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In this paper we obtain global well posedness results for the strongly damped
wave equation ust + (—A)%us = Au + f(u), for 9 € [%, 1], in H} () x L2(Q)

when Q is a bounded smooth domain and the map f grows like |u\% The
local well posedness is considered in [7]. If f = 0, then this equation generates
an analytic semigroup with generator —Agy. Special attention is devoted to
the case when ¢ = 1 since in this case the generator —A(;) does not have
compact resolvent, contrary to the case 0 € [% ,1). Under the dissipativeness

condition, lim SUP|s| o0 f (S) < 0 we prove the existence of compact global
attractors for this problem In the critical growth case we use Alekseev’s
nonlinear variation of constants formula (see [3]) to obtain that the semigroup
is asymptotically smooth.  March, 2001 ICMC-USP

1. INTRODUCTION

For 6 € [%, 1], » > 0, we consider the global well posedness and existence of global
attractors for a family of problems of the form

g + (=) + (=A)u = f(u), t >0, z€Q,
u(0, ) = uo(x ) ut(0,2) = vo(x), x € Q, (1)
u(t,x) =0, t >0, z € 99,

where () is a bounded C?-smooth domain in R®, n > 3, and A = (—A) with Dirichlet
boundary conditions. It is well known that A is a positive, self-adjoint operator with
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82 A. N. CARVALHO AND J. W. CHOLEWA

domain D(A) = H?(Q) N H}(Q) and therefore —A generates an analytic semigroup on
X = X% = L2(Q). We denote by X the fractional power spaces associated to the operator
A; that is, X* = D(A®) endowed with the graph norm.

The problems (1) will be viewed as ordinary differential equations in a product space
Y =Y%=X3 x X0

fewll-nbhoe LBl

with Agg) : D(Agg)) C Y — Y and F given by

0 -1 —
A(a) = {A UAO} = {A‘)(Al_;é—&—nw)} for {ZZ] € D(A(G))a F

where F' is the Nemitskil map associated to f(u) and
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D(A<e>)=Y<19>={m; peXi peXx: A% tnppeX’) fe EIRINCY
Of course,

.A(g) [i] = |:A¢+17/7}A91/1:| for [i:| e x! ><)(97
X! x X? being a dense subset of D(A)).
The linear problem associated to (2) in Y,

i+ 1A%+ Au=0, t >0, u(0) = uo, 1(0) = vy, (5)

is studied in [8, 9, 10], where the sectoriality of A is established and a description of the
fractional power spaces Y3, a € [0,1] is given.

We choose as a base space for (1) the product space Y? = X 3 x XO. This choice of
space seems to be the best possible to study the asymptotic behavior of (1) since in it we
may exhibit an energy functional to (1).

In the cases a = % and 6 = 1 will deserve special attention. For the case 8 = %, because

of the form of the damping term A%ut, a more complete description of the fractional power
spaces associated to A( 1 is available. Using this, we have been able to: (i) completely

describe the extrapolated fractional power scale generated by (Y°, A 1) [7); (iii) to ob-

tain the convergence of bounded sets from Y to the attractor in the strong topology of
H7(Q) x H*(Q)-norm, o € [Z_T_g, ). The fact that —A(1) generates a compact analytic
semigroup is essential to the the analysis here. The cases 6 € (%, 1) can be treated simi-
larly. For the case § = 1 we have that: (i) The nonlinearity becomes subcritical; (ii) we
loose compactness of the semigroup and of the nonlinearity (so subcritical is of no help)
but we are still able to ensure the existence of a global attractor with the aid of a nonlinear
variation of constants formula.

The main result of [7] that we will use is that
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STRONGLY DAMPED WAVE EQUATIONS 83

THEOREM 1.1. If f satisfies
[f(uw) = fu)] < elu—o/|(1+ [ulP™h + [u'[P7) (6)

with p < 2E2 then (1) is locally well posed in Hg(€2) x L2(12).

Our main result, concerning the asymptotic behavior of (1), can be stated in the following
form

THEOREM 1.2. If in addition to (6) we have that [ satisfies the dissipativeness condition

lim sup flw) <0. (7)
lu|—oo U

Then, the problem (1) with 6 € [%, 1] has a compact global attractor Ay.

Some regularity results for the local solutions and for the attractors are also obtained.
Among other things we prove that A is a bounded subset of X 3 x X2,

This paper is organized as follows. In Section 2 we prove state the solvability results for
(1) proved in [7] for f satisfying (6). Section 3 is devoted to obtaining some additional
regularity for solutions of (1). In Section 4 we treat the global solvability and the existence
of global attractors for (1). This section is divided into three subsections. In Subsection

4.1 we prove the existence of a compact global attractor (2) for the case § = [%7 1], p < Zf%
and f satisfying (7) and (6). In Section 4.2 we treat the subcritical case p < 2£2 for

6 = 1. In Subsection 4.3 we treat the critical case p = Z—J_rg for # = 1. We remark that for
6 = 1 the resolvent of A(g) is not compact. However, we show that the semigroup {T'(t)}
corresponding to (1) is asymptotically smooth. This is proved decomposing of {T'(¢)} on
a sum of the exponentially decaying semigroup and a family of compact maps (cf. [12]).
In the subcritical case this is accomplished using the fact that the nonlinearity is compact
and in the critical case we employ the nonlinear variation of constants formula as in [3].

