = εn+2
n−2 with certain ε >

(
n−2
n+2

)2

.

In the considerations below, devoted to the existence of the global attractor to (1) in
a subcritical case, we shall follow the general abstract scheme developed in [11, 6]. For
convenience we recall this scheme in the closing Section 5.

Theorem 4.1. Let the assumption of Lemma 4.1 hold and, in addition, f satisfies the
dissipative condition (7). Then,

(i)For any α ∈ [n−2
n+2 , 1) there exists corresponding to (1) a compact C0-semigroup {T (t)}

of global Y α
(θ)-solutions to (1) which possesses a compact global attractor Aα in Y α

(θ),
(ii)Aα = An−2

n+2
=: A, α ∈ [n−2

n+2 , 1),

(iii)T (t) : Y 0 → Y α
(θ), t > 0, where T (t)

[
u0

v0

]
=

[
u(t, u0, v0)
v(t, u0, v0)

]
,

[
u(·, u0, v0)
v(·, u0, v0)

]
being an

ε-regular solution from Theorem 2.2, are well defined maps which are the extensions of
T (t) (t > 0) to Y 0,
(iv)Aα attracts bounded subset of Y 0 under {T (t)} in Y α

(θ)-norm.

Proof: The proof of (i) occurs in four steps.

Step 1. (Y 0-estimate and the Lyapunov function) Take
[
u0

v0

]
∈ Y α

(θ) and consider the cor-

responding Y α
(θ)-solution

[
u(t, u0, v0)
v(t, u0, v0)

]
. Lemma 3.2 ensures that we have enough regularity

to work with the starting equation (1). Multiplying thus (1) by v = ut in L2(Ω) and using
the properties of the negative Laplacian with Dirichlet boundary conditions we obtain that

d

dt
(
1
2
‖ut‖2L2(Ω) +

1
2
‖∇u‖2L2(Ω) −

∫

Ω

∫ u

0

f(s)ds) = −η‖A θ
2 ut‖2L2(Ω).

This ensures in particular that

‖
[
u(t, u0, v0)
v(t, u0, v0)

]
‖Y 0 ≤ c + c′L(

[
u0

v0

]
) ≤ C(‖

[
u0

v0

]
‖Y 0), (15)

where c, c′ do not depend on η, β,

L(
[
w1

w2

]
) =

1
2
‖w2‖2L2(Ω) +

1
2
‖∇w1‖2L2(Ω) −

∫

Ω

∫ w1

0

f(s)ds, w1, w2 ∈ Y 0, (16)

and C : R+ → R+ is a locally bounded function independent of η, β.
Step 2. (subordination of the nonlinearity to a power of A) Since 1 < ρ < n+2

n−2 , then based
on the Nirenberg-Gagliardo type inequality we obtain that

‖f(u(t, u0, v0))‖L2(Ω) ≤ g(‖u(t, u0, v0)‖H1(Ω))(1 + ‖u(t, u0, v0)‖θ1
H1+α1 (Ω)

), (17)
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STRONGLY DAMPED WAVE EQUATIONS 89

t ∈ (0, τu0,v0), with certain θ1 ∈ [0, 1), α1 ∈ [0, 1) and some nondecreasing function g :
R+ → R+ (cf. [1]). Next, based on (17), we get the relation:

‖F(
[
u(t, u0, v0)
v(t, u0, v0)

]
)‖Y 0 = ‖f(u(t, u0, v0))‖L2(Ω)

≤ g(‖
[
u(t, u0, v0)
v(t, u0, v0)

]
‖Y 0)

(
1 + ‖

[
u(t, u0, v0)
v(t, u0, v0)

]
‖θ1

Y
α1
(θ)

)
.

(18)

Step 3. (global solvability and compactness) Conditions (15) and (18) plus the compactness
of the resolvent of A ensures that to (1) corresponds a compact C0-semigroup {T (t)} of
global Y α

(θ)-solutions having bounded orbits of bounded sets. For the proof of the existence
of the global attractor for {T (t)} in Y α

(θ) it now suffices to show that the estimate (15) is

asymptotically independent of
[
u0

v0

]
∈ Y α

(θ).