Acknowledgements: This work was carried out while the second author visited the
Department of Mathematics of the Instituto de Ciéncias Matematicas e de Computacao,
Universidade de Sdo Paulo, Brazil. He would like to acknowledge the great hospitality of
the people from this institution.

2. LOCAL SOLVABILITY IN Y°

In this section we state the results of [7] on local well posedness and regularity for (2)
with initial conditions in Y° and nonlinearities f growing critically. We first recall that

PROPOSITION 2.1. Ag), 0 € [%7 1], is a sectorial, positive operator in Y. The semigroup
of contractions {e~A®} is analytic in YG), a €10,1). It is also compact for t >0 except
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84 A. N. CARVALHO AND J. W. CHOLEWA

the case 0 = 1. Furthermore,
Yo = [Y°71Y&;>]a
X3+a-0) X0 o € [0, ],

T, ? (®)
(

c X%-{-a(l—@) % XQ—%—&-a(l—G); Al_gtp-ﬁ-mﬂ c X’Qoe}7 a € [%’”_
Also recall that the extrapolation space Y(g)_, of Y? generated by A(p) is the completion

of the normed space (Y, ||A(_9§ - |lyo). Similarly as in [7, Lemma 2] one may infer that

o Aw)_, (Aw)_, being the closure of A in Y(g)_, ) is sectorial and positive operator in
Yio)_, with D(Ag)_,) =Yg =Y’

e Imaginary powers of A)_, are bounded.

o If 0 # 1, the A(g)_, has compact resolvent.

We shall thus study (1) as a sectorial problem (2) in Y(4)_,. Our concern will be the
solutions to (2) originating at the elements of Y°.

The embeddings below relate the spaces in the extrapolated fractional power scale and
known spaces. They will be needed to obtain regularity results and asymptotic compactness
of the semigroup generated by (2).

LEMMA 2.1. Let (X, An), a € R] (Aq being the realization of A in X*) be generated
by (L*(Q), (=Ap)). Then: i) for a(1 —0) < 1 andn =3 orn >3,

Yo € H¥2e0-0(0) x H2(Q) ¢ LN (Q) x L®(Q), )
1< q < oo tagmey 1 < @@ < 2 a € [0,3], 0 € [3,1], 4@) forn = 3 and

a =0 = % the embedding (9) holds for 1 < ¢ < o0, 1 < qo < 3, 4ii) forn > 3
Y(lfgfl C HY(Q) x H¥(Q) for any o € [0,1]. Furthermore,

Y,

(3)_1 5 X3 (1-a)(1-0) y x—5+a(1-0) 5 x3-(1-a)(1-0) La(5), (10)

q> Wﬁ(kﬁ)) a€l0,3],0€[3,1], n>3 and also Yy

any a € [0,1], n > 3.

D XE(Q) x H'(Q) for

For a proof, see [7].
We will now recall the concept of e-regularity of maps and solutions. If P is a sectorial,
positive operator acting in a Banach space Z = Z° and ¢ is a nonnegative number, then

DEFINITION 2.1. G : D(G) — Z is e-regular relatively to (Z1, Z°) (equivalently, G is
of class F(e, p,v(¢),C)) if and only if there are constants p > 1, y(¢) > 0, C > 0 such that
pe < () < 1, G takes Z'*< into Z7(%), and the following estimate holds:

IG(21) = G(z2)l| zvr < Cllzr = z2llgse (Il + Nz2llaie + 1), 21,22 € 2145 (11)
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STRONGLY DAMPED WAVE EQUATIONS 85

For the maps in (1) we have the following result

THEOREM 2.1. Assume that f satisfies (6) with 1 < p < Z—fg Let F be the map defined
by

Al

where F(u) is the Nemitskii map associated to f. Then, F is an e—regular map relatively
to (1/(%9)71,}/(9)71) for each e € [0, ﬁ] (e€[0,1) if 6 = 3) and y(e) = pe. That is,

u/

-

U o (7] u'| -1 U '
<ell o] = [ e, e [ usate s [t ][] e,

)—1

(13)

foree0,4;] (e€[0,1) if 0 = 3).

For a proof see [7]. The above result plays an important role in the regularity of the
solutions of (1) and we will refer to it later in the paper.
Consider an abstract problem:

z+Pz=G(z), t >0, 2(0) = z (14)

with P being a sectorial, positive operator in a Banach space Z°. Let £ > 0,7 > 0, 29 € Z*,
and 2z = z(-, 29) : [0,7] — Z'. Recall that

DEFINITION 2.2. z is an e-regular solution to the problem (14), if and only if z €
c([o,7],zYYynC((0,7], Z*¢), and

t
2(t) = e Pz +/ e P3G (2(s))ds for z € [0,7].
0

Concerning the local existence and regularity of e-regular solutions we quote the following
result from [7].

THEOREM 2.2. Let (6) be satisfied, [50} € Y and let By0(|:1,:0:| ,7) denote a ball in Y°
0 0

with radius r > 0 centered at [ZO] .
0
Uo

u
(Y Vo

Then, there are v > 0 and 79 > 0 such that for each [ O] c Byo([ } , 1) there exists a
0

unique é-reqular solution {z] (+,u0,v0) to (2). In addition,
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86 A. N. CARVALHO AND J. W. CHOLEWA

u

v} (t,uo,vo)Hy(grg —0ast—0", (0<(< %, 0<(<(o<1ifb= %)
-1

odl
(i)t | m (t,u1,v1) — m (t,ug,fu2)||y(1551 < Bﬂ _ [

0<(<G<30<¢<C<lifo=13), [Zi][“ﬂ eBYo([ZS] ),

ug] llyo whenever t € [0, 7],
2

V2
u

v

} (-+u0,v0) € C((0,70], Yy %) N CH(0,70), Y ) for 0< ¢ < 3 (0< ¢ < o< 1 if

0= %), in particular, B] (-, up,vo) satisfies both relations in (2).

The existence of the e-regular solution to (2) under the assumptions (6) has been already
discussed in [7]. We remark that such considerations are the extension of the original results
reported in [4], [5].

3. SMOOTHING ACTION OF e-~REGULAR SOLUTIONS
Assume that f satisfies (6). Then we have the following results

LEMMA 3.1. For o € [Z—_T_g, 1), the map F corresponding to (2) takes Y(%‘) into YO and

18 Lipschitz continuous on bounded subsets of Y(‘g)‘).

Proof: Description of Y(‘é‘) spaces has been given in [7]. The proof follows by standard
calculations based on the Holder inequality and Sobolev embedding. |
The above lemma and the general results of [13] imply:

LEMMA 3.2, For a € [233,1) and [50} € Y, there exists a unique Y3, -solution to
0

(1) defined on a mazimal interval of existence [0, Ty, 0,). That is, there exists a unique

. u(+, up, vo) o ]
function [v(~,uo,v0)} € C([0, Tug,v0), Y(G)) such that:

. U(t,u , U ) .
(i) [v(t,ug’vg)] € C((0, Tug,00), Y

.. u(~,u0,v0) 1 B8
(“)[v(',m),vo)} € 0, Tuo.0): ¥g)), A E10,1),
(#ii)both relations in (2) are satisfied.

THEOREM 3.1. If, in addition to (6), we assume that either 3 < n and 6 = L or
3<n<b5andb e (%, 1] are satisfied. Then, the e-reqular solutions from Theorem 2.2
fulfill the conditions (i)-(ii) of Lemma 8.2.
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STRONGLY DAMPED WAVE EQUATIONS 87

Proof: Take || and choose e > 0 such that v(e) > 222 Let u(:, uo, vo) be e-regular
v n+ (-, uo, Vo)

solution obtained in Theorem 2 2

Since Y(};)W(E) Y(gga) Y(g)“ we find from Theorem2.2 (iii) that

u(s, ug, vg) n-2
[v(smo,vo)} € Y(g) for each s € (0,7).

. . =1 .
According to Lemma 3.2 there exists Y(e) solution (-, v(s, 10, v0)) to (1). This proves

w2 . [g(~7u(8,uo,7}0))}

that

[u(t+s,uo,vo)] _ [Z(t,u(s,uo,vo))

v(t + s, up,v9) ] 1€ [0, T w0),

and consequently,
U(t,UO,UQ) Yl ’LL(', anUO) Cfl Yﬁ 0.1
€ 6)» te (SﬂTuo,vo)7 € ((SvTuo,vo)ﬂ (9))7 ﬁ € [ ’ )

U(t7u07vo) ’U(',UQ,’U())

Since s > 0 could be arbitrarily small, the proof is complete. |

4. GLOBAL SOLVABILITY AND GLOBAL ATTRACTOR

4.1. Subcritical Case: 0 € [%, 1)

In this section we consider the existence of a global compact attractor for (1) when f
is subcritical; that is, it satisfies (6) with p < "+2 We restrict our attention to the cases

when either § = 1 and n >3 or 6 € (3,1) and3<n§5.
LEMMA 4.1. If f satisfies (6) with p < "+2 then, for any bounded set B C YO there
is a time T > 0 such that the e-reqular solutions [ZE »Zovzoﬂ; given by Theorem 2.2,
5 w0, Y0
originating at [:}LO] € B exists and are bounded in Y(%‘)) for arbitrary 6y < ~(g), where
0
~(g) > max{ ”+2,pzs} In particular, the set

{{u(t,uo,vo)} | [uo] < B}

U(t7u07U0) Vo

s precompact in Y, (9) for each t € (0,7p).

Proof: The proof is a direct consequence of Theorem 2.2 (ii). We remark that, for y(g) > pe
a number r in Theorem 2.2 can be chosen arbitrarily large so that the time of the existence
of e-regular solutions is uniform on bounded sets of Y9 (cf. [4, Corollary 1]). |
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88 A. N. CARVALHO AND J. W. CHOLEWA

Remark 4. 1. 'We mention for completeness that one may choose in Lemma 4.1 e.g.

2
— ent2 i —2
~v(e) = 5% with certain € > (%) .

In the considerations below, devoted to the existence of the global attractor to (1) in
a subcritical case, we shall follow the general abstract scheme developed in [11, 6]. For
convenience we recall this scheme in the closing Section 5.