Step 4. (point dissipativeness of {T (t)} - the role of the Lyapunov function). Functional L
defined in (16) is a Lyapunov function for {T (t)} in Y α

(θ). Therefore, ω-limit sets of points
from Y α

(θ) lie within the set E of all stationary solutions to (1). Our concern now is to prove
that E is bounded in Y 0.

Let
[
ũ
ṽ

]
∈ E . Then ṽ = 0, whereas ũ is an H2(Ω)-solution of the elliptic problem

{
−∆ũ = f(ũ), x ∈ Ω,

ũ = 0 on ∂Ω.
(19)

With the use of (7) it is easy to show that if ũ solves (19), then ‖ũ‖H1(Ω) ≤ c′′ where
c′′ = c′′(Ω, f) > 0 is independent of ũ. Consequently, we have

‖
[
ũ
ṽ

]
‖Y 0 ≤ c′′′,

[
ũ
ṽ

]
∈ E . (20)

Since each ω-limit set ω(
[
u0

v0

]
), lies in E , is compact and attracts

[
u0

v0

]
∈ Y α

(θ) under {T (t)}
in Y α

(θ)-norm, condition (20) ensures in particular that

lim sup
t→+∞

‖
[
u(t, u0, v0)
v(t, u0, v0)

]
‖Y 0 ≤ c′′′,

[
u0

v0

]
∈ Y α

(θ). (21)

Therefore, the estimate (15) is asymptotically independent of initial data from Y α
(θ) which

completes the proof of the assertion (i).
Part (ii) is a consequence of the smoothing action of {T (t)}. Part (iii) follows from

Theorem 3.1. Finally, part (iv) results from Lemma 4.1. Theorem 4.1 is thus proved.

4.2. Subcritical Case: θ = 1
In this section we restrict our attention to the case θ = 1 studied previously by many

authors (cf. [16], [14], [12], [17]).
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Remark 4. 2. In the recent paper [17]) the dimension of the global attractor was
estimated. One can find however in this paper rather very strange errors. First, the author
takes X1 × X1 as the domain of A(1). However, if the base space is Y 0, this operator is
not closed with such a domain. This is the case, when one needs to choose Y 1

(1) as the
domain of A(1) following the description of [10]. In this case it is thus rather unknown
if the solution possesses the regularity stated in [10, Lemma 1 (ii)] for initial data from
Y 0. Next in the proof of [10, Theorem 2] the author says that the semigroup {e−A(1)t} is
compact. But this cannot be true because the resolvent of A(1) is not compact. The latter
may be easily seen it we look at the embeddings of Y α

(1) spaces. Of course it is impossible

for Y
1
2

(1) = X
1
2 ×X

1
2 to be compactly embedded in Y 0 = X

1
2 ×X0.

Throughout this section we shall consider functions f satisfying subcritical growth; that
is, (6) with ρ < ρ(n). In this particular case, F takes Y 1

(1)−1
into Y

1
2

(1)−1
and is Lipschitz

continuous in bounded sets. This says that the map F is subcritical and the Theorem 2.2
can be rewritten in the following form.

Theorem 4.2. For any initial data
[
u0

v0

]
lying in a bounded subset B of Y 1

(1)−1
there

exists a τ = τ(B) and a unique 0−regular solution [0, τ ] 3 t 7→
[
u
v

]
(t, u0, v0) ∈ Y 1

(1)−1
to

(2) which depends continuously on the initial data. Furthermore,
[
u
v

]
(·, u0, v0) ∈ C((0, τ ], Y

3
2

(1)−1
) ∩ C1((0, τ ], Y

3
2
−

(1)−1
)

and
[
u
v

]
(t, u0, v0) satisfies both relations in (2).

The theorem above is proved as in [13].
If we show that local solutions from Theorem 4.2 are bounded in the norm of X

1
2 ×X

uniformly on bounded sets, then we shall obtain the existence of a C0-semigroup {T (t)}
corresponding to (2) in Y 0 having bounded orbits of bounded sets (cf. [6], [11]).

Our concern is thus to prove the following:

Lemma 4.2. Let
[
u
v

]
(·, u0, v0) denote a solution obtained in Theorem 4.2 and f satisfies

the dissipativeness condition (7). Then,

‖
[
u
v

]
(t, u0, v0)‖Y 0 ≤ c(‖

[
u0

v0

]
‖Y 0),

where c : R+ → R+ is a locally bounded function.

The proof of this result is similar to the proof of Step 1 in Theorem 6 in [7].
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Lemma 4.3. Under the assumptions of Lemma 4.2 0−regular solutions from Theorem
4.2 exist globally in time. Therefore, the equation (2) defines a C0−semigroup {T (t), t ≥ 0}
on Y 0 such that

(i){T (t), t ≥ 0} has bounded orbits of bounded sets;
(ii){T (t), t ≥ 0} is asymptotically smooth.

Proof: The existence of a C0−semigroup with bounded orbits of bounded sets follows from
Lemma 4.2. To prove condition (ii) we start writing the variation of constants formula

T (t)
[
u0

v0

]
= e−A(1)−1 t

[
u0

v0

]
+

∫ t

0

e−A(1)−1 (t−s)F(T (s)
[
u0

v0

]
)ds.

Note that e−A(1)−1 t decays exponentially and that f takes bounded subsets of X
1
2 into

bounded subsets of X− 1
2+δ, for some δ > 0. From this we have that F is a compact map

from Y 1
(1)−1

= Y 0 into Y
1
2

(1)−1
= Y − 1

2 . Since e−A(1)−1 t is a bounded linear operator from

Y
1
2

(1)−1
to Y 1

(1)−1
we have that the operator

U(t)
[
u0

v0

]
=

∫ t

0

e−A(1)−1 (t−s)F(T (s)
[
u0

v0

]
)ds

as a map from Y 0 into Y 0 is compact. It follows from the results in [12] that T (t) is an
asymptotically smooth as a sum of an exponentially decaying semigroup with a compact
family of maps. This completes the proof.

As an immediate consequence of these lemmas and of Step 4 in Theorem 6 of [7] we have
the following result

Theorem 4.3. Under the assumptions of Lemma 4.2, {T (t), t ≥ 0} has a compact global
attractor A0 in Y 0.

Theorem 4.4. Under the assumptions of Lemma 4.2, the problem (2) defines a C0

semigroup {Tα(t), t ≥ 0} on Y 1+α
(1)−1

for each α ∈ [0, 1
2 ) which possesses a compact global

attractor Aα. Furthermore, A0 is bounded in X
1
2 ×X

1
2 and Aα = A0 for α ∈ [0, 1

2 ).

Proof: Noting that {T0(t), t ≥ 0} is a dissipative C0−semigroup in Y 1
(1)−1

having bounded
orbits of bounded sets, with simple computations based on the variation of constants
formula one can easily see that {Tα(t), t ≥ 0} is a point dissipative C0−semigroup in
Y 1+α

(1)−1
with bounded orbits of bounded sets, for each α ∈ [0, 1

2 ) (cf. [11, Corollary 4.3.2]).
The proof that the semigroups {Tα(t), t ≥ 0} are asymptotically smooth follows as in

Lemma 4.3. For the proof that A0 is bounded in X
1
2 ×X

1
2 = Y

3
2

(1)−1
we refer to Lemma

3.2.1 in [11].
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4.3. Attractors in the Critical Growth Case: θ = 1
In this section we shall consider the case when f satisfies (6) with the critical exponent

ρ = ρ(n).

4.3.1. The case of strong dissipation

We begin from the simpler case when the semigroup {T (t)} corresponding to (2) is
exponentially decaying and the attractor is a one point set {(0, 0)}.

Throughout this section we assume the following stronger dissipativeness condition

sf(s) ≤ 0, s ∈ R. (22)

We remark that we may replace the above condition by sf(s) ≤ λ1s, s ∈ R, where λ1 is
the first eigenvalue of A. This will be clear from the proof of the results.