THEOREM 4.1. Let the assumption of Lemma 4.1 hold and, in addition, f satisfies the
dissipative condition (7). Then,

(i)For any o € [272,1) there exists corresponding to (1) a compact C°-semigroup {T(t)}

n+2?
of global Y(‘;)—solutions to (1) which possesses a compact global attractor A, in Y@“),

(i))Ao = Apz=: A, a€[i33.1),

Vo U(t,UO,’UO) U('7UO7UO)
e-regqular solution from Theorem 2.2, are well defined maps which are the extensions of
T(t) (t>0) toY?,
(iv)A,, attracts bounded subset of YO under {T'(t)} in Y G, -norm.

(ii)T() : YO = Y3, t > 0, where T(t) [uo} _ {u(t,uo,vo)} [u(-,uo,vo)} being an

Proof: The proof of (i) occurs in four steps.

Step 1. (Y-estimate and the Lyapunov function) Take [50} € Y((g) and consider the cor-
0

u(ta Uo, 'UO)

U(t, U, UO)

to work with the starting equation (1). Multiplying thus (1) by v = u; in L*(Q2) and using
the properties of the negative Laplacian with Dirichlet boundary conditions we obtain that

responding Y(‘g)‘)—solution [ ] . Lemma 3.2 ensures that we have enough regularity

d, 1 1 v 6
GGl + 51Vl = [ [ ) = =nlAfula,

This ensures in particular that

[t o < e e[y < car[] o (19

U(ta Ug, UO)

where ¢, ¢’ do not depend on 7, 3,

w 1 1 -
L( [w;]) = §||w2||%2(9) + §||Vw1|\2L2(Q> - /Q/o f(s)ds, wi,wp €Y?,  (16)

and C : RT — R is a locally bounded function independent of n, 3.
Step 2. (subordination of the nonlinearity to a power of A) Since 1 < p < Z—f; then based
on the Nirenberg-Gagliardo type inequality we obtain that

1 (u(t, w0, v0)) 22y < gllult, wo, vo) [ 0)) (1 + lJult, wo, v0) [ v (), (17)
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STRONGLY DAMPED WAVE EQUATIONS 89

t € (0, Tug,vy), With certain 6; € [0,1), oy € [0,1) and some nondecreasing function g :
RT — R* (cf. [1]). Next, based on (17), we get the relation:

] T TR
) smnﬁglmlﬂ1:2044[““%”“h@«)~ "

v(tau()av()) U(t7’U,(),’U0) (6)

Step 3. (global solvability and compactness) Conditions (15) and (18) plus the compactness
of the resolvent of A ensures that to (1) corresponds a compact C%-semigroup {T'(¢)} of
global Y(‘é‘)-solutions having bounded orbits of bounded sets. For the proof of the existence

of the global attractor for {T'()} in VG, it now suffices to show that the estimate (15) is

0

asymptotically independent of [z € Y(‘é‘).
0

Step 4. (point dissipativeness of {T(t)} - the role of the Lyapunov function). Functional £
defined in (16) is a Lyapunov function for {T'(¢)} in YG)- Therefore, w-limit sets of points
from Y3, lie within the set £ of all stationary solutions to (1). Our concern now is to prove
that £ is_ bounded in YO,
Let g € €. Then 9 = 0, whereas @ is an H?(Q)-solution of the elliptic problem
—Au = f(u Q
~Au = f(a), zeQ, (19)
@ =0 on 0N.

With the use of (7) it is easy to show that if @ solves (19), then ||i|| g1y < ¢ where
" ="(Q, f) > 0 is independent of @. Consequently, we have

st < 3] <& (20

Since each w-limit set w( {ZO} ), lies in &, is compact and attracts [ZO} € Y(Cg) under {T'(t)}
0 0

in Y(‘g,‘)—norm, condition (20) ensures in particular that

. u(t7u07'00) 7 o
< .

lilllilf\\ [U(TZUOWO)} e <, Lfo} € Yi) 1)
Therefore, the estimate (15) is asymptotically independent of initial data from Y(Dé) which

completes the proof of the assertion (i).
Part (ii) is a consequence of the smoothing action of {T'(¢)}. Part (iii) follows from
Theorem 3.1. Finally, part (iv) results from Lemma 4.1. Theorem 4.1 is thus proved. 1

4.2. Subcritical Case: 6 =1

In this section we restrict our attention to the case 8 = 1 studied previously by many
authors (cf. [16], [14], [12], [17]).
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Remark 4. 2. 1In the recent paper [17]) the dimension of the global attractor was
estimated. One can find however in this paper rather very strange errors. First, the author
takes X! x X' as the domain of A1) However, if the base space is YO, this operator is
not closed with such a domain. This is the case, when one needs to choose Y(ll) as the
domain of Ay following the description of [10]. In this case it is thus rather unknown
if the solution possesses the regularity stated in [10, Lemma 1 (ii)] for initial data from
Y0, Next in the proof of [10, Theorem 2] the author says that the semigroup {e~4®*} is
compact. But this cannot be true because the resolvent of A(q) is not compact. The latter
may be easily seen it we look at the embeddings of Y((f) spaces. Of course it is impossible

1
for Y3, = X2 x X2 to be compactly embedded in Y° = X2 x X©.