Proposition 4.1. Under (22) the equation (2) defines a C0-semigroup on Y 0 which
has a compact global attractor A0 = {(0, 0)}.

Proof: Note that both Theorem 4.2 and Lemma 4.2 remain true under the assumptions of
the present section. Therefore, there exists corresponding to (2) semigroup {T (t), t ≥ 0}
of global 0-regular solutions with bounded orbits of bounded sets.

Based on (22) we shall next prove that

‖T (t)
[
u0

v0

]
‖Y 0 ≤ h(r)e−Mδ(r)t,

[
u0

v0

]
∈ Br = BY 0(

[
0
0

]
, r), t ≥ 0, r > 0, (23)

where h(r) and Mδ(r) are given in (31) and (27),(29) respectively. In particular, {(0, 0)}
is a unique equilibrium which attracts bounded subsets of Y 0.

Following [3] we introduce a functional

Lδ(
[
w1

w2

]
) = L0(

[
w1

w2

]
) + δ

∫

Ω

w1w2dx, δ ≥ 0 (24)

where L0 is a standard Lyapunov functional to (1);

L0(
[
w1

w2

]
) =

1
2
‖w2‖2L2(Ω) +

1
2
‖∇w1‖2L2(Ω) −

∫

Ω

∫ w1

0

f(s)dsdx. (25)

We remark that as a consequence of (22) the integral
∫
Ω

∫ w

0
f(s)dsdx is nonpositive. There-

fore, for δ sufficiently small Lδ(
[
w1

w2

]
) majorizes the norm ‖

[
w1

w2

]
‖L2(Ω) (see (30)).
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We then have

d

dt
Lδ(T (t)

[
u0

v0

]
) = −η‖∇v(t, u0, v0)‖2L2(Ω) + δ‖v(t, u0, v0)‖2L2(Ω)

+ δ

∫

Ω

u(t, u0, v0)
(
∆u(t, u0, v0) + η∆v(t, u0, v0) + f(u(t, u0, v0))

)
dx

≤ −η

2
‖∇v(t, u0, v0)‖2L2(Ω) + δ‖v(t, u0, v0)‖2L2(Ω) − δ(1− δη

2
)‖∇u(t, u0, v0)‖2L2(Ω)

≤ −δ

2
‖∇u(t, u0, v0)‖2L2(Ω) −

ηλ1

4
‖v‖2L2(Ω), 0 < δ < min{ηλ1

4
,
1
η
},

(26)

where λ1 is the first eigenvalue of A. Since (22) implies that f(0) = 0, therefore (6) ensures
that

∃c̃≥1 |
∫

Ω

∫ w

0

f(s)dsdx| ≤ c̃(1 + ‖∇w‖
4

n−2

L2(Ω))‖∇w‖2L2(Ω), w ∈ H1
0 (Ω).

Defining

Mr = sup{‖∇u(t, u0, v0)‖
4

n−2

L2(Ω);
[
u0

v0

]
∈ Br, t ≥ 0},

Mδ(r) =
δ

4c̃(1 + M
4

n−2
r )

, where c̃ ≥ max{1, λ1} and 0 < δ < {ηλ1

4
,
1
η
}

(27)

we may increase the right hand side of (26) to get

d

dt
Lδ(T (t)

[
u0

v0

]
) ≤ −Mδ(r)Lδ(T (t)

[
u0

v0

]
)− δ

4
‖∇u(t, u0, v0)‖2L2(Ω) −

ηλ1

8
‖v‖2L2(Ω)

+ Mδ(r)
∫

Ω

u(t, u0, v0)v(t, u0, v0)dx, 0 < δ < min{ηλ1

4
,
1
η
}.