Throughout this section we shall consider functions f satisfying subcritical growth; that
1

is, (6) with p < p(n). In this particular case, F takes Y(ll)_1 into Y&),l and is Lipschitz

continuous in bounded sets. This says that the map F is subcritical and the Theorem 2.2
can be rewritten in the following form.
THEOREM 4.2. For any initial data [zo] lying in a bounded subset B of Y(ll) . there
0 _
. . . u
exists a T = 7(B) and a unique 0—regular solution [0,7] > ¢t — L}] (t,up,v0) € Y(ll)_1 to

(2) which depends continuously on the initial data. Furthermore,

m (0, 00) € C((0,7], Y5 )N CH(©,7], ) )

and [ﬂ (t,uo, vo) satisfies both relations in (2).

The theorem above is proved as in [13].

If we show that local solutions from Theorem 4.2 are bounded in the norm of X2 x X
uniformly on bounded sets, then we shall obtain the existence of a C°-semigroup {7'(¢)}
corresponding to (2) in Y having bounded orbits of bounded sets (cf. [6], [11]).

Our concern is thus to prove the following:

LEMMA 4.2. Let [ﬂ (-, u0,v0) denote a solution obtained in Theorem 4.2 and f satisfies

the dissipativeness condition (7). Then,

1[2] sy < e [22] o)

where ¢ : RT™ — R is a locally bounded function.

The proof of this result is similar to the proof of Step 1 in Theorem 6 in [7].
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STRONGLY DAMPED WAVE EQUATIONS 91

LEMMA 4.3. Under the assumptions of Lemma 4.2 0—regular solutions from Theorem
4.2 exist globally in time. Therefore, the equation (2) defines a C°—semigroup {T'(t),t > 0}
on YO such that

(i){T(t),t > 0} has bounded orbits of bounded sets;
(1){T(t),t > 0} is asymptotically smooth.

Proof: The existence of a C°—semigroup with bounded orbits of bounded sets follows from
Lemma 4.2. To prove condition (ii) we start writing the variation of constants formula

T(t) [“0] = e Amt {“0} - /0 A9 £ () {“0} )ds.

Vo Vo Vo

Note that e M1t decays exponentially and that f takes bounded subsets of X? into
1 . .
bounded subsets of X219, for some § > 0. From this we have that F is a compact map

from Y1, = Y0 into Y2 —Agy_,t
om ¥y _, o Y,

Y(1) | to Y ), we have that the operator

Ut) [“O] - /O oA ) £ () [“O])ds

Vo Vo

1 . . .
=Y 2. Since e is a bounded linear operator from

as a map from Y into Y is compact. It follows from the results in [12] that T(t) is an
asymptotically smooth as a sum of an exponentially decaying semigroup with a compact
family of maps. This completes the proof. |

As an immediate consequence of these lemmas and of Step 4 in Theorem 6 of [7] we have
the following result

THEOREM 4.3. Under the assumptions of Lemma 4.2, {T(t),t > 0} has a compact global
attractor Ag in Y°.

THEOREM 4.4. Under the assumptions of Lemma 4.2, the problem (2) defines a C°
semigroup {T,(t),t > 0} on YHD‘ for each a € [0, 2) which possesses a compact global

attractor A.. Furthermore, AO is bounded in X2 x X2 and A, =Ag fora €0, 5).

Proof: Noting that {Ty(t),t > 0} is a dissipative C”—semigroup in Y(ll)_1 having bounded
orbits of bounded sets, with simple computations based on the variation of constants
formula one can easily see that {T,(t),t > 0} is a point dissipative C°—semigroup in
Y(lﬂ'a with bounded orbits of bounded sets, for each a € [0, 1) (cf. [11, Corollary 4.3.2]).
The proof that the semigroups {7, (¢),t > 0} are asymptotlcally smooth follows as in

Lemma 4.3. For the proof that Ay is bounded in X2 x Xt = Y(?),l we refer to Lemma
3.2.11in [11].
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4.3. Attractors in the Critical Growth Case: 0 =1
In this section we shall consider the case when f satisfies (6) with the critical exponent
p=p(n).
4.3.1.  The case of strong dissipation

We begin from the simpler case when the semigroup {T'(¢)} corresponding to (2) is
exponentially decaying and the attractor is a one point set {(0,0)}.
Throughout this section we assume the following stronger dissipativeness condition

sf(s) <0, seR. (22)

We remark that we may replace the above condition by sf(s) < A1s, s € R, where \; is
the first eigenvalue of A. This will be clear from the proof of the results.

PROPOSITION 4.1.  Under (22) the equation (2) defines a C°-semigroup on Y° which
has a compact global attractor Ay = {(0,0)}.

Proof: Note that both Theorem 4.2 and Lemma 4.2 remain true under the assumptions of
the present section. Therefore, there exists corresponding to (2) semigroup {T'(¢),t > 0}
of global 0-regular solutions with bounded orbits of bounded sets.