(28)

Based on the Poincaré and Young inequalities we have that

− δ

4
‖∇u(t, u0, v0)‖2L2(Ω) −

ηλ1

8
‖v(t, u0, v0)‖2L2(Ω)

+ Mδ(r)
∫

Ω

u(t, u0, v0)v(t, u0, v0)dx ≤ 0,
(29)

and
1
4
‖T (t)

[
u0

v0

]
‖Y 0 ≤ Lδ(T (t)

[
u0

v0

]
) (30)

are satisfied. For such value of δ inequality (28) reads:

d

dt
Lδ(T (t)

[
u0

v0

]
) ≤ −Mδ(r)Lδ(T (t)

[
u0

v0

]
),

[
u0

v0

]
∈ Br
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and we obtain the estimate

‖T (t)
[
u0

v0

]
‖Y 0 ≤ 4Lδ(T (t)

[
u0

v0

]
) ≤ h(r)e−Mδ(r)t, t ≥ 0,

[
u0

v0

]
∈ Br.

where

h(r) = 4 sup{Lδ(
[
u0

v0

]
);

[
u0

v0

]
∈ Br} (31)

The proof is complete.

4.3.2. Nonlinear variation of constants formula

Our next concern is to prove for a pair of problems (32) and (33) the Alekseev’s nonlinear
variation of constants formula (35) (cf. [3, Theorem 2.2]). In these considerations we shall
need the following assumptions:
(H0) Let P be a sectorial, positive operator in a Banach space Z = Z0 with the domain
Z1. Fix α ∈ [0, 1) and consider functions G1 : Zα → Z0, G2 : Zα → Zα such that G1 has
continuous Frechét derivative and G2 is Lipschitz continuous on bounded sets.
(Hα) There exists a Banach space Y = Y0 densely embedded in Zα such that P|Y0 (P|Y0

being a realization of P in Y 0) is sectorial and positive in Y0 with the domain Y1 and G1,
G2 are Lipschitz continuous as the maps from Y0 into Y0.

We remark that in the special case when α = 0 conditions of (Hα) are consequence of
the assumptions in (H0). Thus, for α = 0, the requirements of (Hα) are inessential.

For v ∈ Zα let z = z(t, v) be a solution to

ż + Pz = G1(z), t > 0, z(0) = v. (32)

Similarly, let z̃ = z̃(t, v) be a solution to
.
z̃ +P z̃ = G1(z̃) + G2(z̃), t > 0, z̃(0) = v. (33)

Lemma 4.4. Suppose that the requirements of (H0) and (Hα) are satisfied. Then, the
following conditions hold:

function (0, +∞)× Zα 3 (t, ω) → z(t, ω) ∈ Zα has continuous Frechét derivative (34)

z̃(t, v) = z(t, v) +
∫ t

0

∂z

∂ω
(t− s, z̃(s, v))G2(z̃(s, v))ds, t > 0. (35)

Proof: Condition (34) is a consequence of [13, Corollary 3.4.6]. Next, since z(t, ω) in
(34) is a C1 function, using the chain rule we obtain:

d

ds

[
z(t− s, z̃(s, v))

]
= − .

z (t− s, z̃(s, v)) +
∂z

∂ω
(t− s, z̃(s, v))

.
z̃ (s, v). (36)
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For v ∈ Y0, assumptions of (Hα) guarantee that z̃(s, v) ∈ Y1 and
.
z (0, z̃(s, v)) exists in

Y0-norm. Since Y0 ⊂ Zα, the derivative
.
z (0, z̃(s, v)) exists in Zα-norm and we have:

ż(t− s, z̃(s, v)) = lim
h→0+

z(t− s + h, z̃(s, v))− z(t− s, z̃(s, v))
h

= lim
h→0+

z(t− s, z(h, z̃(s, v))− z(t− s, z(0, z̃(s, v)))
h

=
∂z

∂ω
(t− s, z̃(s, v))ż(0, z̃(s, v)).

(37)

Connecting (36), (37), and (33) we get

d

ds

[
z(t− s, z̃(s, v))

]
=

∂z

∂ω
(t− s, z̃(s, v))

(
Pz(0, z̃(s, v))−G1(z(0, z̃(s, v)))

− P z̃(s, v) + G1(z̃(s, v)) + G2(z̃(s, v))
)

=
∂z

∂ω
(t− s, z̃(s, v))G2(z̃(s, v)).

(38)

Integrating both sides of (38) we show that (35) holds for v ∈ Y0.
Now choose v0 ∈ Zα and consider a sequence {vn} ∈ Y0 convergent to v0 in Zα. We

know that

z̃(t, vn) = z(t, vn) +
∫ t

0

∂z

∂ω
(t− s, z̃(s, vn))G2(z̃(s, vn))ds, t > 0, n ∈ N (39)

where z(·, vn) and z̃(·, vn) tend in Zα to z(·, v0) and z̃(·, v0) respectively. Since convergence
of z(·, vn) and z̃(·, vn) is uniform with respect to t varying in compact subintervals of
[0, +∞) (cf. [13, Theorem 3.4.1]), passing to the limit in (39) we obtain (35) for v ∈ Zα.
The proof is complete.

Remark 4. 3. Lemma 4.4 remains true if instead of (H0) and (Hα) we assume that (H ′
0)

and (Hα) hold;

(H ′
0) P is a sectorial, positive operator in a Banach space Z = Z0 with the domain Z1,

α ≥ β ≥ 0 satisfy α− β ∈ [0, 1) and functions G1 : Zα → Zβ , G2 : Zα → Zα are such that
G1 has continuous Frechét derivative and G2 is Lipschitz continuous on bounded sets.
Proof: Indeed, since P|

Zβ
(P|

Zβ
being the realization of P in W 0 := Zβ) is a sectorial,

positive operator with D(P|
Zβ

) = Zβ+1 =: W 1 (cf. [11, Proposition 1.3.8]) and, for
α′ = α−β, Wα′ = (Zβ)α−β = Zα, (cf. [2, p. 260]) we repeat the arguments of Lemma 4.4
with P|

Zβ
, W 0 and Wα instead of P , Z0, Zα.

The next lemma shows validity of the Alekseev’s formula for a pair of sectorial problems
connected to the strongly damped wave equation (1).

Lemma 4.5. Let n = 3, 4, 5, 6. Suppose that f(u, v) = f(u)− βv, where
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•f = f11 + f12, f1i : R→ R, i = 1, 2,
•f11 has second order derivative, |f ′′11(s)| ≤ c(1+|s|ρ(n)−2), f11 satisfies (6) with ρ = ρ(n)

and in addition sf11(s) ≤ 0 for s ∈ R,
•f12 satisfies (6) with ρ ≤ n

n−2 and, moreover, lim sup|s|→∞
f12(s)

s ≤ 0.

Then,

(i)Assumptions of (H ′
0) hold with P = A(1)−1 , Z0 = Y(1)−1 , α = 1, β = 1

2 , and

G1(
[
u
v

]
) =

[
0

F11(u)

]
, G2(

[
u
v

]
) =

[
0

F12(u)

]
,

where F11, F12 are Nemitskĭı maps corresponding to f11 and f12 respectively.
(ii)Assumptions of (Hα) hold with α = 1, Y0 = X1 × X0, Y1 = X1 × X1, and P|Y0 =
A(1)|

X1×X0
(cf. [16, Proposition 2.2]).

(iii)Alekseev’s formula (35) holds with v :=
[
u0

v0

]
, z̃ := T (·)

[
u0

v0

]
denoting the solution to

d

dt

[
u
v

]
+A(1)−1

[
u
v

]
=

[
0

F11(u)

]
+

[
0

F12(u)

]
, t > 0,

[
u
v

]

t=0

=
[
u0

v0

]
, (40)

and z := S(·)
[
u0

v0

]
denoting the solution to

d

dt

[
u
v

]
+A(1)−1

[
u
v

]
=

[
0

F11(u)− βv

]
, t > 0,

[
u
v

]

t=0

=
[
u0

v0

]
. (41)

4.3.3. A regularity result

Here we state a regularity result taken from [3] that will play a crucial role on the proof
that the semigroup T (t) of global solutions to (1) cam be decomposed as a sum of an
exponentially decaying semigroup (in bounded subsets) S(t) and a compact operator U(t).
In fact it will be used to prove the compactness of U(t). This result has been used in [3]
with the exact same purpose.