Based on (22) we shall next prove that

IT(¢) BO] llyo < h(r)e"Ms(t, {“0} €B, = Byo(m ), t>0,r>0, (23
0

Vo
where h(r) and My(r) are given in (31) and (27),(29) respectively. In particular, {(0,0)}

is a unique equilibrium which attracts bounded subsets of Y.
Following [3] we introduce a functional

55({“’1}) :co(mj)wfgwmdx, 530 (24)

L)

where Ly is a standard Lyapunov functional to (1);

w 1 1 w1y

We remark that as a consequence of (22) the integral [, fow f(s)dsdx is nonpositive. There-

fore, for ¢ sufficiently small Ls( [Z;]) majorizes the norm || Z; l2(q) (see (30)).
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We then have

d U
ST [12]) = =0T olt, 10, 00) iy + S0t w0

+ 5/ u(t, Uuop, 'U())(A’U,(t, Uuo, U(]) =+ nAv(t, Uuop, 'U()) + f(u(t, up, U())))dl’
Q

n an
< *gllw(t,uO?vo)IIiQ(m + o (t, uo, vo)[| 720y — 6(1 — *)IIVu(t, uo, v0) |72 ()

T])\l 1

1)
< *iHVU(tvUOWO)”%%Q) ||U||L2(Q)7 0<é< mln{ 5}7

93

(26)

where \p is the first eigenvalue of A. Since (22) implies that f(0) = 0, therefore (6) ensures

that
Je>1 |// f(s)dsdz| < é(1+ || Vw £2 ZQ))HVwHLg(Q w € Hy(Q).
Defining
M, = sup{[[Vu(t, uo, vo)l| s o {Zﬂ € B,, t >0},
) A1
Ms(r) = ———————, where ¢>max{1,A\;} and 0<d < {E -
n

4E(1 + M,"7?)

we may increase the right hand side of (26) to get

GO [22]) < 20T ) [20]) = IVt uos ) ) — B0l

Vo Vo
1

+M5(r)/ u(t, uo, vo)v(t, ug, vo)de, 0<5<m1n{— g
Q

Based on the Poincaré and Young inequalities we have that

77>\1

6
- EHVU(t,Uo,Uo)Hiz(Q) [o(t, w0, v0) |72

—|—M5(r)/ u(t,uo,vo)v(t,uo,vo)dx <0,
Q

and

iHT(t) {“"} lyo < Ls(T(t) [uo])

Vo

are satisfied. For such value of ¢ inequality (28) reads:

7 La(T(0) {“0

Vo

< -msmesa o). || < 5

Vo Vo

(27)

(28)

(29)

(30)
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and we obtain the estimate

uo
Vo

IT(t) [Zg] llyo < 4Ls(T(t) [Z‘ﬂ) < h(r)e MMt ¢ >0, { ] € B,.

where
h(r) = 4sup{Ls( [ZO] ); [uo] € B} (31)
0 Vo
The proof is complete. |

4.8.2.  Nonlinear variation of constants formula

Our next concern is to prove for a pair of problems (32) and (33) the Alekseev’s nonlinear
variation of constants formula (35) (cf. [3, Theorem 2.2]). In these considerations we shall
need the following assumptions:

(Ho) Let P be a sectorial, positive operator in a Banach space Z = Z" with the domain
Z'. Fix a € [0,1) and consider functions G : Z% — Z° Gy : Z% — Z“ such that G; has
continuous Frechét derivative and G4 is Lipschitz continuous on bounded sets.

(H,) There exists a Banach space ) = V° densely embedded in Z< such that P (P
being a realization of P in YY) is sectorial and positive in Y° with the domain ! and G,
G5 are Lipschitz continuous as the maps from Y into J°.

We remark that in the special case when a = 0 conditions of (H,) are consequence of
the assumptions in (Hy). Thus, for a = 0, the requirements of (H,) are inessential.

For v € Z* let z = z(t,v) be a solution to

24+ Pz=Gi(z), t >0, z2(0) =v. (32)
Similarly, let Z = Z(¢,v) be a solution to
Z 4Pz =G(2)+Ga(3), t >0, 2(0) = 0. (33)

LEMMA 4.4. Suppose that the requirements of (Hy) and (H,) are satisfied. Then, the
following conditions hold:

function (0,400) x Z% 3 (t,w) — z(t,w) € Z% has continuous Frechét derivative (34)

Z(t,v) = z(t,v) Jr/o g—z(t —8,%2(8,v))G2(2(s,v))ds, t > 0. (35)

Proof: Condition (34) is a consequence of [13, Corollary 3.4.6]. Next, since z(¢,w) in
(34) is a C* function, using the chain rule we obtain:

d _ . _ 0z - L
g[z(t —s,2(s,v))] == £ (t —s,2(s,0)) + a—w(t —,2(s,v)) Z (s,v). (36)

Publicado pelo ICMC-USP
Sob a supervisiao da CPq/ICMC



STRONGLY DAMPED WAVE EQUATIONS 95

For v € Y, assumptions of (H,) guarantee that Z(s,v) € Y' and z (0, Z(s,v)) exists in
VY-norm. Since Y° C Z¢, the derivative z (0, Z(s,v)) exists in Z%norm and we have:

z2(t — s+ h,z2(s,v)) — 2(t — s, 2(s,v))

'é(tfsag(&v)) :hli,rélJr h
— lim Z(t - S, Z(h7 2(37’0)) - Z(t - S?Z(Ov 2(&”))) (37)
h—0t h
0z - i =
= %(t —5,2(s,v))2(0, 2(s,v)).
Connecting (36), (37), and (33) we get
d - 0z - - -
— [2(t = 5,2(s,v))] = == (t — 5,2(s,v)) (P2(0, Z(s,v)) — G1(2(0, Z(s,v)))
— Pz(s,v) + G1(3(s,v)) + G2(3(s,v))) = %(t —8,2(5,v))G2(2(s,v)).