If A : D(A) ⊂ Z → Z is a sectorial operator, let ZA denote the Banach space D(A)
endowed with the graph norm.

Proposition 4.2. Assume Z is a Banach space and A : D(A) ⊂ Z → Z is sectorial on
Z. Let T ∈ (t0,∞] and f : [t0, T )×Z → Z be a function which satisfies enough conditions
to have uniqueness of mild solutions of the following problem,

ż = Az + f(t, z) t0 < t < T, z ∈ Z; (42)

z(t0) = z0 ∈ Z. (43)
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Define the function

g : [t0, T ) ×Z1 × Z → Z

(t, z, y) → ft(t, z) + fz(t, z)y,
(44)

where the subscripts denote the usual partial derivatives, and assume that

(H) g is continuous in t ∈ [t0, T ) and locally Lipschitz continuous in (z, y) ∈ Z1 × Z

uniformly on compact
intervals of [t0, T ).

If z0 ∈ D(A), then there exists a unique solution z(t) of (42) through (t0, z0) on a
maximal interval [t0, t1) which is a strict solution on [t0, τ) for some t0 < τ ≤ t1; that is,

z ∈ C1([t0, τ), Z) ∩ C0([t0, τ), Z1) ∩ C0([t0, t1), Z).

In fact we will use the following consequence of 4.2 (see [3])

Corollary 4.1. Assume that:

i) f satisfies a global Lipschitz condition in Z uniformly on
compact intervals of t ∈ [t0, T )

ii) g satisfies a global Lipschitz condition in Z1 × Z uniformly on
compact intervals of t ∈ [t0, T )

then τ = t1 = T and there exists a continuous function C : R+ × [t0, T ) → R+ such that

‖z(t, z0)‖Z1 ≤ C(‖z0‖Z1 , t) (45)

4.3.4. Existence theorem

With the use of Alekseev’s formula we may finally obtain the existence of a compact
global attractor for the semigroup {T (t)} corresponding to (1) in the critical growth case.

Theorem 4.5. Under the assumptions of Lemma 4.5 we may assume that, f12 is con-
tinuously differentiable function satisfying growth restriction |f ′12| ≤ c, the problem (40)
defines in Y 0 a C0-semigroup {T (t)} of 0-regular solutions which possesses a compact
global attractor in Y 0.

Proof: The assertions of Theorem 4.2 and Lemma 4.2 remain valid under the assump-
tions of the present theorem. The existence of a C0-semigroup {T (t)} in Y 0 with bounded
orbits of bounded sets is thus straightforward.
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If we proved that {T (t)} is asymptotically smooth, then the existence of a Lyapunov
functional L0 (cf. (25)) and the boundedness of the set of stationary solutions would
guarantee that {T (t)} is point dissipative (cf. [7, Theorem 6]). Consequently, {T (t)}
would possess a compact global attractor in Y 0.

To prove that {T (t)} is asymptotically smooth we apply Lemma 4.5 (iii) decomposing
{T (t)} so that

T (t)
[
u0

v0

]
= S(t)

[
u0

v0

]
+ U(t)

[
u0

v0

]
,

[
u0

v0

]
∈ Y 0,

where S(·)
[
u0

v0

]
is a solution to (41) and

U(t)
[
u0

v0

]
=

∫ t

0

∂S

∂ω

(
t− s, T (s)

[
u0

u0

])
G2(T (s)

[
u0

v0

]
)ds.

By Proposition 4.1, (23), {S(t)} is a C0-semigroup in Y 0, asymptotically decaying uni-
formly on bounded subsets of Y 0. Therefore, to justify that {T (t)} is asymptotically
smooth we only need to prove that U(t) : Y 0 → Y 0 is a compact map for each t > 0 (cf.
[12, Lemma 3.2.3]).

As a consequence of the growth restriction for f12, for any δ0 ∈ (0, 1
2 ], F12 takes bounded

subsets of X
1
2 into bounded subsets of Xδ (cf. [3, Lemma 5.2]).