Integrating both sides of (38) we show that (35) holds for v € ).
Now choose vy € Z“ and consider a sequence {v,} € V0 convergent to vy in Z¢. We
know that

Z(t,vn) = 2(t,vp) +/O g—i(t — 8,2(8,0,))G2(2(s,v,))ds, t >0, n €N (39)

where z(-,v,) and Z(-, vy,) tend in Z* to z(-,vg) and Z(-, vg) respectively. Since convergence
of z(+,v,) and Z(-,v,) is uniform with respect to ¢ varying in compact subintervals of
[0,4+00) (cf. [13, Theorem 3.4.1]), passing to the limit in (39) we obtain (35) for v € Z*.
The proof is complete. |

Remark 4. 8. Lemma 4.4 remains true if instead of (Hy) and (H,) we assume that (H{)
and (H,) hold,

(H}) P is a sectorial, positive operator in a Banach space Z = Z° with the domain Z?,
a > > 0satisfy a — 8 € [0,1) and functions Gy : Z* — Z°, Gy : Z* — Z° are such that
(G1 has continuous Frechét derivative and G5 is Lipschitz continuous on bounded sets.
Proof: Indeed, since P|ZB (P|Z5 being the realization of P in W := Z7) is a sectorial,
positive operator with D(P_,) = ZP+L = W' (cf. [11, Proposition 1.3.8]) and, for
o =a—fF, W = (2P)*=F = Z* (cf. [2, p. 260]) we repeat the arguments of Lemma, 4.4
with P__, W and W* instead of P, Z°, Z°. [ |

The next lemma shows validity of the Alekseev’s formula for a pair of sectorial problems
connected to the strongly damped wave equation (1).

LEMMA 4.5. Let n = 3,4,5,6. Suppose that f(u,v) = f(u) — Bv, where
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of = fu1+ fiz, fu: R—>R, 1 =12,

e f11 has second order derivative, |f1}(s)| < c(1+]|s|P™=2), f11 satisfies (6) with p = p(n)
and in addition sfi11(s) <0 for s € R,

o f12 satisfies (6) with p < -5 and, moreover, lim SUP 5| -0 hi2(s) < g,

Then,
(i) Assumptions of (Hy) hold with P = Aq)_,, Z0 = Yoy, a=1,p=

(3= [rtu) - 2] = |ratn)

where F11, F1o are Nemitskit maps corresponding to fi1 and fi12 respectively.
(ii) Assumptions of (Hs) hold with o = 1, J° = X! x X0 P! = X1 x X!, and P =
Ay, . (cf. [16, Proposition 2.2]).

Xt xX

(11i) Alekseev’s formula (35) holds with v := [20], Z2:=1T() BO} denoting the solution to
0 0

im A M B [Flf)(u)} " {Flf(w] e mtzoz [33}’ )

and z := S(")

—
<

uo] denoting the solution to
0

m AL m B {Fn(u(;—ﬁv] » £>0, m o [Zﬂ : (41)

=

4.8.8. A regqularity result

Here we state a regularity result taken from [3] that will play a crucial role on the proof
that the semigroup T'(t) of global solutions to (1) cam be decomposed as a sum of an
exponentially decaying semigroup (in bounded subsets) S(¢) and a compact operator U (t).
In fact it will be used to prove the compactness of U(t). This result has been used in [3]
with the exact same purpose.

If A: D(A) C Z — Z is a sectorial operator, let Z4 denote the Banach space D(A)
endowed with the graph norm.

PROPOSITION 4.2. Assume Z is a Banach space and A : D(A) C Z — Z is sectorial on
Z. LetT € (tg,00] and f : [to,T) X Z — Z be a function which satisfies enough conditions
to have uniqueness of mild solutions of the following problem,

2=Az+ f(t,z) to<t<T, ze€Z (42)
2(to) = 20 € Z. (43)
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Define the function
qg: [to,T) XZl X Z — 7
(44)
(t> z,y) — ft(tv Z) + fz(tv Z)ya

where the subscripts denote the usual partial derivatives, and assume that

(H) g is continuous in t € [to,T) and locally Lipschitz continuous in (z,y) € Z* x Z
uniformly on compact
intervals of [to, T).

If 20 € D(A), then there exists a unique solution z(t) of (42) through (to,20) on a
mazximal interval [to,t1) which is a strict solution on [tog, T) for some tg < 7 < ti; that is,

z € CY([to, 1), Z) N C°([to,7), Z*) N C([to, t1), Z).

In fact we will use the following consequence of 4.2 (see [3])
COROLLARY 4.1. Assume that:

1) f satisfies a global Lipschitz condition in Z uniformly on
compact intervals of t € [to,T)

ii) g satisfies a global Lipschitz condition in Z* x Z uniformly on
compact intervals of t € [to, T)

then 7 =t1 = T and there exists a continuous function C : RY x [to,T) — R such that

[2(t, 20) [ 2+ < C(llzoll 21, 1) (45)

4.3.4. FExistence theorem

With the use of Alekseev’s formula we may finally obtain the existence of a compact
global attractor for the semigroup {7T'(¢)} corresponding to (1) in the critical growth case.

THEOREM 4.5. Under the assumptions of Lemma 4.5 we may assume that, fis is con-
tinuously differentiable function satisfying growth restriction |fis| < ¢, the problem (40)
defines in YO a CY-semigroup {T(t)} of O-regular solutions which possesses a compact
global attractor in YO.

Proof: The assertions of Theorem 4.2 and Lemma 4.2 remain valid under the assump-
tions of the present theorem. The existence of a C%-semigroup {7'(t)} in Y° with bounded
orbits of bounded sets is thus straightforward.

Publicado pelo ICMC-USP
Sob a supervisao CPq/ICMC



98 A. N. CARVALHO AND J. W. CHOLEWA

If we proved that {T'(¢t)} is asymptotically smooth, then the existence of a Lyapunov
functional Ly (cf. (25)) and the boundedness of the set of stationary solutions would
guarantee that {T'(¢)} is point dissipative (cf. [7, Theorem 6]). Consequently, {T'(¢)}
would possess a compact global attractor in Y0,

To prove that {T'(¢)} is asymptotically smooth we apply Lemma 4.5 (iii) decomposing
{T'(t)} so that

0 Vo Vo

70|10 = s [10] vue 2] o] eve

where S() [ZO} is a solution to (41) and
0

Ut) [“O] - / 08 mis) [zg])Gg(T(s) {“0} )ds.

Vo 0 Ow Vo

By Proposition 4.1, (23), {S(t)} is a C%-semigroup in Y, asymptotically decaying uni-
formly on bounded subsets of YY. Therefore, to justify that {T(t)} is asymptotically
smooth we only need to prove that U(t) : Y¥ — Y is a compact map for each t > 0 (cf.
[12, Lemma 3.2.3)).

As a consequence of the growth restriction for f12, for any dg € (0, %], F5 takes bounded
subsets of Xz into bounded subsets of X% (cf. [3, Lemma 5.2]).

Let B = F = X21% x X%  Then A1) is sectorial on E° (see [14, Theorem 1.1]).
We also remark that A(;) considered on a base space E° with the domain E' = {[Z] €

X200 x X%; ¢4 mpp € X100} is maximal accretive with zero in the resolvent set.
We then check that

o X2td 5 X0 — FO—Fl Cc E* Cc E_; D X2t x X~2t% o €[0,1],

e E0=F',,
" (’* H) - (f’<w(<)t>>z1>

e for each ¢ € (0, d],
is strongly continuous in ¢ and, for ¢ fixed, is Lipschitz continuous on bounded sets of E
with values in E_;.

Next we apply Corollary 4.1 to obtain that the operator U(t) is compact. For that we
note that if we let

-]

Vo

and
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then we have that U satisfies the equation

U(0) = G2(Up), h(t,U) = { 0 (46)

fi(w(t)v = Puwi(t) ]

The following lemma implies that we may apply Corollary 4.1 to obtain compactness of
U(t)

LEMMA 4.6. Let
g: [to,OO) X Ell xFE_1— F_4
be the function defined by

o (1 (3) () = Cthmon) * (o)

Then, g is continuous in t and globally Lipschitz in ((':;) (g)) uniformly for t > 0 and
Uy € B,.

Now we are ready to complete the proof of existence of global attractors. Since G(Up) €
Ey and since ||G(Uo)llg, < C(||Uolly,) for some continuous function C(+) and since orbits of
bounded subsets of Yj are bounded subsets of Y we have from Corollary 4.1 that U (¢, Up)
is a bounded subset of Fy for any bounded subset B of Y. Since the embedding of Ey into
Yy is compact we have that U(t) is a compact map.

5. APPENDIX: ABSTRACT RESULT FOR THE EXISTENCE OF A
COMPACT GLOBAL ATTRACTOR

Consider the Cauchy problem (14) assuming that Z = ZY is a Banach space, P : D(P) —
Z sectorial and positive operator in Z and, for some o € [0,1), G : Z% — Z is Lipschitz
continuous on bounded subsets of Z<.

Under these assumptions to any zg € Z corresponds a unique Z-solution z(-, zg) of
(14) defined on a maximal interval of existence [0, 7,,). We then have (cf. [11, 6]):

PROPOSITION 5.1.  Suppose that the above assumptions are satisfied and, in addition, P
has compact resolvent. Then the following two conditions are equivalent:

(i)Relation T (t)zo = z(t, z0), t > 0, defines on Z* a compact C°-semigroup {T(t)} of global
Z*-solutions to (14) which has a compact global attractor in Z<.
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(ii) There are:

ea Banach space Y, with D(P) C ),
ea locally bounded function C : RT — RT,
ea nondecreasing function g : Rt — RT,

ecertain number 6, € [0,1),

such that, for each zo € Z<, both conditions:

[2(t, 20)[ly < C(lz0l[z), t € (0,7,), (47)
and

IG(=(t, 20) 12 < g(ll2(t z0)ll9) (L + 22, 20)l| %), T € (0,72), (48)

hold, where the estimate (47) is asymptotically independent of zo € Z%.
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