Let E0 = E = X
1
2+δ0 × Xδ0 . Then A(1) is sectorial on E0 (see [14, Theorem 1.1]).

We also remark that A(1) considered on a base space E0 with the domain E1 = {
[
φ
ψ

]
∈

X
1
2+δ0 ×Xδ0 ; φ + ηψ ∈ X1+δ0} is maximal accretive with zero in the resolvent set.
We then check that

• X
1
2+δ0 ×Xδ0 = E0 = E1

−1 ⊂ Eα
−1 ⊂ E−1 ⊃ X

1
2+δ0 ×X− 1

2+δ0 , α ∈ [0, 1],
• E0 = E1

−1,
• for each δ ∈ (0, δ0],

H

(
t,

[
z1

z2

])
=

(
0

f ′(w(t))z1

)

is strongly continuous in t and, for t fixed, is Lipschitz continuous on bounded sets of E0

with values in E−1.

Next we apply Corollary 4.1 to obtain that the operator U(t) is compact. For that we
note that if we let

U0 = T (s)
[
u0

v0

]

and

U(t) =
[

v(t)
vt(t)

]
=

∂S

∂w
(t, U0)G2(U0),
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S(t) =
[

w(t)
wt(t)

]
,

then we have that U satisfies the equation

Ut = AU + h(t, U)

U(0) = G2(U0), h(t, U) =
[

0
f ′11(w(t))v − βwt(t)

]
.

(46)

The following lemma implies that we may apply Corollary 4.1 to obtain compactness of
U(t)

Lemma 4.6. Let

g : [t0,∞)× E1
−1 × E−1 → E−1

be the function defined by

g

(
t,

(
µ
η

)(
u
v

))
=

(
0

f ′′11(w(t))wt(t)µ

)
+

(
0

f ′11(w(t))u

)

Then, g is continuous in t and globally Lipschitz in
((

µ
η

)(
u
v

))
uniformly for t > 0 and

U0 ∈ Br.

Now we are ready to complete the proof of existence of global attractors. Since G(U0) ∈
E0 and since ‖G(U0)‖E0 ≤ C(‖U0‖Y0) for some continuous function C(·) and since orbits of
bounded subsets of Y0 are bounded subsets of Y0 we have from Corollary 4.1 that U(t, U0)
is a bounded subset of E0 for any bounded subset B of Y0. Since the embedding of E0 into
Y0 is compact we have that U(t) is a compact map.

5. APPENDIX: ABSTRACT RESULT FOR THE EXISTENCE OF A
COMPACT GLOBAL ATTRACTOR

Consider the Cauchy problem (14) assuming that Z = Z0 is a Banach space, P : D(P ) →
Z sectorial and positive operator in Z and, for some α ∈ [0, 1), G : Zα → Z is Lipschitz
continuous on bounded subsets of Zα.

Under these assumptions to any z0 ∈ Zα corresponds a unique Zα-solution z(·, z0) of
(14) defined on a maximal interval of existence [0, τz0). We then have (cf. [11, 6]):

Proposition 5.1. Suppose that the above assumptions are satisfied and, in addition, P

has compact resolvent. Then the following two conditions are equivalent:

(i)Relation T (t)z0 = z(t, z0), t ≥ 0, defines on Zα a compact C0-semigroup {T (t)} of global
Zα-solutions to (14) which has a compact global attractor in Zα.
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(ii)There are:

•a Banach space Y, with D(P ) ⊂ Y,

•a locally bounded function C : R+ → R+,

•a nondecreasing function g : R+ −→ R+,

•certain number θ1 ∈ [0, 1),

such that, for each z0 ∈ Zα, both conditions:

‖z(t, z0)‖Y ≤ C(‖z0‖Zα), t ∈ (0, τz0), (47)

and

‖G(z(t, z0))‖Z ≤ g(‖z(t, z0)‖Y)(1 + ‖z(t, z0)‖θ
Zα), t ∈ (0, τz0), (48)

hold, where the estimate (47) is asymptotically independent of z0 ∈ Zα.
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